首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lumbricillus lineatus selectively ingests masses of organic and inorganic interstitial particles from a sand-clay substratum in the upper littoral zone. Particle-masses are ingested, passed along the esophagus and into the anterior intestine where the pH becomes acid. A- and C-esterases, acid -galactosidase, acid phosphatase and -N-acetylglucosaminidase are present in the epithelium, while the rotating food masses are surrounded by a membrane of sulphated, acid glycoprotein. These enzymes, with the exception of acid phosphatase and the addition of aminopeptidase M, are also present in the epithelia of the mid and posterior intestinal regions where the pH is alkaline. The cells in the ventral wall of the mid intestinal region contain high concentrations of alkaline phosphatase, acid -galactosidase and -N-acetylglucosaminidase. The food consists of absorbed organics and bacteria with absorption and intracellular digestion occurring along the intestine, particularly in the mid ventral region.  相似文献   

2.
The U-shaped alimentary tract of Cephalodiscus is of exclusively epithelial structure; on the basis of fine structural criteria the entire tract can be divided into two large subdivisions: an anterior one with mouth, mouth cavity, pharynx and oesophagus, and a posterior one with stomach and intestine. The anterior subdivision is built up of a relatively uniform, innervated, pseudostratified, ciliated epithelium with mucus cells which are concentrated in the initial parts of the mouth cavity. Cilia and mucus presumably constitute a mechanism transporting food particles into the stomach. In the area of the gill slits specific vacuolated cells occur which may lend rigidity to the walls of the slits. The gastric epithelium consists of prismatic cells characterized by, among others, large inclusion bodies, which may represent digestive vacuoles, small dense rod-shaped granules and an elaborate system of microridges, at the base of which abundant endocytotic vesicles occur. The dorsal gastric pouch contains cells rich in rough ER and secretory granules, probably containing digestive enzymes. Thus morphological evidence points both to intra- and extracellular digestion. The intestinal epithelium resembles that of the stomach, however, it is lower, its organelles are fewer and it bears, beside cilia, mainly microridges, which towards its distal end become sparse. Both in the gastric and intestinal epithelium small granulated cells have been found, which presumably represent endocrine cells.  相似文献   

3.
The histochemical distribution of acid phosphatase (ACP), alkaline phosphatase (ALP), non‐specific esterase (NSE), peroxidase (POD) and mucous‐cell types was evaluated in the gastrointestinal tract of the half‐smooth tongue sole Cynoglossus semilaevis. The enzymes were detected in the entire stretch of the gastrointestinal tract. ACP activity was found in the supranuclear region of enterocytes and the lamina propria of the intestine, as well as the cytoplasm of epithelial cells of the stomach. The staining intensity of ACP in the anterior and posterior intestines was stronger than in the stomach. ALP activity was detected in the striated border of enterocytes and muscularis of the whole intestine, lamina propria and supranuclear cytoplasm of the enterocytes in the anterior intestine, as well as in the blood vessels of the stomach. The staining intensity for ALP in the anterior intestine was stronger than in the posterior segment and the latter was stronger than in the stomach. NSE activity was detected in the cytoplasm of the epithelial cells in the entire gastrointestinal tract, with the anterior intestine showing stronger intensity than the stomach. POD activity was located in the blood cells of the lamina propria of the gastrointestinal tract and the levels in the stomach were similar to the anterior and posterior intestines. Alcian blue (pH 2·5) periodic acid Schiff (AB‐PAS) histochemical results revealed three types of mucous cells in the gastrointestinal tract. Type I cells (PAS+AB‐) were observed among the gastric mucosa columnar cells in the stomach and enterocytes in the basal region of the villi and in the middle and top regions of the intestinal villi. Type II cells (PAS‐AB+) and type III cells (PAS+AB+) were not detected in the stomach but were distributed ubiquitously among enterocytes in the middle and top regions of the intestinal villi.  相似文献   

4.
The ultrastructure of the gut regions of the marine filter-feeder Phoronis vancouverensis was correlated with enzyme activity as revealed histochemically. The oesophagus, proventriculus, and stomach epithlia showed intense esterase and acid and alkaline phosphatase activity. The staining reaction was confined primarily to small globules in the apical cytoplasm of the epithlial cells. Electron micrographs of the same regions showed a high incidence of zymogenlike granules, with a corresponding abundance of ribosomes and of rough endoplasmic reticulum. Also, the proventricular and to a lesser extent the stomach epithelia were found to contain a large number of lipid bodies. This was confirmed with positive Sudan IV staining for fats. The intestinal region of the gut was found devoid of esterase and phosphatase activity. The epithelial surface in this region was found elaborated into microvilli. The entire gut is ci iated. A new paired-cilium apparatus is described in this phylum. From these findings Phoronis vancouverensis is concluded to be suitably adapted to its continuous filter-feeding existence, with the anterior gut epithelia synthesizing hydrolytic enzymes for release into the lumina of the proventriculus and stomach. Subsequently, in the hindgut the products of initial extra-cellular digestion are absorbed via the microvilli and treated intracellularly within the intestinal epithelium. The proventriculus is further thought to function in lipid absorption and storage. The presence of chromaffin-like granules observed in some proventricular and intestinal epithelial cells suggests that digestion in this phylum may in part be under neurosecretory control.  相似文献   

5.
The histological characteristics of the digestive tract and the ultrastructure of mucosal cells of the stomach and intestine of rice field eel, Monopterus albus, are described to provide a basis for future studies on its digestive physiology. The digestive tract of the rice field eel is a long and coiled tube composed of four layers: mucosa, lamina propria‐submucosa, muscularis and serosa. The pharynx and oesophagus mucosa is lined with a stratified epithelium. The stomach includes the cardiac and pyloric portions and the fundus. Many gastric pits are formed by invaginations of the mucosal layer and tubular gastric glands formed by the columnar cells in the fundus. The intestine is separated from the stomach by a loop valve and divided into a proximal portion and a distal portion. The proximal intestinal epithelium consists of columnar cells with microvilli towards the lumen and goblet cells. The enterocytes are joined at the apical surface by the junctional complex, including the evident desmosomas. Numerous lysosomes and some vesicles are evident in the upper cytoplasm of the cells, and a moderate amount of endoplasmic reticulum and lysosomes are scattered in the supranuclear cytoplasm. The epithelium becomes progressively thicker and the folds containing large numbers of goblet cells are fewer and shorter in the distal portion of the intestine. At the ultrastuctural level, the columnar cells of the tubular gastric glands have numerous clear vacuoles and channels. A moderate amount of pepsinogen granules are present in the stomach. The enterocytes of the intestinal mucosa display a moderate amount of endoplasmic reticulum and lysosomes, and long and regular microvilli.  相似文献   

6.
Muriel  Pilgrim 《Journal of Zoology》1965,147(4):387-405
The alimentary canal of the maldanid polychaetes Clymenella torquata (Leidy), and Euclymene oerstedi (Claparède (= Caesicirrus neglectus Arwidsson, 1911) resembles, in many ways, that of the arenicolids. It is divided into buccal mass, pharynx, oesophagus, stomach and intestine, the three latter regions showing further subdivision. The buccal mass and anterior pharynx together form an eversible proboscis. The pharynx, oesophagus, and greater part of the intestine are ciliated. Simple feeding experiments, and histochemical tests, suggest that the stomach is concerned with the digestion and absorption of proteins, fats and carbohydrates, that the anterior intestine is a digestive and major absorptive region, and that the posterior intestine is a storage region. Waste materials are stored mainly in the wall of the oesophagus. A certain amount of intracellular digestion is carried out in the intestine of Euclymene but not in Clymenella. The difference is attributed to the richer, diatomaceous diet of Clymenella. British individuals of this species, being apparently selective feeders, differ not only from Euclymene but also from American ones, both of which ingest the substratum non-selectively.
The pharynx, oesophagus and rectum are surrounded by plexuses of blood capillaries, while the remaining regions are associated with a blood sinus system which varies in position and form in the different regions, lying deepest in the absorptive intestine. The gut muscle seems to be more concerned with moving the blood forward through the sinus system and into the anterior plexus than with moving the food backward. One region of the stomach musculature is especially concerned with this circulation. Rectal respiration probably occurs.  相似文献   

7.
Histochemical localization of non‐specific esterase, alkaline and acid phosphatase in the intestine of free‐living goldline (Sarpa salpa L. 1758) was investigated. Fish were caught in the vicinity of the town of Zadar (Adriatic Sea, Croatia), and samples of three parts of the intestine proper (anterior, middle and posterior) as well as the rectum were used for presentation of non‐specific esterases, alkaline phosphatase and acid phosphatase. Non‐specific esterase activity was found in the cytoplasm and brush border of enterocytes in all investigated intestinal segments and the rectum. The activity was stronger in the middle and posterior part of the intestine but weaker in the anterior segment of the intestine as well as in the rectum. Intestinal alkaline phosphatase was detected in the brush border and supranuclear cytoplasm of enterocytes of all investigated intestinal segments. Enzymatic activity gradually decreased in a posterior direction. Acid phosphatase activity was observed as a fine granular reaction product in the supranuclear region of enterocytes and was almost equal in all investigated intestinal segments as well as in the rectum. The possible role of enzymes in intracellular digestion and transport is discussed.  相似文献   

8.
Stomach cells of female Asplanchna sieboldi are specialized for absorption and intracellular digestion of nutrients. Evidence is presented to show that electron-opaque colloidal substances, present in the medium and within digestive vacuoles of the prey (Paramecium), are taken up by the stomach cells at the apical cell membrane and sequestered within food vacuoles which contain hydrolases working in both the acid and alkaline pH range. The stomach cells are also implicated in the absorption of molecules below the resolving power of the electron microscope. In rotifers possessing a complete digestive tract, this task is presumed to be handled by the intestine.  相似文献   

9.
Myzostoma cirriferum feeds by diverting food particles carried by the ambulacral grooves of its comatulid host Antedon bifida. When searching for food, the myzostome uses its protrusible introvert to fulfil two major functions: sensory perception and the capture of food particles. The digestive system is composed of four parts, viz. a pharynx, that is contained within the introvert, a stomach, a series of paired caeca and an intestine that lie in the myzostome's trunk. The pharynx is supplied with a thick muscle which, thanks to peristaltic movements, carries food particles from the mouth to the stomach. Both stomach and caecal cells are able to absorb dissolved nutriments and to store lipids, whereas intestinal cells are only capable of absorption. Due to the beating of their cilia, stomach cells also carry food particles into the caecal lumen, where they are subjected to endocytosis and intracellular digestion by caecal cells. Undigested food fragments eventually gather in a very large, apical vacuole, and the cell apices containing vacuoles are eliminated into the caecal lumen by an apocrinal process. Detached cell apices reach the stomach, where they are embedded in a matrix, together forming a spindle-shaped faecal mass that is expelled through the postero-ventral anus. The observed digestive process—entailing the regular elimination of the apical part of the caecal digestive cells—appears to be unique among the Spiralia.  相似文献   

10.
The cytochemical characterization of head-kidney and peripheral blood leucocytes of gilthead seabream (Sparus aurata L.) was studied by light and electron microscopy. Neutrophilic granulocytes show some cytoplasmic granules, which are positive for alkaline phosphatase and peroxidase but acid phosphatase negative. The scarce granules found in the cytoplasm of the circulating neutrophils and their cytochemical features seem to be indicative of an immature stage. Acidophils are also alkaline phosphatase and peroxidase positive at pH 11.0. They are strongly positive for acid phosphatase and acid phosphatase activity may thus be considered a cytochemical marker to characterize and differentiate neutrophilic from acidophilic granulocytes in this fish species. Three granule populations are characterized in the cytoplasm of the gilthead seabream acidophils: the first is positive only for peroxidase and the second contains a dense core with acid and alkaline phosphatase activities, surrounded by a thin peroxidase positive electron-dense halo. The third granule type contains an eccentric core, which is strongly positive for acid and alkaline phosphatase and peroxidase. As regards their cytochemical features, the first and second granule types seem to correspond respectively to the azurophilic and specific granules found in acidophils of mammals and could be involved in phagocytic processes, thus playing an important microbicidal role in this species. The monocytes, monocyte-macrophages and macrophages show different cytochemical features. The first have scarce acid phosphatase-positive lysosomes, while blood monocyte-macrophages and macrophages are positive for acid and alkaline phosphatases and for peroxidase; the monocyte-macrophages show scarce lysosomes.  相似文献   

11.
ABSTRACT. The temporal changes in the size and pH of digestive vacuoles (DV) in Paramecium caudatum were reevaluated. Cells were pulsed briefly with polystyrene latex spheres or heat-killed yeast stained with three sulfonphthalein indicator dyes. Within 5 min of formation the intravacuolar pH declined from ~7 to 3. With the exception of a transient and early increase in vacuolar size, vacuole condensation occurred rapidly and paralleled the acidification so that vacuoles reached their lowest pH and minimal size simultaneously. Neutralization and expansion of vacuole size began when vacuoles were GT8 min old. No labeled vacuoles were defecated prior to 21 min after formation but almost all DV were defecated within 1 h so that the digestive cycle of individual vacuoles ranged from 21 to 60 min. Based on these size and pH changes, the presence of acid phosphatase activity, and membrane morphology, digestive vacuoles can be grouped into four stages of digestion. The DV-I are GT6 min old and undergo rapid condensation and acidification. The DV-II are between 4 to 10 min old and are the most condensed and acidic vacuoles. The DV-III range in age from 8 to ~20 min and include the expanding or expanded vacuoles that result from lysosomes fusing with DV-II. The DV-IV are GD21 min old, and since digestion is presumably completed, they can be defecated. The rise in intravacuolar pH that accompanies vacuole expansion suggests that lysosomes play a role in vacuole neutralization in addition to their degradative functions. The acidification and condensation processes in DV-I appear to be unrelated to lysosomal function, as no acid phosphaiase activity has been detected at this stage, but may be related to phagosomal functions important in killing food organisms, denaturing proteins prior to digestion, and preparing vacuole membrane for fusion with lysosomes.  相似文献   

12.
利用解剖、HE和AB-PAS染色技术研究了菲牛蛭消化系统的形态结构及组织化学特征。结果表明, 菲牛蛭消化系统由消化管和单细胞唾液腺组成。消化管包括口、咽、食道、嗉囊、肠、直肠和肛门。口开孔于前吸盘腹中部, 口腔内有3片呈三角形排列的颚片, 颚片由辐射肌和横纹肌构成, 其脊上具单列细齿, 可切开寄主皮肤。单细胞唾液腺开口于颚片两侧的乳突上, 可分泌蛭素; 咽呈短球形, 由黏膜层、肌层和外膜构成,肌层发达; 食道短而窄, 黏膜层见少量杯状细胞和大量嗜酸性颗粒; 嗉囊两侧有10对侧盲囊, 最后一对侧盲囊最长且延伸至肛门两侧; 肠部尚无明显分化, 可细分为肠和直肠。肠前段腔内有多个盲囊状的细管, 形成 肠内盲囊, 黏膜层具较多腺细胞, 黏膜下层发达, 具丰富的血管和淋巴细胞; 直肠肠腔明显大于肠的肠腔, 褶皱高度明显比肠的低, 上皮细胞间可见少量杯状细胞。AB-PAS染色结果显示菲牛蛭消化管黏液细胞有4种类型: Ⅰ型被染成红色, Ⅱ型被染成蓝色, Ⅲ型染成紫红色, Ⅳ型染成蓝紫色。口腔部黏液细胞分布以Ⅳ型和Ⅲ型为主, 少量Ⅱ型与Ⅰ型黏液细胞, 咽部以Ⅲ型为主, 食道、嗉囊、肠前部以及直肠壁均无酸性和中性黏液细胞存在, 肠中后部以Ⅰ型为主, 肛门壁存在大量的Ⅱ型黏液细胞。讨论了菲牛蛭消化管结构特点与食性的关系等问题, 发现肠是菲牛蛭整个消化管最主要的消化和吸收场所, 且消化管特殊的结构特征决定了菲牛蛭主要以血液作为食物来源。  相似文献   

13.
The response of the digestive proteases to abrupt salinity change was studied in juvenile gilthead sea bream (Sparus aurata) for 15 days after transfer from 33 per thousand to 21 per thousand. Salinity decrease affected significantly neither the activity of total acid proteases in stomach, nor the activities of total alkaline proteases and major serine proteases--trypsin and chymotrypsin--in the alkaline part of the intestine. The activity of the major proteases was significantly different between the alkaline segments of the intestine, with the posterior intestine presenting the highest activities followed by the pyloric caeca. This distribution pattern remained unaffected by salinity decrease. Notably, salinity change led to significant alterations in elastase and carboxypeptidase activity. The changes were more prominent in the upper part of the intestine (pyloric caeca and anterior intestine) than in the posterior intestine. In pyloric caeca significant alteration of carboxypeptidase A and B activities was observed, elastase changes were confined to anterior intestine together with alterations in carboxypeptidase B activity, while in posterior intestine the changes were restricted to carboxypeptidase A activity. The results are discussed in relation to the osmoregulatory action of the intestinal segments and dietary protein digestion.  相似文献   

14.
The foregut, stomach, caecum, midgut, and rectum of the digestive tract of Nautilus pompilius L.were investigated with ultrastructural and enzyme-cytological methods. Three different cell types were identified within the lamina epithelialis mucosae: main cells, goblet cells, and cells with secretory granules. The main cell type is the epithelial cell with microvilli, a basal nucleus surrounded by dictyosomes, rough endoplasmic reticulum, mitochondria, and electron-dense granules identified as lysosomes in the apical part of the cell. In the caecum this cell type contains endosymbiotic bacteria. The presence of endocytotic vesicles and the storage of lipids in the caecum indicate that this organ is involved in the process of absorption. In the caecum and the longitudinal groove of the rectum the main cells are, in addition, ciliated, facilitating the transport of food particles and faeces. Two types of goblet cells are found in all organs except in the stomach, forming a gliding path for food particles and protecting the epithelium. In the foregut and rectum, cells with electron-dense granules were recognized as the third type. The conspicuous secretory cells of the rectum represent a delimited rectal gland; its possible biological function is discussed. The tunica muscularis in all organs of the digestive tract consists of obliquely striated muscle cells innervated by axons containing transparent, osmiophilic and dense-cored vesicles. Positive reactions for acid and alkaline phosphatase, monoamine oxidase, β-glucuronidase, and trypsin- and chymotrypsin-like enzymes are localized in the lamina epithelialis mucosae.  相似文献   

15.
Structural and ultrastructural studies on the gut of the chaetognath Spadella cephaloptera, as well as observations on the feeding behavior of specimens bred in the laboratory, were conducted. The gut displays four distinct zones: pharynx, esophagus, and intestine, to which are connected a pair of diverticula, and the rectum, differing in length, shape, and cellular composition. The intestine alone represents ∼90% of the gut length. Upon ingestion, food in the intestine is submitted to successive backward and forward peristaltic movements until digestion has ended. Ultrastructural observations have identified five distinct cell types from granule morphology and the presence or absence of cilia at the apex of the cells. Three of the types undoubtedly correspond to secretory cells. They are the (1) pharyngeal, (2) esophageal, and (3) light intestinal ciliated cells, which could be, respectively, implicated in (1) mucous, (2) enzyme, and (3) both mucous and enzyme secretions. The fourth type, which corresponds to dense intestinal ciliated cells, displays all the characteristics of cells specialized in the absorption of macromolecules and intracellular digestion. The products of this digestion could be temporarily stored inside dense granules before being utilized during vitellogenesis. Except for the presence of cilia, the fifth type, which is localized in the short rectum, represents a common polyhedral epithelial cell type. © 1996 Wiley-Liss, Inc.  相似文献   

16.
After incubation of formalin-fixed, frozen sections of kidney and liver from peroxidase-treated rats in an azo dye medium for acid phosphatase, and after subsequent incubation of the same sections with benzidine, phagosomes were stained blue and lysosomes were stained red in the same cells. It was observed that newly formed phagosomes were separate from preexisting lysosomes in the tubule cells of the kidney and in the Kupffer cells of the liver at early periods after treatment with peroxidase. At later periods, the color reactions for acid phosphatase and peroxidase occurred in the same granules. The reaction of peroxidase decreased gradually and disappeared from the phago-lysosomes after 2 to 3 days, whereas the reaction for acid phosphatase persisted. In the liver, most of the injected protein was concentrated in large phagosomes located at the periphery of the cells lining the sinusoids. The peribiliary lysosomes showed a relatively weak reaction for peroxidase in the proximity of the portal veins. After pathological changes of permeability, phagosomes and lysosomes lost their normal location and fused, in the interior of many liver cells, to form large vacuoles or spheres. The effects of a reduced load of peroxidase and the effects of the pretreatment with another protein (egg white) on the phago-lysosomes of the kidney were tested. The relationship of the fusion of phagosomes with lysosomes to the size of normal and pathological phago-lysosomes was discussed.  相似文献   

17.
利用光学显微技术和透射电镜技术,观察和研究了出膜后1-35日龄黄颡鱼(Pelteobagrus fulvidraco)仔稚鱼的胃肠发育.水温为23-25℃时,2日龄仔稚鱼的消化道分化出口咽腔、食道、胃、肠;3日龄肠道分化为前肠、中肠、后肠.3日龄黄颡鱼开口摄食时其胃贲门部黏膜层下出现胃腺,为已有鱼类研究报道中胃腺最早出现的日龄.超微结构显示3日龄胃腺细胞中可见胃蛋白酶原颗粒和丰富的管泡系统,为典型的泌酸胃酶细胞;随日龄增加,胃蛋白酶原颗粒越来越丰富而管泡系统越来越不明显.3日龄时前肠吸收细胞胞质中可见脂肪泡,后肠吸收细胞胞质中可见蛋白质胞饮体.直到25日龄后肠吸收细胞胞质中尚可见蛋白质胞饮体.以七结果表明黄颡鱼在3日龄开口摄食时消化道具备细胞外消化功能,但此功能不完善,期间继续通过胞饮作用等细胞内消化来弥补胞外消化的不足,直到25-30日龄后细胞外消化功能发育完善.采用符合其生理机能发育过程的投喂管理策略可以有效提高大规格苗种培育的成活率.  相似文献   

18.
Various studies address the morphology of the gastrointestinal tracts (GITs) of insectivorous bat species. However, detailed morphometric studies including mucin histochemistry are scarce. This study compares various GIT measurements as well as the quantification of intestinal mucin secreting cells in four insectivorous bat species representing four different families of Chiroptera. Alcian blue/Periodic acid Schiff's stain was used to differentiate between acid and neutral mucin-secreting cells while the Aldehyde fuchsin/Alcian blue stain further differentiated between two acid mucins, namely sialo-, and sulphomucins. The number of cells was quantified and statistically analysed. All species had a simple GIT morphology represented by a simple, completely glandular stomach and the absence of a cecum. The exception was R. hardwickii, where a small cecum was observed which had histological mucosal features of both the small and large intestine. In R.hardwickii, distal to the cecum, typical colonic mucosal features such as the absence of villi and an abundance of goblet cells were observed. In all four species, the total number of goblet cells increased from the proximal to the distal intestinal regions. Mixed (acid and neutral) mucins dominated the entire GIT of all species. Neutral mucin-secreting cells were observed in the gastric pylorus and proximal intestinal regions in all species. Brunner's glands stained positive for neutral mucins. Exclusively acid mucin-secreting cells were seen in the distal intestinal regions of all species except N. thebaica. Sulphomucin-secreting cells were the most prominent acid mucin cell-type towards the distal intestine. The distribution of different mucin secreting cells indirectly provides information regarding the quality of the intestinal biofilm in the species studied.  相似文献   

19.
The ELF-97 phosphatase substrate was used to examine phosphatase activity in four strains of the estuarine heterotrophic dinoflagellate, Pfiesteria shumwayae. Acid and alkaline phosphatase activities also were evaluated at different pH values using bulk colorimetric methods. Intracellular phosphatase activity was demonstrated in P. shumwayae cells that were actively feeding on a fish cell line and in food limited cells that had not fed on fish cells for 3 days. All strains, whether actively feeding or food limited showed similar phosphatase activities. P. shumwayae cells feeding on fish cells showed ELF-97 activity near, or surrounding, the food vacuole. Relatively small, spherical ELF-97 deposits were also observed in the cytoplasm and sometimes near the plasma membrane. ELF-97 fluorescence was highly variable among cells, likely reflecting different stages in digestion and related metabolic processes. The location of enzyme activity and supporting colorimetric measurements suggest that, as in other heterotrophic protists, acid phosphatases predominate in P. shumwayae and have a general catabolic function.  相似文献   

20.
Histochemical properties of intestine goblet cells in firemouth cichlid, zebra mbuna, freshwater angelfish and platyfish are described. Goblet cells occurred regularly in the epithelial cell layer throughout the entire intestine, they were strongly coloured by alcian blue at pH 2.5. This colour got gradually weaker when the pH was reduced, but still after alcian blue at pH 0.2 these cells displayed a distinct blue colour. When the goblet cells were treated with periodic acid-Schiff (PAS), they displayed a strong purple-magenta colour. The findings that a number of goblet cells displayed various colours between blue and purple-magenta when acidic alcian blue was followed by PAS, and between blue and red-brown when acidic alcian blue was followed by neutral red, may reflect different ages or stages of development and differentiation for these cells. However, such results may also suggest a true cellular heterogeneity in the present population of goblet cells, reflecting that the intestine mucus layer has a number of roles in teleosts like lubrication, protection, immunological defence, digestion and absorption.In the ferritin injected specimens of firemouth cichlid and platyfish, a number of macrophage-like cells in intestine wall displayed Prussian blue precipitations in tissue treated with acid ferrocyanide, suggesting that these cells play a cleansing role in the intestinal wall. No ferritin uptake was seen in the intestine goblet cells and eosinophilic granule cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号