首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The fate of small-sized phytoplankton (<5 µm) and pathwaysof carbon cycling in surface waters, i.e. recycling within orexport out of the mixed layer, were investigated in the NortheastWater (NEW) Polynya (77–81°N) from 23 May to 22 July1993. The sampling covered a wide range of ice, hydrographicand nutrient conditions. Chlorophyll a concentrations, phytoplanktonproduction rates and zooplankton abundances were determinedin the field, and potential rates of grazing by protozoa, copepodsand appendicularians were calculated from abundances, usingassumptions from the literature. To our knowledge, this is thefirst published attempt to assess concurrently the grazing ofthese three plankton groups in the Arctic. The production rateof small-sized phytoplankton was significantly higher in ice-freecompared with ice-covered areas, but the biomasses of small-sizedphytoplankton and zooplankton were not. Potential recycling,downward export and horizontal advection of phytoplankton werecalculated by resolving carbon budgets for the mixed layer.A large fraction of the small-sized phytoplankton produced insidethe polynya was advected horizontally to the ice-covered partof the NEW, where these algae were necessary to sustain theheterotrophic community. We conclude that the fate of small-sizedphytoplankton production was mostly recycling (>70%). Downwardexport would have occurred infrequently, as a result of intensegrazing by appendicularians. Size-differential pathways of carboncycling in planktonic food webs are discussed.  相似文献   

2.
The rapid melting of glaciers as well as the loss of sea ice in the Amundsen Sea makes it an ideal environmental setting for the investigation of the impacts of climate change in the Antarctic on the distribution and production of mesozooplankton. We examined the latitudinal distribution of mesozooplankton and their grazing impacts on phytoplankton in the Amundsen Sea during the early austral summer from December 27, 2010 to January 13, 2011. Mesozooplankton followed a latitudinal distribution in relation to hydrographic and environmental features, with copepods dominating in the oceanic area and euphausiids dominating in the polynya. Greater Euphausia crystallorophias biomass in the polynya was associated with lower salinity and higher food concentration (chlorophyll a, choanoflagellates, and heterotrophic dinoflagellates). The grazing impact of three copepods (Rhincalanus gigas, Calanoides acutus, and Metridia gerlachei) on phytoplankton was low, with the consumption of 3 % of phytoplankton standing stock and about 4 % of daily primary production. Estimated daily carbon rations for each of the three copepods were also relatively low (<10 %), barely enough to cover metabolic demands. This suggests that copepods may rely on food other than phytoplankton and that much of the primary production is channeled through microzooplankton. Daily carbon rations for E. crystallorophias were high (up to 49 %) with the grazing impact accounting for 17 % of the phytoplankton biomass and 84 % of primary production. The presence of E. crystallorophias appears to be a critical factor regulating phytoplankton blooms and determining the fate of fixed carbon in the coastal polynyas of the Amundsen Sea.  相似文献   

3.
Summary Phytoplankton biomass and species composition were studied in transects through the ice edge region of the Greeland Sea from 19 July to 8 August 1984. Biomass was estimated by vertical in situ chlorophyll fluorescence and pigment extraction of discrete samples. Preserved material was used for identification of phytoplankton species and calculation of their relative abundances. The results suggest that the various geographical regions of the Greenland Sea differ considerably in their phytoplankton development. Autotrophic biomass and species composition were closely associated with the extent of the annual and seasonal ice cover, hydrographic conditions, nutrient availability and the water masses typical of the different domains. In the NE Greenland polynya a deep mixed layer inhibited the development of a phytoplankton bloom, whereas greatest biomass concentrations were associated with a receding ice edge on the E Greenland Shelf. In the Fram Strait, the position of the relatively stationary ice edge is controlled by frontal dynamics, currents and wind. Due to rapidly changing physical and chemical conditions, phytoplankton biomass showed great variability between stations. High chlorophyll a concentrations may develop locally where melting ice causes stratification or can result from passive accumulation in eddies. In July/August 84 the Fram Strait area was dominated by a typical summer population of flagellates and large diatom species.Contribution 6 of the Alfred-Wegener-Institute for Polar and Marine Research  相似文献   

4.
1. The inter‐ and intra‐annual changes in the biomass, elemental (carbon (C), nitrogen (N) and phosphorus (P)) and taxonomical composition of the phytoplankton in a high mountain lake in Spain were studied during 3 years with different physical (fluctuating hydrological regime) and chemical conditions. The importance of internal and external sources of P to the phytoplankton was estimated as the amount of P supplied via zooplankton recycling (internal) or through ice‐melting and atmospheric deposition (external). 2. Inter‐annual differences in phytoplankton biomass were associated with temperature and total dissolved phosphorus. In 1995, phytoplankton biomass was positively correlated with total dissolved phosphorus. In contrast, the negative relationship between zooplankton and seston biomass (direct predatory effects) and the positive relationship between zooplankton P excretion and phytoplankton biomass in 1997 (indirect P‐recycling effects), reinforces the primary role of zooplankton in regulating the total biomass of phytoplankton but, at the same time, encouraging its growth via P‐recycling. 3. Year‐to‐year variations in seston C : P and N : P ratios exceeded intra‐annual variations. The C : P and N : P ratios were high in 1995, indicating strong P limitation. In contrast, in 1996 and 1997, these ratios were low during ice‐out (C : P < 100 and N : P < 10) and increased markedly as the season progressed. Atmospheric P load to the lake was responsible for the decline in C : P and N : P ratios. 4. Intra‐annual variations in zooplankton stoichiometry were more pronounced than the overall differences between 1995 and 1996. Thus, the zooplankton N : P ratio ranged from 6.9 to 40.1 (mean 21.4) in 1995, and from 10.4 to 42.2 (mean 24.9) in 1996. The zooplankton N : P ratio tended to be low after ice‐out, when the zooplankton community was dominated by copepod nauplii, and high towards mid‐ and late‐season, when these were replaced by copepodites and adults. 5. In 1995, the minimum demands for P of phytoplankton were satisfied by ice‐melting, atmospheric loading and zooplankton recycling over 100%. In order of importance, atmospheric inputs (> 1000%), zooplankton recycling (9–542%), and ice‐melting processes (0.37–5.16%) satisfied the minimum demand for P of phytoplankton during 1996 and 1997. Although the effect of external forces was rather sporadic and unpredictable in comparison with biologically driven recycle processes, both may affect phytoplankton structure and elemental composition. 6. We identified three conceptual models representing the seasonal phosphorus flux among the major compartments of the pelagic zone. While ice‐melting processes dominated the nutrient flow at the thaw, biologically driven processes such as zooplankton recycling became relevant as the season and zooplankton ontogeny progressed. The stochastic nature of P inputs associated with atmospheric events can promote rapid transitional changes between a community limited by internal recycling and one regulated by external load. 7. The elemental composition of the zooplankton explains changes in phytoplankton taxonomic and elemental composition. The elemental negative balance (seston N : P < zooplankton N : P, low N : P recycled) during the thaw, would promote a community dominated by species with a high demand for P (Cryptophyceae). The shift to an elemental positive balance (seston N : P > zooplankton N : P, high N : P recycled) in mid‐season would skew the N : P ratio of the recycled nutrients, favouring dominance by chrysophytes. The return to negative balance, as a consequence of the ontogenetic increase in zooplankton N : P ratio and the external P inputs towards the end of the ice‐free season, could alleviate the limitation of P and account for the appearance of other phytoplankton classes (Chlorophyceae or Dinophyceae).  相似文献   

5.
Summary During MIZEX'83 and MIZEX'84 food composition and food uptake by three Calanus species were investigated in the northern Greenland Sea. Samples were obtained from open water, the marginal ice zone, the pack ice region and the East Greenland shelf polynya. Food uptake of Calanus spp. was determined in ship-board incubation experiments under in situ conditions and volume of particulate matter in the upper 300 m of the water column was measured. Principal components analysis was used for data evaluation. Under the pack ice strongly reduced amounts of particulate matter in the euphotic zone were found while concentrations were elevated in the marginal ice zone and the East Greenland shelf polynya. Food uptake of C. finmarchicus was correlated to food concentration. In the pack ice region ingestion was close to zero for all species investigated. Likewise body weights were significantly lower than in MIZ or polynya. Principal components analysis of physical data shows a clustering of MIZ station groups at high temperature and salinity, clearly separated from pack ice and polynya stations. Analysis of biological data results in the same grouping of stations demonstrating a strong influence of hydrographic conditions on plankton development. It is concluded that herbivorous copepods cannot sustain themselves in the pack ice region but only at places of high productivity like marginal ice zone and East Greenland shelf polynya.  相似文献   

6.
The Pacific walrus is a large benthivore with an annual range extending across the continental shelves of the Bering and Chukchi Seas. We used a discrete choice model to estimate site selection by adult radio-tagged walruses relative to the availability of the caloric biomass of benthic infauna and sea ice concentration in a prominent walrus wintering area in the northern Bering Sea (St. Lawrence Island polynya) in 2006, 2008, and 2009. At least 60% of the total caloric biomass of dominant macroinfauna in the study area was composed of members of the bivalve families Nuculidae, Tellinidae, and Nuculanidae. Model estimates indicated walrus site selection was related most strongly to tellinid bivalve caloric biomass distribution and that walruses selected lower ice concentrations from the mostly high ice concentrations that were available to them (quartiles: 76%, 93%, and 99%). Areas with high average predicted walrus site selection generally coincided with areas of high organic carbon input identified in other studies. Projected decreases in sea ice in the St. Lawrence Island polynya and the potential for a concomitant decline of bivalves in the region could result in a northward shift in the wintering grounds of walruses in the northern Bering Sea.  相似文献   

7.
Will Ritzrau 《Polar Biology》1997,17(3):259-267
 Heterotrophic activity and related measures of pelagic microorganisms in the Northeast Water (NEW) polynya, the largest and northernmost summer polynya in the Arctic, were studied during the Polar Sea cruise of July/August 1992 at stations spanning a range of ice conditions. Utilization (incorporation and respiration) of 14C-labelled amino acids was measured at in situ temperature as a proxy for microheterotrophic activity in samples from the chlorophyll maxima, intermediate water depths, and the benthic boundary layer. Total activity and bacterial abundance (measured by epifluorescence microscopy) were highest in the sub-zero surface water layer that dominates the northeast Greenland shelf, and particularly in areas most influenced by ice-edge processes and lateral advection. In this cold-water layer activity correlated strongly with particulate organic carbon (POC), to a lesser degree with phytoplankton-derived pigments and bacterial abundance, but not with median bacterial cell size. No significant correlations were detected in the warmer, Atlantic-influenced deep waters of the regional trough system where POC concentrations and other parameters were low. In comparison with temperate environments, pelagic heterotrophic activity in the NEW polynya appears to be low, a finding that bears upon the fate of dissolved organic matter and the efficient supply of particulate food to the benthos in this unique polar setting. Received: 3 December 1995/Accepted:29 May 1996  相似文献   

8.
The Northeast Water polynya,Greenland Sea   总被引:2,自引:1,他引:1  
The nutrient and phytoplankton distributions in the North East Water polynya (NEW) were determined in June 1991. At Norske Øer Ice Barrier (the polynya's southern boundary), water was upwelled, but vertical instability precluded the development of phytoplankton blooms. Along the length of the northward coastal current, part of the anticyclonic circulation in this area, the vertical stability increased to the north by the input of melt water and solar heating. This caused a gradual increase in phytoplankton biomass and a decrease in nutrient concentrations until, in the northernmost area, nitrate was depleted at the surface, and sub-surface maxima of chlorophyll a were observed. The band of high chlorophyll a concentrations extending from this area to the south along the eastern margin of the polynya was interpreted as the presence of phytoplankton advected by the local circulation. The phytoplankton communities, consisting mainly of flagellates and diatoms, were typical for the beginning of phytoplankton development in ice-covered areas. They seemed to be partially released from melting ice. Three communities were distinguished, which represented, firstly, the upwelled water and its northern extension, secondly, an area of high phytoplankton biomass in the northwestern part of the polynya, and thirdly, the pack-ice region. The major taxa co-occurred at all stations, with only their relative importance changed. The nutrient concentrations in the NEW were different from those in the adjacent areas. The low nitrate values of about 4 M in the upper 70 m, found to be representative for the beginning of the growth season, imposed limitations on the overall phytoplankton production. Therefore, fertilization mechanisms such as upwelling along the Norske Øer Ice Barrier are important for local nutrient replenishment during the period of active phytoplankton growth. Eventually, silicate and phosphate supplied in higher concentrations by jets of the Arctic outflow may also support phytoplankton production, although these nutrients were not limiting during this study. The high-nutrient jets were detected in the upper 100 m of the water column at the eastern boundary of the polynya.  相似文献   

9.
Summary Protozooplankton were sampled in the iceedge zone of the Weddell Sea during the austral spring of 1983 and the austral autumn of 1986. Protozooplankton biomass was dominated by flagellates and ciliates. Other protozoa and micrometazoa contributed a relatively small fraction to the heterotrophic biomass. During both cruises protozoan biomass, chlorophyll a concentrations, phytoplankton production and bacterial biomass and production were low at ice covered stations. During the spring cruise, protozooplankton, phytoplankton, and bacterioplankton reached high concentrations in a welldeveloped ice edge bloom 100 km north of the receding ice edge. During the autumn cruise, the highest concentrations of biomass were in open water well-separated from the ice edge. Integrated protozoan biomass was <12% of the biomass of phytoplankton during the spring cruise and in the autumn the percentages at some stations were >20%. Bacterial biomass exceeded protozooplankton biomass at ice covered stations but in open water stations during the fall cruise, protozooplankton biomass reached twice that of bacteria in the upper 100m of the water column. The biomass of different protozoan groups was positively correlated with primary production, chlorophyll a concentrations and bacterial production and biomass, suggesting that the protozoan abundances were largely controlled by prey availability and productivity. Population grazing rates calculated from clearance rates in the literature indicated that protozooplankton were capable of consuming significant portions of the daily phyto- and bacterioplankton production.  相似文献   

10.
In spring 1994, within the ROSSMIZE research project, combined measurements of nitrogen (15N) and carbon (14C) uptake were made in the Ross Sea, passing from the McMurdo polynya to the ice-covered area in the north, in order to study the effect of environmental conditions (light availability, ice cover, vertical stability) on the coupling of N and C cycles. Nitrogen (nitrate and ammonium) and carbon uptakes were measured under simulated in situ conditions. The obtained results revealed, in most situations, much higher C:N uptake ratios than the Redfield ratio for phytoplankton composition; only in the inner part of the pack ice C:N uptake was lower than the balanced composition ratio. The high uptake ratios are ascribed to a larger C requirement during early phases of bloom evolution and to a greater importance of nitrogen sources, such as urea and other dissolved organic compounds, which were not measured in this study. In contrast, the lower C:N ratios in most of the pack-ice environment are ascribed to reduced photosynthesis in comparison to nutrient assimilation at low irradiances and to an increased importance of bacterial processes. Accepted: 3 January 2000  相似文献   

11.
Ecology of sea ice biota   总被引:20,自引:5,他引:15  
Summary The sea ice does not only determine the ecology of ice biota, but it also influences the pelagic systems under the ice cover and at ice edges. In this paper, new estimates of Arctic and Antarctic production of biogenic carbon are derived, and differences as well as similarities between the two oceans are examined. In ice-covered seas, high algal concentrations (blooms) occur in association with several types of conditions. Blooms often lead to high sedimentation of intact cells and faecal pellets. In addition to ice-related blooms, there is progressive accumulation of organic matter in Arctic multi-year ice, whose fate may potentially be similar to that of blooms. A fraction of the carbon fixed by microalgae that grow in sea ice or in relation to it is exported out of the production zone. This includes particulate material sinking out of the euphotic zone, and also material passed on to the food web. Pathways through which ice algal production does reach various components of the pelagic and benthic food webs, and through them such top predators as marine mammals and birds, are discussed. Concerning global climate change and biogeochemical fluxes of carbon, not all export pathways from the euphotic zone result in the sequestration of carbon for periods of hundreds of years or more. This is because various processes, that take place in both the ice and the water column, contribute to mineralize organic carbon into CO2 before it becomes sequestered. Processes that favour the production and accumulation of biogenic carbon as well as its export to deep waters and sequestration are discussed, together with those that influence mineralization in the upper ice-covered ocean.Authors are members of SCOR Working Group 86: Ecology of Sea Ice Biota  相似文献   

12.
To date, no direct measurements of primary production were taken in the Amundsen Sea, which is one of the highest primary productivity regions in the Antarctic. Phytoplankton carbon and nitrogen uptake experiments were conducted at 16 selected stations using a 13C–15N dual isotope tracer technique. We found no statistically significant depletions of major inorganic nutrients (nitrate?+?nitrite, ammonium, and silicate) although the concentrations of these nutrients were markedly reduced in the surface layer of the polynya stations where large celled phytoplankton (>20?μm) predominated (ca. 64?%). The average chl-a concentration was significantly higher at polynya stations than at non-polynya stations (p?<?0.01). Average daily carbon and nitrogen uptake rates by phytoplankton at polynya stations were 2.2?g?C?m?2?day?1 (SD?=?±1.4?g?C?m?2?day?1) and 0.9?g?N?m?2?day?1 (SD?=?±0.2?g?N?m?2?day?1), respectively, about 5–10 times higher than those at non-polynya stations. These ranges are as high as those in the Ross Sea, which has the highest productivity among polynyas in the Antarctic Ocean. The unique productivity patterns in the Amundsen Sea are likely due to differences in iron limitation, phytoplankton productivity, the timing of phytoplankton growing season, or a combination of these factors.  相似文献   

13.
Summary Enumeration and identification of planktonic microorganisms (phytoplankton, bacteria, protozoa) were carried out for 16 stations sampled in the marginal ice zone of the northwestern Weddell Sea during sea-ice retreat in 1988 (EPOS Leg 2). From these data, carbon biomass distribution among various classes, chosen according to size and trophic mode, has been determined. This analysis reveals the general dominance of nano-phytoplankton (74 %), mainly Cryptomonas sp.. In two stations only, significant microphytoplanktonic biomass occurred. Bacterioplankton biomass was 16 % of the phytoplanktonic biomass. Protozooplankton appeared as a significant group whose biomass represented an average of 23 % of the total microbial biomass. Maximum phytoplankton and protozooplankton biomass was reached at about 100–150 km north of the receding ice edge whilst bacteria did not show marked spatial variations. From these results, indirect evidence for close relationships between protozoa and bacteria, as well as protozoa and autotrophs, is given. The size range of autotrophic prey and predators overlaps (equivalent spherical diameter range = 6 to 11 m). This size overlapping increases the complexity of the trophic organization of the microbial community. Our results thus support the idea of a flux of energy not always oriented towards an increasing particle size range. Potential ingestion rate, calculated from a mean clearance rate in the literature, indicated that protozooplankton might ingest as high as 48 % of the daily phytoplankton production in the marginal ice zone.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

14.
The waters around the northern tip of the Antarctic Peninsulashow complex patterns of water circulation due to mixing ofdiverse water masses. Physicochemical properties of the differentwater types should affect the distribution, biomass and speciescomposition of the phytoplankton assemblages. We examined thesefeatures in the marginal ice zone (MIZ) of the northwesternWeddell Sea. Areas with the higher biomass were located in theWeddell Sea MIZ where the surface waters were relatively stabledue to the sea-ice melting. In these waters, the colonial stageof Phaeocystis antarctica and micro-sized chain-forming diatomsaccounted for 70% of the total phytoplankton carbon. Watersin the Bransfield Strait region, in contrast, were characterizedby a dominance of nanoflagellates, which accounted for 80% ofthe total phytoplankton carbon. Our observations support thehypothesis that the species composition of phytoplankton communitiesis a function of the different water mass, reflecting the physicalconditions of the upper water column, particularly its stability.  相似文献   

15.
Spatial changes of small nanoplankton (2–10 μm) were investigated in relation to sea-ice conditions, hydrography and receding ice processes in the Ross Sea (Antarctica) during spring 1994. Abundance and biomass of heterotrophic and autotrophic nanoplankton, as well as bacterioplankton, were determined along a south-north transect from the open waters polynya towards the pack ice. Autotrophic and heterotrophic nanoplankton biomass ranged from 758 to 4570 mgC m−2 and from 3 to 387 mgC m−2, respectively. Heterotrophic nanoplankton accounted, on average, for about 9% of the total (i.e. autotrophic plus heterotrophic) nanoplankton biomass. The size structure of both auto- and heterotrophic nanoplankton in the Ross Sea continental shelf receding ice edge was different from that of nanoplankton associated with the shelf break and open Antarctic ice-edge area. Generally, the highest heterotrophic biomass was found in the pack-ice zone on the continental shelf, while the highest heterotrophic contribution to the total nanoplankton biomass (up to 25%) was encountered at the shelf break where phytoplankton was largely dominated by 2- to 3-μm-size cells. Accepted: 2 May 1999  相似文献   

16.
Inter-annual variations in zooplankton community structure in Prydz Bay were investigated using multivariate analysis based on samples collected with a 330-μm mesh, 0.5-m2 Norpac net during the austral summer from 1999 to 2006. Two distinct communities, an oceanic and a neritic community, were consistently identified in all surveys. Oceanic communities had higher diversity and were indicated by species such as Haloptilus ocellatus, Heterorhabdus austrinus, Thysanoessa macrura, Rhincalanus gigas, Scolecithricella minor and Oikopleura sp.. Neritic communities were indicated by Euphausia crystallorophias and Stephos longipes and were characterized by fewer but more abundant species. In 1999 and 2006, a transitional community was also distinguished near the continental shelf edge, where ice coverage was more extensive than either the oceanic or neritic regions. Significant inter-annual variations in community structure (mainly involving species abundance rather than species composition) were found in both oceanic and neritic communities, being more obvious in the latter. The timing and amplitude of sea ice retreat (polynya appearance), and its effect on food availability, had strong influences on zooplankton community structure. In oceanic communities during years with earlier ice retreat, the extra time available for phytoplankton blooms to accumulate resulted in a higher proportion of large copepods (Calanoides acutus, Calanus propinquus, Metridia gerlachei) (especially the younger copepodites) in the zooplankton assemblage. In neritic communities, zooplankton such as the ice krill E. crystallorophias, and large copepods (C. acutus, C. propinquus, M. gerlachei), also showed higher abundance and earlier developmental stages in years with larger polynya. On the other hand, in years with later ice retreat, smaller polynya, and less time for phytoplankton blooms to form, the abundance of large copepods was lower and older age classes were more common.  相似文献   

17.
Microalgal blooms are rapid increases in biomass, caused bylocally enhanced primary production and resulting in abnormallyhigh cell concentrations. Hydrodynamical processes may controlblooms through the agency of irradiance and/or nutrients. Inthe oceans, phytoplankton blooms primarily governed by irradianceinclude the spring outburst, as well as the ice-edge, under-ice,winter, upwelling and estuarine blooms. Those primarily governedby nutrients comprise the tidal, summer, episodic and exceptionalblooms. In addition, there are blooms of ice microalgae. Bloomsreflect low recycling, and a large degree of uncoupling betweenincreased primary production and grazing by zooplankton. Asa consequence, they often result in high sedimentation of intactcells and faecal pellets. Microalgal blooms provide unique informationon the potential fate (and not on the rate) of primary productionin marine ecosystems. They have major effects on benthic andpelagic food webs, and are an essential condition for the greatfisheries of temperate seas (Cushing, 1989). On the other hand,blooming systems have a high potential for exporting particulateorganic matter from the euphotic layer, and thus provide uniqueinformation for the study of global fluxes of carbon in themarine environment.  相似文献   

18.
During summer 2008, as part of the Circumpolar Flaw Lead system study, we measured phytoplankton photosynthetic parameters to understand regional patterns in primary productivity, including the degree and timescale of photoacclimation and how variability in environmental conditions influences this response. Photosynthesis–irradiance measurements were taken at 15 sites primarily from the depth of the subsurface chlorophyll a (Chl a) maximum (SCM) within the Beaufort Sea flaw lead polynya. The physiological response of phytoplankton to a range of light levels was used to assess maximum rates of carbon (C) fixation (P m*), photosynthetic efficiency (α *), photoacclimation (E k), and photoinhibition (β *). SCM samples taken along a transect from under ice into open water exhibited a >3-fold increase in α * and P m*, showing these parameters can vary substantially over relatively small spatial scales, primarily in response to changes in the ambient light field. Algae were able to maintain relatively high rates of C fixation despite low light at the SCM, particularly in the large (>5 μm) size fraction at open water sites. This may substantially impact biogenic C drawdown if species composition shifts in response to future climate change. Our results suggest that phytoplankton in this region are well acclimated to existing environmental conditions, including sea ice cover, low light, and nutrient pulses. Furthermore, this photoacclimatory response can be rapid and keep pace with a developing SCM, as phytoplankton maintain photosynthetic rates and efficiencies in a narrow “shade-acclimated” range.  相似文献   

19.
Extracellular polysaccharide aggregates, operationally defined as transparent exopolymeric particles (TEP), are recognized as an important conduit for carbon recycling and export in aquatic systems. Yet, the factors controlling the build-up of the TEP pool are not well characterized. Here we show that increased TEP production by Trichodesmium, an oceanic bloom-forming nitrogen-fixing (diazotrophic) cyanobacterium, is coupled with autocatalytic programmed cell death (PCD) process. We demonstrate that PCD induction, in both laboratory cultures and natural populations, is characterized by high caspase-like activity, correlates with enhanced TEP production, and occurs under iron and phosphorus starvation, as well as under high irradiance and oxidative stress. Enhanced TEP production was not observed in actively growing populations. We provide further evidence that iron is a key trigger for the induction of PCD. We demonstrate, for the first time, the concomitant enhanced build-up of the TEP pool when Trichodesmium is Fe-stressed. These results suggest a functional linkage between activation of caspases and PCD in Trichodesmium and regulation of vertical carbon and nitrogen fluxes. We hypothesize that modulation of TEP formation and its qualities by different mortality pathways could regulate the fate of phytoplankton blooms and particulate organic matter in aquatic ecosystems.  相似文献   

20.
Summary Ice-edge-related phytoplankton blooms following the retreating sea-ice in the marginal ice zone are frequently observed phenomena. Such blooms are generally short-lived and are followed by a strong decrease in the chlorophyll concentration towards the open ocean, generally explained by the degradation of the vertical stability. Solar heating and ice melting, which control the stability of the surface water of the north-western Weddell Sea during sea-ice retreat in spring were analysed in order to relate the spatial features of the phytoplankton ice-edge bloom in 1988 to the density field. Solar heating has little effect on the density of seawater in ice-covered areas because the thermal expansion coefficient is very low close to the freezing temperature. Outside the marginal ice zone, the temperature effect on stratification increases and the combined contribution of melting and heating on buoyancy input to the surface layer is roughly constant. As a consequence, the low phytoplankton stocks in the open ocean adjacent to the marginal ice zone, after an initial bloom peak following the retreating ice in spring, are not necessarily caused by deep turbulent mixing, in contrast to what is often assumed.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号