首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The helicase of hepatitis C virus (HCV) unwinds nucleic acid using the energy of ATP hydrolysis. The ATPase cycle is believed to induce protein conformational changes to drive helicase translocation along the length of the nucleic acid. We have investigated the energetics of nucleic acid binding by HCV helicase to understand how the nucleotide ligation state of the helicase dictates the conformation of its nucleic acid binding site. Because most of the nucleotide ligation states of the helicase are transient due to rapid ATP hydrolysis, several compounds were analyzed to find an efficient unhydrolyzable ATP analog. We found that the beta-gamma methylene/amine analogs of ATP, ATPgammaS, or [AlF4]ADP were not effective in inhibiting the ATPase activity of HCV helicase. On the other hand, [BeF3]ADP was found to be a potent inhibitor of the ATPase activity, and it binds tightly to HCV helicase with a 1:1 stoichiometry. Equilibrium binding studies showed that HCV helicase binds single-stranded nucleic acid with a high affinity in the absence of ATP or in the presence of ADP. Upon binding to the ATP analog, a 100-fold reduction in affinity for ssDNA was observed. The reduction in affinity was also observed in duplex DNA with 3' single-stranded tail and in RNA but not in duplex DNA. The results of this study indicate that the nucleic acid binding site of HCV helicase is allosterically modulated by the ATPase reaction. The binding energy of ATP is used to bring HCV helicase out of a tightly bound state to facilitate translocation, whereas ATP hydrolysis and product release steps promote tight rebinding of the helicase to the nucleic acid. On the basis of these results we propose a Brownian motor model for unidirectional translocation of HCV helicase along the nucleic acid length.  相似文献   

2.
The hepatitis C virus (HCV) NS3 protein is a helicase capable of unwinding duplex RNA or DNA. This study uses a newly developed molecular-beacon-based helicase assay (MBHA) to investigate how nucleoside triphosphates (NTPs) fuel HCV helicase-catalyzed DNA unwinding. The MBHA monitors the irreversible helicase-catalyzed displacement of an oligonucleotide-bound molecular beacon so that rates of helicase translocation can be directly measured in real time. The MBHA reveals that HCV helicase unwinds DNA at different rates depending on the nature and concentration of NTPs in solution, such that the fastest reactions are observed in the presence of CTP followed by ATP, UTP, and GTP. 3′-Deoxy-NTPs generally support faster DNA unwinding, with dTTP supporting faster rates than any other canonical (d)NTP. The presence of an intact NS3 protease domain makes HCV helicase somewhat less specific than truncated NS3 bearing only its helicase region (NS3h). Various NTPs bind NS3h with similar affinities, but each NTP supports a different unwinding rate and processivity. Studies with NTP analogs reveal that specificity is determined by the nature of the Watson-Crick base-pairing region of the NTP base and the nature of the functional groups attached to the 2′ and 3′ carbons of the NTP sugar. The divalent metal bridging the NTP to NS3h also influences observed unwinding rates, with Mn2+ supporting about 10 times faster unwinding than Mg2+. Unlike Mg2+, Mn2+ does not support HCV helicase-catalyzed ATP hydrolysis in the absence of stimulating nucleic acids. Results are discussed in relation to models for how ATP might fuel the unwinding reaction.  相似文献   

3.
Helicases and nucleic acid translocases are motor proteins that have essential roles in nearly all aspects of nucleic acid metabolism, ranging from DNA replication to chromatin remodelling. Fuelled by the binding and hydrolysis of nucleoside triphosphates, helicases move along nucleic acid filaments and separate double-stranded DNA into their complementary single strands. Recent evidence indicates that the ability to simply translocate along single-stranded DNA is, in many cases, insufficient for helicase activity. For some of these enzymes, self assembly and/or interactions with accessory proteins seem to regulate their translocase and helicase activities.  相似文献   

4.
Helicase from hepatitis C virus,energetics of DNA binding   总被引:9,自引:0,他引:9  
The ability of a helicase to bind single-stranded nucleic acid is critical for nucleic acid unwinding. The helicase from the hepatitis C virus, NS3 protein, binds to the 3'-DNA or the RNA strand during unwinding. As a step to understand the mechanism of unwinding, DNA binding properties of the helicase domain of NS3 (NS3h) were investigated by fluorimetric binding equilibrium titrations. The global analysis of the binding data by a combinatorial approach was done using MATLAB. NS3h interactions with single-stranded DNA (ssDNA) are 300-1000-fold tighter relative to duplex DNA. The NS3h protein binds to ssDNA less than 15 nt in length with a stoichiometry of one protein per DNA. The minimal ssDNA binding site of NS3h helicase was determined to be 8 nucleotides with the microscopic K(d) of 2-4 nm or an observed free energy of -50 kJ/mol. These NS3h-DNA interactions are highly sensitive to salt, and the K(d) increases 4 times when the NaCl concentration is doubled. Multiple HCV helicase proteins bind to ssDNA >15 nucleotides in length, with an apparent occluded site of 8-11 nucleotides. The DNA binding data indicate that the interactions of multiple NS3h protein molecules with long ssDNA are both noncooperative and sequence-independent. We discuss the DNA binding properties of HCV helicase in relation to other superfamily 1 and 2 helicases. These studies provide the basis to investigate the DNA binding interactions with the unwinding substrate and their modulation by the ATPase activity of HCV helicase.  相似文献   

5.
The hepatitis C virus (HCV) NS3 helicase shares several conserved motifs with other superfamily 2 (SF2) helicases. Besides these sequences, several additional helicase motifs are conserved among the various HCV genotypes and quasispecies. The roles of two such motifs are examined here. The first motif (YRGXDV) forms a loop that connects SF2 helicase motifs 4 and 5, at the tip of which is Arg393. When Arg393 is changed to Ala, the resulting protein (R393A) retains a nucleic acid stimulated ATPase but cannot unwind RNA. R393A also unwinds DNA more slowly than wild type and translocates poorly on single-stranded DNA (ssDNA). DNA and RNA stimulate ATP hydrolysis catalyzed by R393A like the wild type, but the mutant protein binds ssDNA more weakly both in the presence and absence of the non-hydrolyzable ATP analog ADP(BeF3). The second motif (DFSLDPTF) forms a loop that connects two anti-parallel sheets between SF2 motifs 5 and 6. When Phe444 in this Phe-loop is changed to Ala, the resulting protein (F444A) is devoid of all activities. When Phe438 is changed to Ala, the protein (F438A) retains nucleic acid-stimulated ATPase, but does not unwind RNA. F438A unwinds DNA and translocates on ssDNA at about half the rate of the wild type. Equilibrium binding data reveal that this uncoupling of ATP hydrolysis and unwinding is due to the fact that the F438A mutant does not release ssDNA upon ATP binding like the wild type. A model is presented explaining the roles of the Arg-clamp and the Phe-loop in the unwinding reaction.  相似文献   

6.
Hepatitis C virus (HCV) is a positive-strand RNA virus that encodes a helicase required for viral replication. Although HCV does not replicate through a DNA intermediate, HCV helicase unwinds both RNA and DNA duplexes. An X-ray crystal structure of the HCV helicase complexed with (dU)(8) has been solved, and the substrate-amino acids interactions within the catalytic pocket were shown. Among these, residues W501 and V432 were reported to have base stacking interactions and to be important for the unwinding function of HCV helicase. It has been hypothesized that specific interactions between the enzyme and substrate in the catalytic pocket are responsible for the substrate specificity phenotype. We therefore mutagenized W501 and V432 to investigate their role in substrate specificity in HCV helicase. Replacement of W501, but not V432, with nonaromatic residues resulted in complete loss of RNA unwinding activity, whereas DNA unwinding activity was largely unaffected. The loss of unwinding activity was fully restored in the W501F mutant, indicating that the aromatic ring is crucial for RNA helicase function. Analysis of ATPase and nucleic acid binding activities in the W501 mutant enzymes revealed that these activities are not directly responsible for the substrate specificity phenotype. Molecular modeling of the enzyme-substrate interaction at W501 revealed a putative pi-facial hydrogen bond between the 2'-OH of ribose and the aromatic tryptophan ring. This evidence correlates with biochemical results suggesting that the pi-facial bond may play an important role in the RNA unwinding activity of the HCV NS3 protein.  相似文献   

7.
The helicase domain of dengue virus NS3 protein (DENV NS3H) contains RNA-stimulated nucleoside triphosphatase (NTPase), ATPase/helicase, and RNA 5′-triphosphatase (RTPase) activities that are essential for viral RNA replication and capping. Here, we show that DENV NS3H unwinds 3′-tailed duplex with an RNA but not a DNA loading strand, and the helicase activity is poorly processive. The substrate of the divalent cation-dependent RTPase activity is not restricted to viral RNA 5′-terminus, a protruding 5′-terminus made the RNA 5′-triphosphate readily accessible to DENV NS3H. DENV NS3H preferentially binds RNA to DNA, and the functional interaction with RNA is sensitive to ionic strength.  相似文献   

8.
Hesson T  Mannarino A  Cable M 《Biochemistry》2000,39(10):2619-2625
The hepatitis C virus (HCV) NS3 protein contains an amino terminal protease (NS3 aa. 1-180) and a carboxyl terminal RNA helicase (NS3 aa. 181-631). NS3 functions as a heterodimer of NS3 and NS4A (NS3/4A). NS3 helicase, a nucleic acid stimulated ATPase, can unwind RNA, DNA, and RNA:DNA duplexes, provided that at least one strand of the duplex contains a single-stranded 3' overhang (this strand of the duplex is referred to as the 3' strand). We have used 2'-O-methyl RNA (MeRNA) substrates to study the mechanism of NS3 helicase activity and to probe the relationship between its helicase and RNA-stimulated ATPase activities. NS3/4A did not unwind double-stranded (ds) MeRNA. NS3/4A unwinds hybrid RNA:MeRNA duplex containing MeRNA as the 5' strand but not hybrid duplex containing MeRNA as the 3' strand. The helicase activity of NS3/4A was 50% inhibited by 40 nM single-stranded (ss) RNA but only 35% inhibited by 320 nM ss MeRNA. Double-stranded RNA was 17 times as effective as double-stranded MeRNA in inhibiting NS3/4A helicase activity, while the apparent affinity of NS3/4A for ds MeRNA differed from ds RNA by only 2.4-fold. However ss MeRNA stimulated NS3/4A ATPase activity similar to ss RNA. These results indicate that the helicase mechanism involves 3' to 5' procession of the NS3 helicase along the 3' strand and only weak association of the enzyme with the displaced 5' strand. Further, our findings show that maximum stimulation of NS3 ATPase activity by ss nucleic acid is not directly related to procession of the helicase along the 3' strand.  相似文献   

9.
The NS3 helicase of the hepatitis C virus (HCV) unwinds double-stranded (ds) nucleic acid (NA) in an NTP-dependent fashion. Mechanistic details of this process are, however, largely unknown for the HCV helicase. We have studied the binding of dsDNA to an engineered version of subdomain 2 of the HCV helicase (d(2Delta)NS3h) by NMR and circular dichroism. Binding of dsDNA to d(2Delta)NS3h induces a local unfolding of helix (alpha(3)), which includes residues of conserved helicase motif VI (Q(460)RxxRxxR(467)), and strands (beta(1) and beta(8)) from the central beta-sheet. This also occurs upon lowering the pH (4.4) and introducing an R461A point mutation, which disrupt salt bridges with Asp 412 and Asp 427 in the protein structure. NMR studies on d(2Delta)NS3h in the partially unfolded state at low pH map the dsDNA binding site to residues previously shown to be involved in single-stranded DNA binding. Sequence alignment and structural comparison suggest that these Arg-Asp interactions are highly conserved in SF2 DEx(D/H) proteins. Thus, modulation of these interactions by dsNA may allow SF2 helicases to switch between conformations required for helicase function.  相似文献   

10.
The NS3 protein of hepatitis C virus (HCV) is a bifunctional protein containing a serine protease in the N-terminal one-third, which is stimulated upon binding of the NS4A cofactor, and an RNA helicase in the C-terminal two-thirds. In this study, a C-terminal hexahistidine-tagged helicase domain of the HCV NS3 protein was expressed in Escherichia coli and purified to homogeneity by conventional chromatography. The purified HCV helicase domain has a basal ATPase activity, a polynucleotide-stimulated ATPase activity, and a nucleic acid unwinding activity and binds efficiently to single-stranded polynucleotide. Detailed characterization of the purified HCV helicase domain with regard to all four activities is presented. Recently, we published an X-ray crystallographic structure of a binary complex of the HCV helicase with a (dU)(8) oligonucleotide, in which several conserved residues of the HCV helicase were shown to be involved in interactions between the HCV helicase and oligonucleotide. Here, site-directed mutagenesis was used to elucidate the roles of these residues in helicase function. Four individual mutations, Thr to Ala at position 269, Thr to Ala at position 411, Trp to Leu at position 501, and Trp to Ala at position 501, produced a severe reduction of RNA binding and completely abolished unwinding activity and stimulation of ATPase activity by poly(U), although the basal ATPase activity (activity in the absence of polynucleotide) of these mutants remained intact. Alanine substitution at Ser-231 or Ser-370 resulted in enzymes that were indistinguishable from wild-type HCV helicase with regard to all four activities. A mutant bearing Phe at Trp-501 showed wild-type levels of basal ATPase, unwinding activity, and single-stranded RNA binding activity. Interestingly, ATPase activity of this mutant became less responsive to stimulation by poly(U) but not to stimulation by other polynucleotides, such as poly(C). Given the conservation of some of these residues in other DNA and RNA helicases, their role in the mechanism of unwinding of double-stranded nucleic acid is discussed.  相似文献   

11.
X Li  C K Tan  A G So  K M Downey 《Biochemistry》1992,31(13):3507-3513
A DNA helicase (delta helicase) which partially copurifies with DNA polymerase delta has been highly purified from fetal calf thymus. delta helicase differs in physical and enzymatic properties from other eukaryotic DNA helicases described thus far. The enzyme has an apparent mass of 57 kDa by gel filtration and is associated with polypeptides of 56 and 52 kDa by SDS-polyacrylamide gel electrophoresis. Photo-cross-linking of the purified enzyme with [alpha-32P]ATP resulted in labeling of a polypeptide of approximately 58 kDa, suggesting that the active site is present on the larger polypeptide. Unwinding of a partial duplex requires a nucleoside triphosphate which can be either ATP or dATP but not a nonhydrolyzable analogue of ATP. Other ribo- and deoxyribonucleoside triphosphates have little or no activity as cofactors. delta helicase also has DNA-dependent ATPase activity which has a relatively low Km for ATP (40 microM). delta helicase binds to single-stranded DNA but has little or no affinity for double-stranded DNA or single-stranded RNA. Similar to replicative DNA helicases from prokaryotes and the herpes simplex virus type 1 helicase-primase, delta helicase translocates in the 5'-3' direction along the strand to which it is bound and preferentially unwinds DNA substrates with a forklike structure.  相似文献   

12.
The NS3 helicase is essential for replication of the hepatitis C virus. This multifunctional Superfamily 2 helicase protein unwinds nucleic acid duplexes in a stepwise, ATP-dependent manner. Although kinetic features of its mechanism are beginning to emerge, little is known about the physical determinants for NS3 translocation along a strand of nucleic acid. For example, it is not known whether NS3 can traverse covalent or physical discontinuities on the tracking strand. Here we provide evidence that NS3 translocates with a mechanism that is different from its well-studied relative, the Vaccinia helicase NPH-II. Like NPH-II, NS3 translocates along the loading strand (the strand bearing the 3'-overhang) and it fails to unwind substrates that contain nicks, or covalent discontinuities in the loading strand. However, unlike NPH-II, NS3 readily unwinds RNA duplexes that contain long stretches of polyglycol, which are moieties that bear no resemblance to nucleic acid. Whether located on the tracking strand, the top strand, or both, long polyglycol regions fail to disrupt the function of NS3. This suggests that NS3 does not require the continuous formation of specific contacts with the ribose-phosphate backbone as it translocates along an RNA duplex, which is an observation consistent with the large NS3 kinetic step size (18 base-pairs). Rather, once NS3 loads onto a substrate, the helicase can translocate along the loading strand of an RNA duplex like a monorail train following a track. Bumps in the track do not significantly disturb NS3 unwinding, but a break in the track de-rails the helicase.  相似文献   

13.
RNA helicases represent a family of enzymes that unwind double-stranded (ds) RNA in a nucleoside triphosphate (NTP)-dependent fashion and which are required in all aspects of cellular RNA metabolism and processing. The hepatitis C virus (HCV) non-structural 3 (NS3) protein possesses a serine protease activity in the N-terminal one-third, whereas RNA-stimulated NTPase and helicase activities reside in the C-terminal portion of the 631 amino acid residue bifunctional enzyme. The HCV NS3 RNA helicase is of key importance in the life cycle of HCV, which makes it a target for the development of therapeutics. However, neither the precise mechanism nor the substrate structure has been defined for this enzyme. For nuclear magnetic resonance (NMR)-based drug discovery methods and for mechanistic studies we engineered, prepared and characterized various truncated constructs of the 451-residue HCV NS3 RNA helicase. Our goal was to produce smaller fragments of the enzyme, which would be amenable to solution NMR techniques while retaining their native NTP and/or nucleic acid binding sites. Solution conditions were optimized to obtain high-quality heteronuclear NMR spectra of nitrogen-15 isotope-labeled constructs, which are typical of well-folded monomeric proteins. Moreover, NMR binding studies and functional data directly support the correct folding of these fragments.  相似文献   

14.
The molecular basis of the low-pH activation of the helicase encoded by the hepatitis C virus (HCV) was examined using either a full-length NS3 protein/NS4A cofactor complex or truncated NS3 proteins lacking the protease domain, which were isolated from three different viral genotypes. All proteins unwound RNA and DNA best at pH 6.5, which demonstrate that conserved NS3 helicase domain amino acids are responsible for low-pH enzyme activation. DNA unwinding was less sensitive to pH changes than RNA unwinding. Both the turnover rate of ATP hydrolysis and the Km of ATP were similar between pH 6 and 10, but the concentration of nucleic acid needed to stimulate ATP hydrolysis decreased almost 50-fold when the pH was lowered from 7.5 to 6.5. In direct-binding experiments, HCV helicase bound DNA weakly at high pH only in the presence of the non-hydrolyzable ATP analog, ADP(BeF3). These data suggest that a low-pH environment might be required for efficient HCV RNA translation or replication, and support a model in which an acidic residue rotates toward the RNA backbone upon ATP binding repelling nucleic acid from the binding cleft.  相似文献   

15.
Hepatitis C virus (HCV) helicase, non-structural protein 3 (NS3), is proposed to aid in HCV genome replication and is considered a target for inhibition of HCV. In order to investigate the substrate requirements for nucleic acid unwinding by NS3, substrates were prepared by annealing a 30mer oligonucleotide to a 15mer. The resulting 15 bp duplex contained a single-stranded DNA overhang of 15 nt referred to as the bound strand. Other substrates were prepared in which the 15mer DNA was replaced by a strand of peptide nucleic acid (PNA). The PNA–DNA substrate was unwound by NS3, but the observed rate of strand separation was at least 25-fold slower than for the equivalent DNA–DNA substrate. Binding of NS3 to the PNA–DNA substrate was similar to the DNA–DNA substrate, due to the fact that NS3 initially binds to the single-stranded overhang, which was identical in each substrate. A PNA–RNA substrate was not unwound by NS3 under similar conditions. In contrast, morpholino–DNA and phosphorothioate–DNA substrates were utilized as efficiently by NS3 as DNA–DNA substrates. These results indicate that the PNA–DNA and PNA–RNA heteroduplexes adopt structures that are unfavorable for unwinding by NS3, suggesting that the unwinding activity of NS3 is sensitive to the structure of the duplex.  相似文献   

16.
Helicases are a diverse group of molecular motors that utilize energy derived from the hydrolysis of nucleoside triphosphates (NTPs) to unwind and translocate along nucleic acids. These enzymes play critical roles in nearly all aspects of nucleic acid metabolism, and consequently, a detailed understanding of helicase mechanisms at the molecular level is essential. Over the past few decades, single-molecule techniques, such as optical tweezers, magnetic tweezers, laminar flow, fluorescence resonance energy transfer (FRET), and DNA curtains, have proved to be powerful tools to investigate the functional properties of both DNA and RNA helicases. These approaches allow researchers to manipulate single helicase molecules, perturb their free energy landscape to probe the chemo-mechanical activities of these motors, and to detect the conformational changes of helicases during unwinding. Furthermore, these techniques also provide the capability to distinguish helicase heterogeneity and monitor helicase motion at nanometer spatial and millisecond temporal resolutions, ultimately providing new insights into the mechanisms that could not be resolved by ensemble assays. This review outlines the single-molecule techniques that have been utilized for measurements of helicase activities and discusses helicase mechanisms with a focus on functional and mechanistic insights revealed through single-molecule investigations in the past five years.  相似文献   

17.
The hepatitis C virus (HCV) represents a substantial threat to human health worldwide. The virus expresses a dual-function protein, NS3 having both protease and RNA helicase activities that are essential for productive viral replication and sustained infections. While viral protease and polymerase inhibitors have shown great successes in treating chronic HCV infections, drugs that specifically target the helicase activity have not advanced. A robust and quantitative 96-well plate-based fluorescent DNA unwinding assay was used to screen a class of indole thio-barbituric acid (ITBA) analogs using the full-length, recombinant HCV NS3, and identified three naphthoyl-containing analogs that efficiently inhibited NS3 helicase activity in a dose-dependent manner, with observed IC50 values of 21–24?µM. Standard gel electrophoresis helicase assays using radiolabeled duplex DNA and RNA NS3 substrates confirmed the inhibition of NS3 unwinding activity. Subsequent anisotropy measurements demonstrated that the candidate compounds did not disrupt NS3 binding to nucleic acids. Additionally, the rate of ATP hydrolysis and the protease activity were also not affected by the inhibitors. Thus, these results indicate that the three ITBA analogs containing N-naphthoyl moieties are the foundation of a potential series of small molecules capable of inhibiting NS3 activity via a novel interaction with the helicase domain that prevents the productive unwinding of nucleic acid substrates, and may represent the basis for a new class of therapeutic agents with the potential to aid in the treatment and eradication of hepatitis C virus.  相似文献   

18.
Mutations were introduced into the NS3 helicase region of a hepatitis C virus (HCV) Con1 subgenomic replicon to ascertain the role of the helicase in viral replication. One new replicon lacked two-thirds of the NS3 helicase (Deltahel), and six others contained one of the following six amino acid substitutions in NS3: R393A, F438A, T450I, E493K, W501A, and W501F. It has been previously reported that purified R393A, F438A, and W501A HCV helicase proteins do not unwind RNA but unwind DNA, bind RNA, and hydrolyze ATP. On the other hand, previous data suggest that a W501F protein retains most of its unwinding abilities and that purified T450I and E493K HCV helicase proteins have enhanced unwinding abilities. In a hepatoma cell line that has been cured of HCV replicons using interferon, the T450I and W501F replicons synthesized both negative-sense and positive-sense viral RNA and formed colonies after selection with similar efficiencies as the parent replicon. However, the Deltahel, R393A, F438A, and W501A replicons encoded and processed an HCV polyprotein but did not synthesize additional viral RNA or form colonies. Surprisingly the same phenotype was seen for the E493K replicon. The inability of the E493K replicon to replicate might point to a role of pH in viral replication because a previous analysis has shown that, unlike the wild-type NS3 protein, the helicase activity of an E493K protein is not sensitive to pH changes. These results demonstrate that the RNA-unwinding activity of the HCV NS3 helicase is needed for RNA replication.  相似文献   

19.
Hepatitis C virus (HCV) NS3 protein is a multifunctional enzyme, possessing protease, NTPase and helicase activities within a single polypeptide of 625 amino acid residues. These activities are essential for the virus life cycle and are considered attractive targets for anti-HCV chemotherapy. Beside ATP, the NS3 protein has the ability to utilise deoxynucleoside triphosphates (dNTPs) as the energy source for nucleic acid unwinding. We have performed an extensive analysis of the substrate specificities of both NS3 NTPase and helicase activities with respect to all four dNTPs as well as with dideoxynucleoside triphoshate (ddNTP) analogs, including both d-(beta) and l-(beta)-deoxy and dideoxy-nucleoside triphosphates. Our results show that almost all dNTPs and ddNTPs tested were able to inhibit hydrolysis of ATP by the NTPase activity, albeit with different efficiencies. Moreover, this activity showed almost no stereoselectivity, being able to recognise both d-(beta), l-(beta)-deoxy and ddNTPs. On the contrary, the helicase activity had more strict substrate selectivity, since, among d-(beta)-nucleotides, only ddTTP and its analog 2',3'-didehydro-thymidine triphosphate could be used as substrates with an efficiency comparable to ATP, whereas among l-(beta)-nucleotides, only l-(beta)-dATP was utilised. Comparison of the steady-state kinetic parameters for both reactions, suggested that dATP, l-(beta)-dCTP and l-(beta)-dTTP, specifically reduced a rate limiting step present in the helicase, but not in the NTPase, reaction pathway. These results suggest that NS3-associated NTPase and helicase activities have different sensitivities towards different classes of deoxy and dideoxy-nucleoside analogs, depending on a specific step in the reaction, as well as show different enantioselectivity for the d-(beta) and l-(beta)-conformations of the sugar ring. These observations provide an essential mechanistic background for the development of specific nucleotide analogs targeting either activity as potential anti-HCV agents.  相似文献   

20.
ATP hydrolysis fuels the ability of helicases and related proteins to translocate on nucleic acids and separate base pairs. As a consequence, nucleic acid binding stimulates the rate at which a helicase catalyzes ATP hydrolysis. In this study, we searched a library of small molecule helicase inhibitors for compounds that stimulate ATP hydrolysis catalyzed by the hepatitis C virus (HCV) NS3 helicase, which is an important antiviral drug target. Two compounds were found that stimulate HCV helicase-catalyzed ATP hydrolysis, both of which are amide derivatives synthesized from the main component of the yellow dye primuline. Both compounds possess a terminal pyridine moiety, which was critical for stimulation. Analogs lacking a terminal pyridine inhibited HCV helicase catalyzed ATP hydrolysis. Unlike other HCV helicase inhibitors, the stimulatory compounds differentiate between helicases isolated from various HCV genotypes and related viruses. The compounds only stimulated ATP hydrolysis catalyzed by NS3 purified from HCV genotype 1b. They inhibited helicases from other HCV genotypes (e.g. 1a and 2a) or related flaviviruses (e.g. Dengue virus). The stimulatory compounds interacted with HCV helicase in the absence of ATP with dissociation constants of about 2 μm. Molecular modeling and site-directed mutagenesis studies suggest that the stimulatory compounds bind in the HCV helicase RNA-binding cleft near key residues Arg-393, Glu-493, and Ser-231.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号