首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human pulmonary alveolar macrophages were used to quantitate the cytotoxic effect of surface-altered chrysotile asbestos. Little difference was observed in mortality between chrysotile asbestos that was surface-treated to a 42% extent by a hydrophobic organosilane or untreated chrysotile. Little or no effect on mortality was observed when human pulmonary alveolar macrophages were cultured with untreated chrysotile or acid-leached asbestos in the presence of 10 mM dipalmitoyl lecithin. However, when human pulmonary alveolar macrophages were cultured with a hydrophobically-treated (to a 42% or 95% extent) chrysotile asbestos in the presence of 10 mM dipalmitoyl lecithin, a statistically significant decrease in mortality was observed compared to untreated chrysotile. No mutagenic activity was observed when V79 cells were cultured with acid-leached, or 42% hydrophobically-treated chrysotile asbestos, even when human pulmonary alveolar macrophages were included as an activation source. The 95% hydrophobically-treated and acid-leached chrysotile also exhibited decreased binding of benzo[a]pyrene compared to untreated chrysotile asbestos.Abbreviations AHH aryl hydrocarbon hydroxylase - B(a)P benzo[a]pyrene - CA chrysotile asbestos - CHO Chinese hamster ovary - DL dipalmitoyl lecithin - DMEM Dulbecco's Modified Eagle's Medium - FBS fetal bovine serum - Or resistance to ouabain - PAH polycyclic aromatic hydrocarbon - PAM pulmonary alveolar macrophage - SCE sister chromatid exchange Deceased.  相似文献   

2.
The activities of nuclear enzymes involved in NAD+ metabolism in Saccharomyces cerevisiae strain 913a-1 and its mutant 110 previously selected as an NAD+ producer were investigated. The presence of extracellular nicotinamide increased the total NAD+ pool in the cells and increased [3H]nicotinic acid incorporation; however, NAD+ concentration in isolated nuclei decreased slightly. The stimulating effect of nicotinamide on intracellular synthesis of NAD+ correlated with increases in ADP-ribosyl transferase, NAD+-pyrophosphorylase, and NAD+ ase activities.  相似文献   

3.
Accumulating evidence has indicated the importance of sirtuins (class III histone deacetylases) in various biological processes. Their potential roles in metabolic and neurodegenerative diseases have encouraged scientists to seek potent and selective sirtuin inhibitors to investigate their biological functions with a view to eventual new therapeutic treatments. This article surveys current knowledge of sirtuin inhibitors including those discovered via high-throughput screening (HST) or via mechanism-based drug design from synthetic or natural sources. Their inhibitory affinity, selectivities, and possible inhibition mechanisms are discussed.  相似文献   

4.
Poly(ADP-ribosyl)ation is a post-translational modification of proteins that is mediated by poly(ADP-ribose) polymerases (PARPs). Although the existence and nature of the nucleic acid-like molecule poly(ADP-ribose) (PAR) has been known for 40 years, understanding its biological functions--originally thought to be only the regulation of chromatin superstructure when DNA is broken--is still the subject of intense research. Here, we review the mechanisms controlling the biosynthesis of this complex macromolecule and some of its main biological functions, with an emphasis on the most recent advances and hypotheses that have developed in this rapidly growing field.  相似文献   

5.
Phosgene is a toxic gas that is widely used in modern industry, and its inhalation can cause severe pulmonary edema. There is no effective clinical treatment because the mechanism of phosgene-induced pulmonary edema still remains unclear. Many studies have demonstrated that the Na+/K+-ATPase plays a critical role in clearing pulmonary edema and the inhibition of Na+/K+-ATPase protein expression has been found in many other pulmonary edema models. In the present study, after the mice were exposed to phosgene, there was serious pulmonary edema, indicating the dysfunction of the ATPases in mice. However, in vitro enzyme study showed that there were increases in the activities of the Na+/K+-ATPase and Ca2+-ATPase. Further investigation showed that the ATP content and mitochondrial respiratory control ratio (RCR) in the lungs decreased significantly. The oxidative stress product, malondialdehyde (MDA), increased while the antioxidants (GSH, SOD, and TAC) decreased significantly. These results indicate that mitochondrial respiration is the target of phosgene. The dysfunction of ATPases due to impaired mitochondrial respiration may be a new mechanism of phosgene-induced pulmonary edema.  相似文献   

6.
Expression of insulin-like growth factor-I (IGF-I) receptors and insulin-like growth factor-II/mannose-6-phosphate (IGF-II/Man6P) receptors in cultured bovine alveolar macrophages (BAM) was demonstrated by competitive binding studies and crosslinking experiments. Western blotting of protein extracts from cultured BAM using an anti bovine IGF-II/Man6P receptor antiserum (#66416) confirmed the presence of IGF-II/Man6P receptors on BAM. The effects of IGFs and Man6P on generation of inositol phosphates was measured by HPLC analysis of perchloric acid extracts from myo-[3H]inositol-labelled cultured BAM. IGF-I at nanomolar concentrations and Man6P (10-8–103 M) stimulated the accumulation of both Ins(1,4,5)P3 and Ins(1,3,4,5)P4 after 30 sec. IGF-II (up to 2.3 × 10-8M) had no significant effect on inositol phosphate accumulation under the same conditions. Both IGFs and Man6P induced a rise in [Ca2+]iin cultured BAM. In addition, using the fluorescent dye SNARF-1/AM we could demonstrate rapid but small IGF-II (10-9 M) triggered acidification (0.07 pH units) of cultured BAM. Taken together, our results indicate not only the presence of both IGF-I and IGF-II/Man6P receptors on BAM, but also provide evidence of the linkage of the IGF-I receptor to the inositol phosphate system.  相似文献   

7.
Summary This paper reports experiments designed to assess the relations between net salt absorption and transcellular routes for ion conductance in single mouse medullary thick ascending limbs of Henle microperfusedin vitro. The experimental data indicate that ADH significantly increased the transepithelial electrical conductance, and that this conductance increase could be rationalized in terms of transcellular conductance changes. A minimal estimate (G c min ) of the transcellular conductance, estimated from Ba++ blockade of apical membrane K+ channels, indicated thatG c min was approximately 30–40% of the measured transepithelial conductance. In apical membranes, K+ was the major conductive species; and ADH increased the magnitude of a Ba++-sensitive K+ conductance under conditions where net Cl absorption was nearly abolished. In basolateral membranes, ADH increased the magnitude of a Cl conductance; this ADH-dependent increase in basal Cl conductance depended on a simultaneous hormone-dependent increase in the rate of net Cl absorption. Cl removal from luminal solutions had no detectable effect onG e , and net Cl absorption was reduced at luminal K+ concentrations less than 5mm; thus apical Cl entry may have been a Na+,K+,2Cl cotransport process having a negligible conductance. The net rate of K+ secretion was approximately 10% of the net rate of Cl absorption, while the chemical rate of net Cl absorption was virtually equal to the equivalent short-circuit current. Thus net Cl absorption was rheogenic; and approximately half of net Na+ absorption could be rationalized in terms of dissipative flux through the paracellular pathway. These findings, coupled with the observation that K+ was the principal conductive species in apical plasma membranes, support the view that the majority of K+ efflux from cell to lumen through the Ba++-sensitive apical K+ conductance pathway was recycled into cells by Na+,K+,2Cl cotransport.  相似文献   

8.
Summary Cessation of gluconeogenesis during oocyte maturation inMisgurnus fossilis L. is accompanied by an increase of pyruvate dehydrogenase activity (EC 1.2.4.1). The activity of other enzymes of citrate and pyruvate metabolism (citrate synthetase, EC 4.1.3.7, pyruvate carboxylase, EC 6.4.1.1., malate dehydrogenase, EC 1.1.1.37) remains constant during oocyte maturation and early embryogenesis.In the course of oocyte maturation the levels of acetyl-CoA, pyruvate and citrate remained unchanged, but the level of malate and oxaloacetate underwent drastic increase. The level of phosphoenolpyruvate increased about two-fold. The mitochondrial (NAD+)/(NADH) ratio was calculated by measurement of intermediates of the glutamate dehydrogenase reaction and it was found to increase six-fold during oocyte maturation. The lower mitochondrial (NAD+)/(NADH) ratio in oocytes compared to that in the embryos is likely to be responsible for the transfer of reducing equivalents from mitochondria to cytoplasm, while in embryos transfer in the opposite direction takes place.  相似文献   

9.
The contents of amino acids and proteins and the activity of Na+, K+-ATPase were determined in roots, stems, and leaves of Eu3+-treated Lathyrus sativus L. The results showed that the treatment of Eu3+ made the contents of amino acid and protein and the activity of Na+, K+-ATPase change. The first possible mechanism was that Eu3+ directly made the electric potential of −NH2 or −COOH of amino acid change. The second possible mechanism was that Eu3+ played a role in metallic-activated factors of certain enzymes, which catalyze the catabolism and anabolism of protein. Then, the contents of amino acids and proteins were relatively changed. The third possible mechanism was that Eu3+ regulated the activity of ATPase through changing the Na+/K+ ratio. The energy released by ATPase was the driving force for the translocation of amino acids and proteins in the plant cell. Because of the changeability of its valence, Eu played an, important role in regulating certain physiological reactions to increase the adaptability of L. sativus in arid environment. These authors contributed equally to this work.  相似文献   

10.
目的 探讨组蛋白去乙酰化酶3(HDAC3)对外周CD4+ T细胞分化及功能的调控作用。方法 采用CD4cre酶介导Hdac3杂合基因缺失小鼠(Hdac3fl/flCD4cre+/-)及其野生型正常对照小鼠(Hdac3fl/fl,WT),流式细胞术检测HDAC3缺失对外周CD4+和CD8+ T细胞比例和数量的影响;在体外佛波酯(PMA)和离子霉素(Ionomycin)刺激条件下,流式细胞术检测HDAC3缺失对CD4+ T细胞中IFN-γ、IL-4和IL-17A的表达以及Tfh细胞产生的影响;采用ELISA检测HDAC3缺失对小鼠血清IFN-γ、IL-4和IL-17表达的影响;分选Hdac3fl/flCD4cre+/-和WT小鼠外周初始CD4+ T细胞,分别在Th1和Th2分化条件下培养,细胞内染色检测HDAC3缺失对Th1、Th2以及Th17相关细胞因子及其特异转录因子表达的影响;采用Microarray检测HDAC3缺失对CD4+ T细胞分化亚群相关基因表达的影响;采用链脲佐菌素(STZ)处理小鼠构建I型糖尿病(TIDM)疾病模型,检测HDAC3缺失对T1DM发病的影响。结果 与WT小鼠相比,Hdac3fl/flCD4cre+/-小鼠外周CD4+和CD8+ T细胞的比例和数量显著降低。Hdac3fl/flCD4cre+/-小鼠CD4+ T细胞及血清中IFN-γ的表达显著降低,而IL-4和IL-17A的表达显著增加,Tfh细胞比例也显著增加;HDAC3缺失抑制体外培养CD4+ T细胞向Th1分化但促进其向Th2分化;Microarray检测发现HDAC3缺失导致Th1型细胞谱系基因表达降低,而Th2、Th17以及Tfh细胞谱系基因表达增加;在STZ诱导条件下,HDAC3缺失抑制小鼠T1DM的发生和CD4+ T细胞向Th1分化。结论 HDAC3促进外周CD4+ T细胞向Th1细胞分化并加重T1DM的发生。  相似文献   

11.
Summary The effects of agents known to interfere with Ca2+ release processes of endoplasmic reticulum were investigated in bradykinin (BK)-stimulated bovine aortic endothelial cells (BAE cells), via the activation of Ca2+-activated potassium channels [K(Ca2+) channels]. In cell-attached patch experiments, the external application of caffeine (1 mm) caused a brief activation of K(Ca2+) channels in Ca2+-free and Ca2+-containing external solutions. The application of BK (10 nm) during cell stimulation by caffeine (1–20 mm) invariably led to a drastic channel activation which was maintained during a recording period longer than that observed in caffeine-free conditions. In addition, the cell exposure to caffeine (20 mm) during the BK stimulation enhanced systematically the channel activation process. Since a rapid inhibition of BK-evoked channel activity was also produced by removing caffeine from the bath medium, it is proposed that the sustained single-channel response recorded in the concomittant presence of both agents was due to their synergic action on internal stores and/or the external Ca2+ entry pathway resulting in an increased [Ca2+]i. In addition, the local anesthetic, procaine, depressed the initial BK-induced K(Ca2+) channel activity and completely blocked the secondary phase of the channel activation process related to the external Ca2+ influx into stimulated cells. In contrast, this blocking effect of procaine was not observed on the initial caffeine-elicited channel activity and could not suppress the external Ca2+-dependent phase of this channel activation process. Our results confirm the existence of at least two pharmacologically distinct types of Ca2+-release from internal stores in BAE cells: an inositol 1,4,5-triphosphate (InsP3)-dependent and a caffeine-induced Ca2+-release process.The authors would like to thank Dr. A. Diarra for his contribution to the fluorescence measurements and Diane Vallerand for preparing cell cultures. These data were presented in part at the 14th Scientific Meeting of the International Society of Hypertension (Madrid, Spain, June 14–18, 1992), and have been published in abstract form in the Journal of Hypertension (1992). Dominique Thuringer is a fellow of the Heart and Stroke Foundation of Canada. Rémy Sauvé is a senior fellow from the Fonds de la Recherche en Santé du Québec. This work was supported by a grant from the Medical Research Council of Canada.  相似文献   

12.
Endotoxins (lipopolysaccharides; LPS) are known to cause multiple organ failure, including renal dysfunction. LPS triggers the synthesis and release of cytokines and the vasodilatör nitric oxide (NO). A major contributor to the increase in NO production is LPS-stimulated expression of inducible nitric oxide synthase (iNOS). This occurs in vasculature and most organs including the kidney. During endotoxemia, NO and superoxide react spontaneously to form the potent and versatile oxidant peroxynitrite (ONOO) and the formation of 3-nitrotyrosine (nTyr)-protein adducts is a reliable biomarker of ONOO generation. Therefore, the present study was aimed at investigating the role of endogenous nitric oxide in regulating Na+,K+-ATPase activity in the kidney, and at investigating the possible contribution of reactive nitrogen species (RNS) by measuring of iNOS activity. In addition, the present study was aimed at investigating the relationship between nTyr formation with iNOS and Na+,K+-ATPase activities. Previously in our study, nTyr was not detectable in kidney of normal control animals but was detected markedly in LPS exposed animals. In this study, kidney Na+,K+-ATPase activity were maximally inhibited 6 h after LPS injection (P:0.000) and LPS treatment significantly increased iNOS activity of kidney (P:0.000). The regression analysis revealed a very close correlation between Na+,K+-ATPase activity and nTyr levels of LPS treated animals (r = –0.868, P = 0.001). Na+,K+-ATPase activity were also negatively correlated with iNOS activity (r = –0.877, P = 0.001) in inflamed kidney. These data suggest that NO and ONOO contribute to the development of oxidant injury. Furthermore, the source of NO may be iNOS. iNOS are expressed by the kidney, and their activity may increase following LPS administration. In addition, NO and ONOO formation inhibited Na+,K+-ATPase activity. This results also have strongly suggested that bacterial LPS disturbs activity of membrane Na+,K+-ATPase that may be an important component leading to the pathological consequences such as renal dysfunction in which the production of RNS are increased as in the case of LPS challenge. (Mol Cell Biochem 271: 107–112, 2005)  相似文献   

13.
Poly (ADP-ribose) polymerase has an obligatory requirement for DNA strand-breaks in order to show full enzyme activity. Exposure of cells to DNA damaging agents activates this enzyme presumably through the production of DNA strand-breaks, either directly or via cellular enzymes. Recent evidence from manipulations of the cloned cDNA of this enzyme confirm the earlier evidence, obtained using enzyme inhibitors, that this enzyme is involved in DNA excision repair, probably at or near the ligation step. A very unusual human genetic disease has provided direct evidence for a link between the enzyme activities of poly (ADP-ribose) polymerase and of DNA ligase I. There is also some evidence that this enzyme may be involved in other cases of DNA breakage and rejoining, such as homologous and non-homologous DNA recombination, for example, in sister chromatid exchanges, in DNA transfection, in the intergration of retroviral proviral DNA and in variable antigen switching in African trypanosomes.  相似文献   

14.
The modulation of the Ca2+- (or Pb2+-)activated K+ permeability in human erythrocytes by vanadate, menadione and chloro-substituted menadione analogs was investigated by measurements of K+ fluxes and single-channel currents. Vanadate and menadione stimulate the K+ permeability by increasing the probability of channel openings; the menadione analogs, on the other hand, inhibit the K+ permeability by increasing the probability of channel closings. The compounds used in these experiments also interact with oxidoreductases; it is demonstrated that menadione analogs in contrast to menadione strongly inhibit the membrane-bound dehydrogenase in the erythrocytes. Concentrations of Pb2+ above 10 μmol/l, but not of Ca2+, inhibit the enzyme activity as well as the K+ permeability. The parallel effects on dehydrogenase activity and the K+ channels suggest a direct relationship between these two systems in the membrane of erythrocytes.  相似文献   

15.
A novel 3,4-dihydroisoquinol-1-one-4-carboxamide scaffold was designed as the basis for the development of novel inhibitors of poly(ADP-ribose) polymerase (PARP). Synthesis of 3,4-dihydroisoquinol-1-one-4-carboxylic acids was achieved using the previously developed protocol based on the modified Castagnoli-Cushman reaction of homophthalic anhydrides and 1,3,5-triazinanes as formaldimine synthetic equivalents. Employment of 2,4-dimethoxy groups on the nitrogen atom of the latter allowed preparation of 2,3-unsubatituted 3,4-dihydroquinolone core building blocks. Iterative synthesis and in vitro biological testing of the amides resulting from the amidation of these carboxylic acids allowed not only drawing important structure-activity generalisations (corroborated by in silico docking simulation) but also the identification of the lead compound, 4-([1,4''-bipiperidine]-1''-carbonyl)-7-fluoro-3,4-dihydroisoquinolin-1(2H)-one, as the candidate for further preclinical development. The lead compound as well as its des-fluoro analog were compared to the approved PARP1 inhibitor, anticancer drug Olaparib, in terms of their molecular characteristics defining druglikeness as well as experimentally determined ADME parameters. The newly developed series demonstrated clear advantages over Olaparib in terms of molecular weight, hydrophilicity, human liver microsomal and plasma stability as well as plasma protein binding. Further preclinical investigation of the lead compound is highly warranted.  相似文献   

16.
We investigated the effects on ginseng adventitious root growth and ginsenoside production when macro-element concentrations and nitrogen source were manipulated in the culture media. Biomass growth was greatest in the medium supplemented with 0.5-strength NH4PO3, whereas ginsenoside accumulation was highest (9.90 mg g-1 DW) in the absence of NH4PO3. At levels of 1.0-strength KNO3, root growth was maximum, but a 2.0 strength of KNO3 led to the greatest ginsenoside content (9.85 mg g-l). High concentrations of MgSO4 were most favorable for both root growth and ginsenoside accumulation (up to 8.89 mg g-1 DW). Root growth and ginsenoside content also increased in proportion to the concentration of CaCI2 in the medium, with the greatest accumulation of ginsenoside (8.91 mg g-1 DW) occurring at a 2.0 strength. The NH4/NO3 -- ratio also influenced adventitious root growth and ginsenoside production; both parameters were greater when the NO3 - concentration was higher than that of NH4 +. Maximum root growth was achieved at an NH4 +/NO3 - ratio of 7.19/18.50, while ginsenoside production was greatest (83.37 mg L-1) when NO3 - was used as the sole N source.  相似文献   

17.
An earlier described three-component variant of the Castagnoli-Cushman reaction employing homophthalic anhydrides, carbonyl compound and ammonium acetate was applied towards the preparation of 1-oxo-3,4-dihydroisoquinoline-4-carboxamides with variable substituent in position 3. These compounds displayed inhibitory activity towards poly(ADP-ribose) polymerase (PARP), a clinically validated cancer target. The most potent compound (PARP1/2 IC50 = 22/4.0 nM) displayed the highest selectivity towards PARP2 in the series (selectivity index = 5.5), more advantageous ADME prameters compared to the clinically used PARP inhibitor Olaparib.  相似文献   

18.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the freshwater shrimp, Macrobrachium olfersii, acclimated to 21‰ salinity for 10 days were investigated using the substrate p-nitrophenylphosphate. The enzyme hydrolyzed this substrate obeying cooperative kinetics at a rate of 123.6 ± 4.9 U mg− 1 and K0.5 = 1.31 ± 0.05 mmol L− 1. Stimulation of K+-phosphatase activity by magnesium (Vmax = 125.3 ± 7.5 U mg− 1; K0.5 = 2.09 ± 0.06 mmol L− 1), potassium (Vmax = 134.2 ± 6.7 U mg− 1; K0.5 = 1.33 ± 0.06 mmol L− 1) and ammonium ions (Vmax = 130.1 ± 5.9 U mg− 1; K0.5 = 11.4 ± 0.5 mmol L− 1) was also cooperative. While orthovanadate abolished p-nitrophenylphosphatase activity, ouabain inhibition reached 80% (KI = 304.9 ± 18.3 μmol L− 1). The kinetic parameters estimated differ significantly from those for freshwater-acclimated shrimps, suggesting expression of different isoenzymes during salinity adaptation. Despite the ≈2-fold reduction in K+-phosphatase specific activity, Western blotting analysis revealed similar α-subunit expression in gill tissue from shrimps acclimated to 21‰ salinity or fresh water, although expression of phosphate-hydrolyzing enzymes other than (Na+,K+)-ATPase was stimulated by high salinity acclimation.  相似文献   

19.
Enzyme function depends on specific conformational motions. We show that the temperature dependence of enzyme kinetic parameters can provide insight into these functionally relevant motions. While investigating the catalytic properties of IPMDH from Escherichia coli, we found that its catalytic efficiency (kcat/KM,IPM) for the substrate IPM has an unusual temperature dependence, showing a local minimum at ∼35°C. In search of an explanation, we measured the individual constants kcat and KM,IPM as a function of temperature, and found that the van 't Hoff plot of KM,IPM shows sigmoid-like transition in the 20-40°C temperature range. By means of various measurements including hydrogen-deuterium exchange and fluorescence resonance energy transfer, we showed that the conformational fluctuations, including hinge-bending domain motions increase more steeply with temperatures >30°C. The thermodynamic parameters of ligand binding determined by isothermal titration calorimetry as a function of temperature were found to be strongly correlated to the conformational fluctuations of the enzyme. Because the binding of IPM is associated with a hinge-bending domain closure, the more intense hinge-bending fluctuations at higher temperatures increasingly interfere with IPM binding, thereby abruptly increasing its dissociation constant and leading to the observed unusual temperature dependence of the catalytic efficiency.  相似文献   

20.
The prevalence of life-threatening anaphylactic responses to food is rising at an alarming rate. The emerging role of the gut microbiota in regulating food allergen sensitization may help explain this trend. The mechanisms by which commensal bacteria influence sensitization to dietary antigens are only beginning to be explored. We have found that a population of mucosa-associated commensal anaerobes prevents food allergen sensitization by promoting an IL-22-dependent barrier protective immune response that limits the access of food allergens to the systemic circulation. This early response is followed by an adaptive immune response mediated in part by an expansion of Foxp3+ Tregs that fortifies the tolerogenic milieu needed to maintain non-responsiveness to food. Bacterial metabolites, such as short-chain fatty acids, may contribute to the process through their ability to promote Foxp3+ Treg differentiation. This work suggests that environmentally induced alterations of the gut microbiota offset the regulatory signals conferred by protective bacterial species to promote aberrant responses to food. Our research presents exciting new possibilities for preventing and treating food allergies based on interventions that modulate the composition of the gut microbiota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号