首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hantaviruses are tripartite negative-sense RNA viruses and members of the Bunyaviridae family. The nucleocapsid (N) protein is the principal structural component of the viral capsid. N forms a stable trimer that specifically recognizes the panhandle structure formed by the viral RNA termini. We used trimeric glutathione S-transferase (GST)-N protein and small RNA panhandles to examine the requirements for specific recognition by Sin Nombre hantavirus N. Trimeric GST-N recognizes the panhandles of the three viral RNAs (S, M, and L) with high affinity, whereas the corresponding plus-strand panhandles of the complementary RNA are recognized with lower affinity. Based on analysis of nucleotide substitutions that alter either the higher-order structure of the panhandle or the primary sequence of the panhandle, both secondary structure and primary sequence are necessary for stable interaction with N. A panhandle 23 nucleotides long is necessary and sufficient for high-affinity binding by N, and stoichiometry calculations indicate that a single N trimer interacts with a single panhandle. Surprisingly, displacement of the panhandle structure away from the terminus does not eliminate recognition by N. The binding of N to the panhandle is an entropy-driven process resulting in initial stable N-RNA interaction followed by a conformational change in N. Taken together, these data provide insight into the molecular events that take place during interaction of N with the panhandle and suggest that specific high-affinity interaction between an RNA binding domain of trimeric N and the panhandle is required for encapsidation of the three viral RNAs.  相似文献   

2.
3.
4.
5.
6.
The generation of molecules that selectively recognize specific conformations of a protein is an important component of the elucidation protein function. We have used SELEX (Systematic Evolution of Ligands by EXponential enrichment) technology to produce aptamers that bind in a conformationally selective manner to calsenilin, which involved in Ca2+-mediated apoptotic signaling. Since the conformations of calsenilin are quite different in the presence and absence of Ca2+, aptamers were selected against the dimeric protein both under calcium-bound and calcium-free conditions. We have found that aptamer-12 selectively binds to the dimeric form of the protein in the presence of calcium ion, while the binding of aptamer-2 does not discriminate between the Ca2+ bound and unbound protein. Data obtained from biochemical and biophysical experiments suggest that a dominant conformation of calcium-bound calsenilin exists in one dominant conformation and that one aptamer can be generated to recognize this conformation. In addition, observation made in this effort that aptamers selected against the two different conformations of calsenilin have different characteristics suggest that aptamers can serve as a plausible tool for recognizing various conformations of proteins, even those caused by interactions with small molecules or ions such as Ca2+.  相似文献   

7.
As a component of bacteriophage Qbeta replicase, S1 is required both for initiation of Qbeta minus strand RNA synthesis and for translational repression, which has been traced to the ability of the enzyme to bind to an internal site in the Qbeta RNA molecule. Previously, Senear and Steitz (Senear, A. W., and Steitz, J. A. (1976) J. Biol. Chem. 251, 1902-1912) found that isolated S1 protein binds specifically to an oligonucleotide spanning residues -38 to -63 from the 3' terminus of Qbeta RNA. Here we report that S1 also interacts strongly with a second oligonucleotide in Qbeta RNA, which is derived from the region recognized by replicase just 5' to the Qbeta coat protein cistron. Both sequences exhibit pyrimidine-rich regions.  相似文献   

8.
RNA binding proteins often contain multiple arginine glycine repeats, a sequence that is frequently methylated by protein arginine methyltransferases. The role of this posttranslational modification in the life cycle of RNA binding proteins is not well understood. Herein, we report that Sam68, a heteronuclear ribonucleoprotein K homology domain containing RNA binding protein, associates with and is methylated in vivo by the protein arginine N-methyltransferase 1 (PRMT1). Sam68 contains asymmetrical dimethylarginines near its proline motif P3 as assessed by using a novel asymmetrical dimethylarginine-specific antibody and mass spectrometry. Deletion of the methylation sites and the use of methylase inhibitors resulted in Sam68 accumulation in the cytoplasm. Sam68 was also detected in the cytoplasm of PRMT1-deficient embryonic stem cells. Although the cellular function of Sam68 is unknown, it has been shown to export unspliced human immunodeficiency virus RNAs. Cells treated with methylase inhibitors prevented the ability of Sam68 to export unspliced human immunodeficiency virus RNAs. Other K homology domain RNA binding proteins, including SLM-1, SLM-2, QKI-5, GRP33, and heteronuclear ribonucleoprotein K were also methylated in vivo. These findings demonstrate that RNA binding proteins are in vivo substrates for PRMT1, and their methylation is essential for their proper localization and function.  相似文献   

9.
Crystal structures of Nova-1 and Nova-2 K-homology RNA-binding domains.   总被引:3,自引:0,他引:3  
BACKGROUND: Nova-1 and Nova-2 are related neuronal proteins that were initially cloned using antisera obtained from patients with the autoimmune neurological disease paraneoplastic opsoclonus-myoclonus ataxia (POMA). Both of these disease gene products contain three RNA-binding motifs known as K-homology or KH domains, and their RNA ligands have been identified via binding-site selection experiments. The KH motif structure has been determined previously using NMR spectroscopy, but not using X-ray crystallography. Many proteins contain more than one KH domain, yet there is no published structural information regarding the behavior of such multimers. RESULTS: We have obtained the first X-ray crystallographic structures of KH-domain-containing proteins. Structures of the third KH domains (KH3) of Nova-1 and Nova-2 were determined by multiple isomorphous replacement and molecular replacement at 2.6 A and 2.0 A, respectively. These highly similar RNA-binding motifs form a compact protease-resistant domain resembling an open-faced sandwich, consisting of a three-stranded antiparallel beta sheet topped by three alpha helices. In both Nova crystals, the lattice is composed of symmetric tetramers of KH3 domains that are created by two dimer interfaces. CONCLUSIONS: The crystal structures of both Nova KH3 domains are similar to the previously determined NMR structures. The most significant differences among the KH domains involve changes in the positioning of one or more of the alpha helices with respect to the betasheet, particularly in the NMR structure of the KH1 domain of the Fragile X disease protein FMR-1. Loop regions in the KH domains are clearly visible in the crystal structure, unlike the NMR structures, revealing the conformation of the invariant Gly-X-X-Gly segment that is thought to participate in RNA-binding and of the variable region. The tetrameric arrangements of the Nova KH3 domains provide insights into how KH domains may interact with each other in proteins containing multiple KH motifs.  相似文献   

10.
Ribosomal protein L1 has a dual function as a ribosomal protein binding 23S rRNA and as a translational repressor binding its mRNA. L1 is a two-domain protein with N- and C-termini located in domain I. Earlier it was shown that L1 interacts with the same targets on both rRNA and mRNA mainly through domain I. We have suggested that domain I is necessary and sufficient for specific RNA-binding by L1. To test this hypothesis, a truncation mutant of L1 from Thermus thermophilus, representing domain I, was constructed by deletion of the central part of the L1 sequence, which corresponds to domain II. It was shown that the isolated domain I forms stable complexes with specific fragments of both rRNA and mRNA. The crystal structure of the isolated domain I was determined and compared with the structure of this domain within the intact protein L1. This comparison revealed a close similarity of both structures. Our results confirm our suggestion that in protein L1 its domain I alone is sufficient for specific RNA binding, whereas domain II stabilizes the L1-rRNA complex.  相似文献   

11.
12.
EAP (EBER-associated protein) is an abundant, 15-kDa cellular RNA-binding protein which associates with certain herpesvirus small RNAs. We have raised polyclonal anti-EAP antibodies against a glutathione S-transferase-EAP fusion protein. Analysis of the RNA precipitated by these antibodies from Epstein-Barr virus (EBV)- or herpesvirus papio (HVP)-infected cells shows that > 95% of EBER 1 (EBV-encoded RNA 1) and the majority of HVP 1 (an HVP small RNA homologous to EBER 1) are associated with EAP. RNase protection experiments performed on native EBER 1 particles with affinity-purified anti-EAP antibodies demonstrate that EAP binds a stem-loop structure (stem-loop 3) of EBER 1. Since bacterially expressed glutathione S-transferase-EAP fusion protein binds EBER 1, we conclude that EAP binding is independent of any other cellular or viral protein. Detailed mutational analyses of stem-loop 3 suggest that EAP recognizes the majority of the nucleotides in this hairpin, interacting with both single-stranded and double-stranded regions in a sequence-specific manner. Binding studies utilizing EBER 1 deletion mutants suggest that there may also be a second, weaker EAP-binding site on stem-loop 4 of EBER 1. These data and the fact that stem-loop 3 represents the most highly conserved region between EBER 1 and HVP 1 suggest that EAP binding is a critical aspect of EBER 1 and HVP 1 function.  相似文献   

13.
We have combined genetic and biochemical approaches to analyze the function of the RNA-binding protein Nova-1, the paraneoplastic opsoclonus-myoclonus ataxia (POMA) antigen. Nova-1 null mice die postnatally from a motor deficit associated with apoptotic death of spinal and brainstem neurons. Nova-1 null mice show specific splicing defects in two inhibitory receptor pre-mRNAs, glycine alpha2 exon 3A (GlyRalpha2 E3A) and GABA(A) exon gamma2L. Nova protein in brain extracts specifically bound to a previously identified GlyRalpha2 intronic (UCAUY)3 Nova target sequence, and Nova-1 acted directly on this element to increase E3A splicing in cotransfection assays. We conclude that Nova-1 binds RNA in a sequence-specific manner to regulate neuronal pre-mRNA alternative splicing; the defect in splicing in Nova-1 null mice provides a model for understanding the motor dysfunction in POMA.  相似文献   

14.
15.
16.
The circular dichroism (CD) spectrum of the Rev protein from HIV-1 indicates that Rev contains about 50% alpha helix and 25% beta sheet at 5 degrees C in potassium phosphate buffer, pH 3, and 300 mM KF. The spectrum is independent of protein concentration over a 20-fold range. At neutral pH, Rev is relatively insoluble but can be brought into solution by binding to its specific RNA binding site, the Rev-responsive element (RRE), at a Rev:RNA ratio of about 3:1. Nonspecific binding to tRNA does not solubilize Rev. As judged by difference CD spectra, the conformation of Rev when bound to the RRE at neutral pH is similar to the conformation of unbound Rev at pH 3, although changes in the RNA may also contribute to the difference spectrum. Indeed, some difference is observed near 260 nm, consistent with a conformational change of the RRE upon Rev binding. Rev alone at pH 3 shows irreversible aggregation as the temperature is raised, while Rev bound to the RRE at neutral pH shows a reversible transition with a Tm of 68 degrees C.  相似文献   

17.
Telomeres are dynamic nucleoprotein structures that cap the ends of eukaryotic chromosomes. In humans, the long (TTAGGG)(n) double-stranded telomeric DNA repeats are bound specifically by the two related proteins TRF1 and TRF2, and are organized in nucleosomes. Whereas the role of TRF1 and TRF2 in telomeric function has been studied extensively, little is known about the involvement of telomeric nucleosomes in telomere structures or how chromatin formation may affect binding of the TRFs. Here, we address the question of whether TRF1 is able to bind to telomeric binding sites in a nucleosomal context. We show that TRF1 is able to specifically recognize telomeric binding sites located within nucleosomes, forming a ternary complex. The formation of this complex is strongly dependent on the orientation of binding sites on the nucleosome surface, rather than on the location of the binding sites with respect to the nucleosome dyad. Strikingly, TRF1 binding causes alterations in nucleosome structure without dissociation of histone subunits. These results indicate that nucleosomes contribute to the establishment of a telomeric capping complex, whose structure and dynamics can be modulated by the binding of telomeric factors.  相似文献   

18.
19.
BackgroundThe guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein of the hnRNP H/F family, which has been implicated in erythropoiesis, regulation of the redox homeostasis, embryonic brain development, mitochondrial function and cellular senescence. The molecular basis for GRSF1-RNA interaction has extensively been studied in the past but for the time being GRSF1 binding proteins have not been identified.MethodsTo search for GRSF1 binding proteins we first employed the yeast two-hybrid system and screened a cDNA library of human fetal brain for potential GRSF1 binding proteins. Subsequently, we explored the protein-protein-interaction of the recombiant proteins, carried out immunoprecipitation experiments to confirm the interaction of the native proteins in living cells and performed truncation studies to identify the protein-binding motif of GRSF1.ResultsUsing the yeast two-hybrid system we identified the COMM-domain containing protein 1 (COMMD1) as specific GRSF1 binding protein and in vitro truncation studies suggested that COMMD1 interacts with the alanine-rich domain of GRSF1. Co-immunoprecipitation strategies indicated that COMMD1-GRSF1 interaction was RNA independent and also occurred in living cells expressing the two native proteins.ConclusionIn mammalian cells the COMM-domain containing protein 1 (COMMD1) specifically interacts with the Ala-rich domain of GRSF1 in an RNA-independent manner.General significanceThis is the first report describing a specific GRSF1 binding protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号