首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structural analogues of the NADP+ were studied as potential coenzymes and inhibitors for NADP+ dependent malic enzyme from Zea mays L. leaves. Results showed that 1, N6-etheno-nicotinamide adenine dinucleotide phosphate ( NADP+), 3-acetylpyridine-adenine dinucleotide phosphate (APADP+), nicotinamide-hypoxanthine dinucleotide phosphate (NHDP+) and -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate (23NADPc+) act as alternate coenzymes for the enzyme and that there is little variation in the values of the Michaelis constants and only a threefold variation in Vmax for the five nucleotides. On the other hand, thionicotinamide-adenine dinucleotide phosphate (SNADP+), 3-aminopyridine-adenine dinucleotide phosphate (AADP+), adenosine 2-monophosphate (2AMP) and adenosine 2: 3-cyclic monophosphate (23AMPc) were competitive inhibitors with respect to NADP+, while -nicotinamide adenine dinucleotide 3-phosphate (3NADP+), NAD+, adenosine 3-monophosphate (3AMP), adenosine 2: 5-cyclic monophosphate (25AMPc), 5AMP, 5ADP, 5ATP and adenosine act as non-competitive inhibitors. These results, together with results of semiempirical self-consistent field-molecular orbitals calculations, suggest that the 2-phosphate group is crucial for the nucleotide binding to the enzyme, whereas the charge density on the C4 atom of the pyridine ring is the major factor that governs the coenzyme activity.Abbreviations NADP+ 1, N6-etheno-nicotinamide adenine dinucleotide phosphate - NHDP+ nicotinamide-hypoxanthine dinucleotide phosphate - APADP+ 3-acetylpyridine-adenine dinucleotide phosphate - SNADP+ thionicotinamide-adenine dinucleotide phosphate - AADP+ 3-aminopyridine-adenine dinucleotide phosphate - 23NADPc+ -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate - 3NADP+ -nicotinamide adenine dinucleotide 3-phosphate - 2AMP adenosine 2-monophosphate - 3AMP adenosine 3-monophosphate - 23AMPc adenosine 2: 3 monophosphate cyclic - A adenosine - RuBP ribulose 1,5-bisphosphate - SCF-MO Self-Consistent Field-Molecular Orbitals (method)  相似文献   

2.
The ATPase activity present in plasmalemma-enriched preparations from maize coleoptiles shows an optimum at pH 6, a strong dependence on Mg2+, and is stimulated by K+ and other monovalent cations, both organic and inorganic. The activation of ATPase by K+ obeys Michaelis Menten kinetics, saturation being reached at 50 mM K+ concentration. K+, Mg2+-stimulated ATPase activity is strongly inhibited by N,N-dicyclohexylcarbodiimide and by diethylstilbestrol and, to a lesser extent, by octylguanidine.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - DES diethylstilbestrol - DTE dithioerythritol - Ellmans r 5-5 dithiobis (2 nitrobenzoic) acid - FC fusicoccin - NPA naphthylphthalamic acid - OG octylguanidine - PCMBS p-chloromercuribenzensulphonate  相似文献   

3.
The Archaebacterium Haloferax volcanii concentrates K+ up to 3.6 M. This creates a very large K+ ion gradient of between 500- to 1,000-fold across the cell membrane. H. volcanii cells can be partially depleted of their internal K+ but the residual K+ concentration cannot be lowered below 1.5 M. In these conditions, the cells retain the ability to take up potassium from the medium and to restore a high internal K+ concentration (3 to 3.2 M) via an energy dependent, active transport mechanism with a K m of between 1 to 2 mM. The driving force for K+ transport has been explored. Internal K+ concentration is not in equilibrium with m suggesting that K+ transport cannot be accounted for by a passive uniport process. A requirement for ATP has been found. Indeed, the depletion of the ATP pool by arsenate or the inhibition of ATP synthesis by N,N-dicyclohexylcarbodiimide inhibits by 100% K+ transport even though membrane potential m is maintained under these conditions. By contrast, the necessity of a m for K+ accumulation has not yet been clearly demonstrated. K+ transport in H. volcanii can be compared with K+ transport via the Trk system in Escherichia coli.Abbreviations CCCP Carbonylcyanide m-chlorophenyl-hydrazone - DCCD N,N-dicyclohexylcarbodiimide - MES 2-[N-morpholino] ethane sulfonic acid - MOPS 3-[N-morpholino] propane sulfonic acid - TRIS Tris (hydroxymethyl) aminomethane - TPP tetraphenyl phosphonium  相似文献   

4.
Mid-log-phase cell suspensions of Corydalis sempervirens Pers., when incubated in micromolar or submicromolar concentrations of fusicoccin, strongly acidified the culture medium. High-affinity fusicoccin-binding sites were found in microsomes prepared from these cells using the radioligand [3H]-9-norfusicoccin-8-alcohol. Binding was saturable with an apparent dissociation constant (K d) of 2.8 nM, a pH optimum of 6.0, a temperature optimum of 35° C and was rapid (t1/2 = 8 min). The site abundance was 0.76±0.17 pmol · (mg of protein)–1. In the same membrane preparations, the K+, Mg2+-ATPase (EC 3.6.1.3) was characterized. The enzyme was highly vanadate-sensitive (IC50=6.5 M) and nucleotide-specific (ATPNTP), had a pH optimum of 6.2, an apparent K m for ATP of 0.23±0.12 mM, and V max of 10.6±1.8 nkat (mg of protein)–1. Fusicoccin doubled V max and lowered, by a factor of 2, the apparent K m for ATP of the enzyme when the cells were incubated with the toxin for 30 min prior to homogenization of the cells. The stimulation of the enzyme was also pronounced when fusicoccin was added to the homogenization medium just prior to homogenization of the cells, but was slight to zero when the toxin was added at the microsomal stage. The pronounced stimulatory effect of fusicoccin on the ATPase was seen at pH 7.1, i.e. at a pH typical for the cytoplasmic compartment, but was not detectable at pH 6.2, the pH optimum of the enzyme. The implications of these findings for an understanding of fusicoccin action are discussed.Abbreviations [3H]ABE-FC 9-nor-8-(4-azido-3,5-[3H]-benzoyl-diaminoethyl)-fusicoccin - FC fusicoccin - FCol 9-norfusicoc-cin-8-alcohol - Mes 2(N-morpholino)ethanesulfonic acid This work was supported by the Deutsche Forschungsgemeinschaft, Bonn, FRG and the Fonds der Chemischen Industrie, Frankfurt, FRG (literature provision).  相似文献   

5.
A. K. Handa  M. M. Johri 《Planta》1979,144(4):317-324
The role of purine and pyrimidine ribosides, nucleotides and substituted xanthines in the differentiation of chloronema filaments in suspension cultures of protonema of the moss Funaria hygrometrica Hedw. has been examined. Cyclic adenosine-3,5-monophosphate (cAMP) and mono-and dibutyryl cAMP evoked the maximum response in wild-type protonema. ADP and ATP also enhanced chloronema differentiation but were less active than cAMP; pyrimidine derivatives were completely inactive. Inhibitors of cyclic-nucleotide phosphodiesterase aminophylline, theophylline and ICI 58, 301 (3-acetamido-6-methyl-8-n-propyl-s-triazolo-(4,3a)-pyrazine)-mimicked the effect of cAMP. A leaky, chloronema-repressed mutant was isolated and in this mutant cAMP was much more active than cyclic guanosine monophosphate and ADP in enhancing chloronema differentiation. These results strongly indicate that cAMP is involved in chloronema differentiation in Funaria, and a hypothesis on growth regulation in protonema cell cultures is proposed.Abbreviations cAMP, cyclic AMP cyclic adenosine-3, 5-monophosphate - cCMP, cGMP, cIMP cyclic cytosine-, guanosine-and inosine-3, 5-monophosphates, respectively - IAA indole-3-acetic acid - ICI 58,301 3-acetamido-6-methyl-8-n-propyl-s-triazolo-(4,3a)-pyrazine  相似文献   

6.
Oxindole-3-acetic acid (OxIAA) has been identified in germinating seeds of Scots pine (Pinus sylvestris) using gas chromatography-mass spectrometry. Seeds germinated for 5 d contained 2.7 ng OxIAA·g-1 (dry weight) whereas ungerminated seeds contained 0.2 ng·g-1. Isotopically labelled OxIAA was formed in seeds incubated with [1-14C]-, [2-14C]- or [2H5]indole-3-acetic acid.Abbreviations DDC sodium diethyldithiocarbamate - GC gas chromatography - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - MS mass spectrometry - OxIAA oxindole-3-acetic acid - PVP polyvinylpyrrolidone - TMS trimethylsilyl  相似文献   

7.
The activities of potato nucleotide pyrophosphatase and cyclic nucleotide phosphodiesterase against a common substrate, p-nitrophenyl thymidine 5-phosphate and its histochemical analogue, AS-BI-naphthyl thymidine 5-phosphate, were determined with the aid of relatively specific inhibitors, NAD and 2,3-cAMP, respectively. These inhibitors were utilized to reexamine wheat (Triticum aestivum L. cv. Mironovska 808) seeds and 3–5-d old shoots for the occurrence and histochemical localization of nucleotide pyrophosphatase, and to establish the localization of cyclic nucleotide phosphodiesterase. Nucleotide pyrophosphatase is a cytoplasmic enzyme found to be particularly active in the coleoptile epidermis and hypodermis, leaf mesophyll, as well as in developing fibres and phloem. Cyclic nucleotide phosphodiesterase is also a cytoplasmic enzyme active in the shoot vascular bundles, particularly the xylem, and in the seed. Within the seed it is highly active in the crushed cell layer adjacent to the scutellum and in endosperm cells adjacent to the aleurone layer. Within the embryo, cyclic nucleotide phosphodiesterase is most active in epithelial cells adjacent to the crushed cell layer, the suspensor, radicle and root-cap, as well as in the pro-vascular tissues of the scutellum.  相似文献   

8.
Summary A heterogeneous distribution of H+-ATPase was visualized in germinated pollen ofLilium longiflorum using monoclonal antibodies raised against plasma membrane H+-ATPase. Immunolocalization studies of protoplasts and subprotoplasts derived from pollen tubes and sectioned pollen grains and pollen tubes show that H+-ATPases are abundant in the plasma membrane of pollen grains but are absent or sparsely distributed in the plasma membrane of pollen tubes. This polar distribution of H+-ATPases is probably the basis of the endogenous current pattern measured in growing lily pollen and involved in pollen tube tip growth.Abbreviations BSA bovine serum albumine - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Mes 2-(N-morpholino)-ethane sulphonic acid - PBS phosphate buffered saline - Pipes piperazine-N,N-bis(2-ethanesulfonic acid) - Tris 2-amino-2-hydroxymethyl-1,3-propandiol  相似文献   

9.
Internodal cells of the giant alga Chara corallina were perfused internally to replace the native cytoplasm, tonoplast and vacuole with artificial cytoplasm. Sodium efflux from perfused cells, measured by including 22Na in the perfusion media, was increased by increasing the internal sodium concentration and by decreasing the external pH, and was inhibited by external application of the renal diuretic amiloride. The sodium efflux was markedly ATP-dependent, with a 50-fold decrease in efflux observed after perfusion with media lacking ATP. Efflux in the presence of ATP was reduced by 33% by inclusion of 10 M N,N-dicyclohexylcarbodiimide in the perfusion medium. The membrane potential of the perfused cells approximated that of intact cells from the same culture. It is suggested that sodium efflux in perfused Chara cells proceeds via a secondary antiporter with protons, regulated by ATP in a catalytic role and with the proton motive force acting as the energy source.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Mes 2-(N-morpholino)ethanesulphonic acid - Mops 3(N-morpholino)propanesulphonic acid - Taps tris(hydroxymethyl)methylaminopropanesulphonic acid  相似文献   

10.
Our current work on a vacuolar membrane proton ATPase in the yeastSaccharomyces cerevisiae has revealed that it is a third type of H+-translocating ATPase in the organism. A three-subunit ATPase, which has been purified to near homogeneity from vacuolar membrane vesicles, shares with the native, membrane-bound enzyme common enzymological properties of substrate specificities and inhibitor sensitivities and are clearly distinct from two established types of proton ATPase, the mitochondrial F0F1-type ATP synthase and the plasma membrane E1E2-type H+-ATPase. The vacuolar membrane H+-ATPase is composed of three major subunits, subunita (M r =67 kDa),b (57kDa), andc (20 kDa). Subunita is the catalytic site and subunitc functions as a channel for proton translocation in the enzyme complex. The function of subunitb has not yet been identified. The functional molecular masses of the H+-ATPase under two kinetic conditions have been determined to be 0.9–1.1×105 daltons for single-cycle hydrolysis of ATP and 4.1–5.3×105 daltons for multicycle hydrolysis of ATP, respectively.N,N-Dicyclohexylcarbodiimide does not inhibit the former reaction but strongly inhibits the latter reaction. The kinetics of single-cycle hydrolysis of ATP indicates the formation of an enzyme-ATP complex and subsequent hydrolysis of the bound ATP to ADP and Pi at a 7-chloro-4-nitrobenzo-2-oxa-1,3-diazolesensitive catalytic site. Cloning of structural genes for the three subunits of the H+-ATPase (VMA1, VMA2, andVMA3) and their nucleotide sequence determination have been accomplished, which provide greater advantages for molecular biological studies on the structure-function relationship and biogenesis of the enzyme complex. Bioenergetic aspects of the vacuole as a main, acidic compartment ensuring ionic homeostasis in the cytosol have been described.Abbreviations CCCP carbonyl cyanidem-chlorophenyl hydrazone - DCCD N,N-dicyclohexylcarbondiimide - DES diethylstilbestrol - DIDS 4,4-diisothiocyano-2,2-stilbene disulfonic acid - NBD-Cl 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole - Pi inorganic phosphate - SDS sodium dodecylsulfate - SF6847 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile - SITS 4-acetamide-4-isothiocyanatostilbene-2,2-disulfonic acid - ZW3-14 N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate  相似文献   

11.
When plasma-membrane vesicles isolated from oat (Avena sativa L.) root cells were incubated with [-32P]ATP, the H+-ATPase was found to be phosphorylated at serine and threonine residues. Phosphotyrosine was not detected. Endogenous ATPase kinase activity was also observed in plasma-membrane vesicles isolated from potato (Solanum tuberosum L.) root cells as well as from yeast (Saccharomyces cerevisiae). Identity of the phosphorylated oat root Mr=100 000 polypeptide as the ATPase was confirmed using conventional glycerol density-gradient centrifugation to purify the native enzyme and by a new procedure for purifying the denatured polypeptide using reversephase high-performance liquid chromatography. Kinase-mediated phosphorylation of the oat root plasma-membrane H+-ATPase was stimulated by the addition of low concentrations of Ca2+ and by a decrease in pH, from 7.2 to 6.2. These results demonstrate that kinase-mediated phosphorylation of the H+-ATPase is a plausible mechanism for regulating activity. They further indicate that changes in the cytoplasmic [Ca2+] and pH are potentially important elements in modulating the kinase-mediated phosphorylation.Abbreviations EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol-bis-(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Mr relative molecular mass - RP-HPLC reverse-phase high-performance liquid chromatography - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

12.
Preparations of synaptosomes isolated in sucrose or in Na+-rich media were compared with respect to internal pH (pH1), internal Ca2+ concentration ([Ca2+]i), membrane potential and45Ca2+ uptake due to K+ depolarization and Na+/Ca2+ exchange. We found that synaptosomes isolated in sucrose media have a pHi of 6.77±0.04 and a [Ca2+]i of about 260 nM, whereas synaptosomes isolated in Na+-rich ionic media have a pHi of 6.96±0.07 and a [Ca2+]i of 463 nM, but both types of preparations have similar membrane potentials of about –50 mV when placed in choline media. The sucrose preparation takes up Ca2+ only by voltage sensitive calcium channels (VSCC'S) when K+-depolarized, while the Na+-rich synaptosomes take up45Ca2+ both by VSCC'S and by Na+/Ca2+ exchange. The amiloride derivative 2, 4 dimethylbenzamil (DMB), at 30 M, inhibits both mechanisms of Ca2+ influx, but 5-(N-4-chlorobenzyl)-2, 4 dimethylbenzamil (CBZ-DMB), at 30 M, inhibits the Ca2+ uptake by VSCC'S, but not by Na+/Ca2+ exchange. Thus, DMB and CBZ-DMB permit distinguishing between Ca2+ flux through channels and through Na+/Ca2+ exchange. We point out that the different properties of the two types of synaptosomes studied account for some of the discrepancies in results reported in the literature for studies of Ca2+ fluxes and neurotransmitter release by different types of preparations of synaptosomes.Abbreviations used BCECF 2,7-Biscarboxyethyl-5(6)-carboxyfluorescein - BCECF/AM acetoxymethyl ester of BCECF - [Ca2+]i Internal free calcium ion concentration - CBZ-DMB 5-(N-4-chlorobenzyl)-2,4-dimethylbenzamil - DMB 2, 4-dimethylbenzamil - DMSO dimethyl sulfoxide - Indo-1/AM acetoxymethyl ester of Indo-1 - MES 2-|N-Morpholino|ethanesulfonic acid - NMG N-methyl-D-glucamine - pHi internal pH - TPP+ tetraphenylphosphonium - p plasma membrane potential  相似文献   

13.
Summary Short oligocytidylates can act as templates for the self-condensation of guanosine 5-phosphorimidazolide. In the absence of a catalytic metal ion or in the presence of Pb2+ a noticeable template effect is already observed with the dimer and the yield of long oligomers reaches a plateau with a hexamer template. Short templates give oligomers longers than the template length. The products are predominantly 2-5 linked for the Pb2+-catalyzed reaction while mixed linkages are observed in the uncatalyzed reaction.In the presence of Zn2+, a template effect is first observed with the pentamer and is maximal by the heptamer. The products are predominantly 3-5 linked. Oligomers shorter than or as long as the template are obtained in substantial yield, and longer products in much lower yields.Abbreviations G Guanosine - Gp guanosine 2(3)-phosphate - pG guanosine 5-phosphate - Gp! guanosine cyclic 2,3-phosphate - ImpG guanosine 5-phosphorimidazolide - ImpG* [8-14C]-guanosine 5-phosphorimidazolide - pGp 5-phosphoguanosine 2(3)-phosphate - G2pG guanylyl-[2-5]-guanosine - G3pG guanylyl-[3-5]-guanosine - ImpGpG 5-phosphorimidazolide of GpG - (pG)n (n = 2,3) oligomers of pG - GppG P1, P2-diguanosine 5-diphosphate - GppGpG 5-[guanosine 5-pyrophosphate] of GpG - NH2pG guanosine 5-phosphoramidate - (pG)4+ tetramer and higher oligoguanylates with 5 terminal phosphate - oligo(G) oligoguanylate - Cp cytidine 2(3)-phosphate - Cp! cytidine cyclic 2,3-phosphate - (Cp)n–1 Cp! (n= 2,3,4) oligocytidylates terminated by 5-OH groups and 2,3-cyclic phosphates - oligo(C) oligocytidylate - poly(C) polycytidylic acid - poly(U) polyuridylic acid - poly(C,G) random copolymer of C and G - BAP bacterial alkaline phosphatase (E. coli) - EDTA ethylenediaminetetraacetic acid - Rf chromatographic mobility  相似文献   

14.
A soluble protein was isolated from Mougeotia by chloropromazine-sepharose 4 B affinity chromatography. The protein matches the properties of calmodulin in terms of heat stability, Ca2+-dependent electrophoretic mobility in sodium-dodecyl-sulfate polyacrylamide gels, and its ability to activate cyclic nucleotide phosphodiesterase in a Ca2+-dependent manner. Phytochrome-mediated chloroplast reorientational movement in Mougeotia was inhibited by the calmodulin antagonist trifluoperazine, a hydrophobic compound, or N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a hydrophilic compound; 50% inhibition (IC50) of chloroplast movement is caused by 20–50 mol l-1 trifluoperazine or 100 mol l-1 W-7. The Ca2+-calmodulin may act as an intermediate in the chloroplast reorientational response in Mougeotia governed by phytochrome.Abbreviations EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - SDS sodium dodecyl sulfate - W-7 N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide  相似文献   

15.
Isolated posterior gills (no. 7) of shore crabsCarcinus maenas acclimated to brackish water of a salinity of 10 S were bathed and perfused with 50% sea water (200 mmol·l-1 Na+), and the internal perfusate collected during subsequent periods of 5 min. During a single passage through the gill the pH of the perfusion medium decreased from ca. 8.1 to ca. 7.7, a result implying that the gill possesses structures which recognize unphysiologically high pH values in the haemolymph and regulates them down to physiological values of ca. 7.7. The calculated apparent proton fluxes from the epithelial cells into the haemolymph space amounted to 17.9 mol·g fw-1·h-1, a value of only 3.8% of net Na+ fluxes observed under comparable conditions. When 0.1 mmol·l-1 KCN, an inhibitor of mitochondrial cytochrome oxidase, or 5 mmol·l-1 ouabain, a specific inhibitor of Na+/K+-ATPase were applied in the internal perfusate, down-regulation of pH was no longer observed and the gill was completely depolarized, i.e. transepithelial potential differences dropped from-7.8 to 0 mV (haemolymph space negative to bath). Regulation of pH was completely inhibited by antagonists of carbonic anhydrase (0.1 mmol·l-1 acetazolamide or 0.01 mmol·l-1 ethoxyzolamide) applied in the perfusate. Inhibitors of Na+/H+ exchange, 0.1 mmol·l-1 amiloride applied in the external bathing medium or in the internal perfusate, and symmetrical 0.01 mmol·l-1 5-(N-ethyl-N-isopropyl)amiloride, as well as inhibitors of Cl-/HCO3 - exchange and Na+/HCO3 - cotransport, 0.5 mmol·l-1 4,4-diisothiocyanatostilbene-2,2-disulphonate or 0.3 mmol·l-1 4-acetamido-4-isothiocyanatostilbene 2,2-disulphonate applied on both sides of the gill, and inhibitors of H+-ATPase, 0.05 mmol·l-1 N-ethylmaleimide and 0.1 mmol·l-1 N,N-dicyclohexylcarbodiimide —applied on both sides of the gill — did not alter the acidification of the perfusate observed in controls. Using artificial salines buffered to pH 8.1 with 0.75 mmol·l-1 tris (hydroxymethyl) aminomethane instead of 2 mmol·l-1 HCO3 -, apparent proton fluxes were reduced to 11% of controls, a result suggesting that pH regulation by crab gills needs the presence of HCO3 -. The findings obtained suggest that pH regulation by crab gills depends on the oxidative metabolism of the intact branchial epithelium and that carbonic anhydrase plays a central role in this process. Na+/H+ exchange, anion exchange or cotransport and active proton secretion seem not to be involved. While unimpaired active ion uptake is a prerequisite for pH regulation, ion transport itself is independent of it.Abbreviations acetazolamide (N-[sulphamoyl-1, 3, 4-thiadiazol-2-yl]-acetamide) - amiloride 3,5-diamino-6-chloropyrazinoyl-guanidine - CA carbonic anhydrase - DBI dextrane-bound inhibitor thiadiazolesulphonamide - DCCD N N dicyclohexylcarbodiimide - DIDS 4,4-diisothiocyanato-stilbene-2,2-disulphonate - EIPA 5-(N-ethyl-N-isopropyl) amiloride - ethoxyzolamide 6-ethoxy-2-benzothiazole-sulphonamide - fw fresh weight - J H + apparent proton flux - NEM N-ethylmaleimide - PD transepithelial potential difference - PEG-STZ polyethylene-glycol-thiadiazolesulphonamide - STTS 4-acetamido-4-isothiocyanatostibene 2,2-disulphonate - SW sea water - TRIS tris(hydroxymethyl)aminomethane  相似文献   

16.
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25–30, 45–55, and 80–100 pS, all of which exhibited mean open-times of 1–2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to thecis side of the bilayer. Addition of 10 M total Ca2+ also resulted in little change in K+ channel activity. However, at 80 M total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTPS to thetrans side of the bilayer resulted in a restriction of activity to the 45–50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the subunits of G0, Gs, and Gi and the low molecular weight G protein,ras. As with periaxolemmal-myelin treated with GTPS, the vesicle membrane exhibited only the 50 pS channel. The channel was active at all holding potentials and had open times of 1–6 msec. Addition of GTPS to the bilayer fused with vesicle membrane appeared to suppress this channel activity at low voltages yet induced a hyperactive state at holding potentials of 45 mV or greater. The vesicle 50 pS K+ channel was also activated by the 6-methyl-dihydropyron-2-one (20 M).Abbreviations CNPase 2–3 cyclic nucleotide phosphohydrolase - EDTA ethylenediamine N,N,N,N-tetraacetic acid - G-protein GTP(guanosine triphosphate) binding protein - GTPS guanosine 5-O-(3-thiotriphosphate) - MAG myelin associated glycoprotein - Na+ K+ ATPase, Na+ and K+ stimulated adenosine triphosphatase - PLP myelin proteolipid protein Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

17.
Summary When K+ of high concentration (50 mM) was applied toNitella cells, the cytoplasmic streaming stopped instantly as in the case of electrical stimulation. Recovery of the streaming after chemical stimulation was much slower than after electrical stimulation. When the endoplasm content was modified by centrifugation, streaming recovery was accelerated in the centrifugal cell fragments rich in endoplasm and deccelerated in those poor in it. The recovery was also accelerated either by permeabilizing the plasmalemma in the presence of EGTA in the external solution or by removing the tonoplast by vacuolar perfusion with the EGTA-containing medium. We concluded that the streaming was recovered due to decrease of the cytoplasmic Ca2+ concentration, which seems to be accelerated by sequestering of Ca2+ by endoplasmic components. The slow recovery of the streaming after KCl-stimulated cessation is assumed to be caused by continuous influx of Ca2 + during the prolonged membrane depolarization.Abbreviations ATP adenosine 5-triphosphoric acid - EGTA ethyleneglycol-bis-(-aminoethyl ether)N,N-tetraacetic acid - PIPES piperazine-N,N-bis(2-ethanesulfonic acid)  相似文献   

18.
The vacuolar H+-translocating ATPase (V-type ATPase) plays a central role in the growth and development of plant cells. In a mature cell, the vacuole is the largest intracellular compartment, occupying about 90% of the cell volume. The proton electrochemical gradient (acid inside) formed by the vacuolar ATPase provides the primary driving force for the transport of numerous ions and metabolites against their electrochemical gradients. The uptake and release of solutes across the vacuolar membrane is fundamental to many cellular processes, such as osmoregulation, signal transduction, and metabolic regulation. Vacuolar ATPases may also reside on endomembranes, such as Golgi and coated vesicles, and thus may participate in intracellular membrane traffic, sorting, and secretion.Plant vacuolar ATPases are large complexes (400–650 kDa) composed of 7–10 different subunits. The peripheral sector of 5–6 subunits includes the nucleotide-binding catalytic and regulatory subunits of 70 and 60 kDa, respectively. Six copies of the 16-kDa proteolipid together with 1–3 other subunits make up the integral sector that forms the H+ conducting pathway. Isoforms of plant vacuolar ATPases are suggested by the variations in subunit composition observed among and within plant species, and by the presence of a small multigene family encoding the 16-kDa and 70-kDa subunits. Multiple genes may encode isoforms with specific properties required to serve the diverse functions of vacuoles and endomembrane compartments.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - CAM Crassulacean acid metabolism - Nbd-Cl 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole - Bz-ATP 3-O-(4-benzoyl)benzolyadenosine 5-triphosphate - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonic acid - NEM N-ethylmaleimide - IP3 inositol-1,4,5-triphosphate - H+-PPase H+-translocating pyrophosphatase - V-type vacuolar-type - P-type phosphorylated intermediate- or plasma membrane-type - F-type F1Fo-type - V-ATPase vacuolar-type H+-ATPase  相似文献   

19.
The regulation of total creatine content in a myoblast cell line   总被引:5,自引:0,他引:5  
Total cellular creatine content is an important bioenergetic parameter in skeletal muscle. To understand its regulation we investigated creatine transport and accumulation in the G8 cultured skeletal myoblast line. Like other cell types, these contain a creatine transporter, whose activity, measured using a radiolabelling technique, was saturable (Km = 110 ± 25 M) and largely dependent on extracellular [Na+]. To study sustained influences on steady state creatine concentration we measured total cellular creatine content using a fluorimetric method in 48 h incubations. We found that the total cellular creatine content was relatively independent of extracellular creatine concentration, consistent with high affinity sodium-dependent uptake balanced by slow passive efflux. Accordingly, in creatine-free incubations net creatine efflux was slow ( 5 ± 1 % of basal creatine content per day over 6 days), while creatine content in 48 h incubations was reduced by 28 ± 13% of control by the Na+,K+-ATPase inhibitor ouabain. Creatine accumulation after 48 h was stimulated by treatment with the mixed - and -adrenergic agonist noradrenaline, the -adrenergic agonist isoproterenol, the 2-agonist clenbuterol and the cAMP analogue N6,2-O-dibutyryladenosine 3,5-cyclic monophosphate, but was unaffected by the 1 adrenergic agonist methoxamine. The noradrenaline enhancement of creatine accumulation at 48 h was inhibited by the mixed - and -antagonist labetalol and by the -antagonist propranolol, but was unaffected by the 2 antagonist phentolamine; greater inhibition was caused by the 2 antagonist butoxamine than the 1 antagonist atenolol. Creatine accumulation at 48 h was increased to 230 ± 6% of control by insulin and by 140 ± 13% by IGF-I (both at 3 nM). Creatine accumulation at 48 h was also increased to 280 ± 40% of control by 3,3,5-triiodothyronine (at 70 M) and to 220 ± 35% of control by amylin (60 nM). As 3,3,5-triiodothyronine, amylin and isoproterenol all stimulate the Na+,K+-ATPase, we suggest that they stimulate Na+-creatine cotransport indirectly by increasing the transmembrane [Na+] concentration gradient and membrane potential.Abbreviations IGF-I insulin-like growth factor I - IGF-II insulin-like growth factor II - T3 3,3,5-triiodothyronine - CGRP calcitonin gene-related peptide  相似文献   

20.
Spalding EP  Cosgrove DJ 《Planta》1992,188(2):199-205
A large, transient depolarization of the plasma membrane precedes the rapid blue-light (BL)-induced growth suppression in etiolated seedlings of Cucumis sativus L. The mechanism of this voltage transient was investigated by applying inhibitors of ion channels and the plasma-membrane H+-ATPase, by manipulating extracellular ion concentrations, and by measuring cell input resistance and ATP levels. The depolarizing phase was not affected by Ca2+-channel blockers (verapamil, La3+) or by reducing extracellular free Ca2+ by treatment with ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA). However, these treatments did reduce the rate of repolarization, indicating an inward movement of Ca2+ is involved. No effects of the K+-channel blocker tetraethylammonium (TEA+) were detected. Vanadate and KCN, used to inhibit the H+-ATPase, reduced or completely inhibited the BL-induced depolarization. Levels of ATP increased by 11–26% after 1–2 min of BL. Input resistance of trichome cells, measured with double-barreled microelectrodes, remained constant during the onset of the depolarization but decreased as the membrane voltage became more positive than -90 mV. The results indicate that the depolarization mechanism initially involves inactivation of the H+-ATPase with subsequent transient activation of one or more types of ion channels.Abbreviations and Symbols BL blue light - CI current injection - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - TEA+ tetraethylammonium - Vm membrane voltage We wish to thank Drs. Adam Bertl and Clifford L. Slayman, Yale School of Medicine, New Haven, Conn., USA, for helpful discussions. This work was supported by a Natural Sciences and Engineering Research Council of Canada Scholarship (E.P.S.) and National Science Foundation Grant DMB-8351030 (D.J.C.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号