首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At birth, almost all human peripheral blood CD8+ T cells express the costimulatory molecule CD28. With increasing age, the proportion of CD8+ T cells that lack CD28 increases. Because the Ag specificity of CD28-CD8+ T cells has not previously been defined, we studied the contribution of CD28-CD8+ T cells to the memory CD8+ CTL response against two human persistent viruses, human CMV (HCMV) and HIV. From PBMC of healthy virus carriers we generated multiple independent CTL clones specific for defined viral peptides and sequenced their TCR beta-chains. We designed clonotypic oligonucleotides complementary to each beta-chain hypervariable sequence and quantified the size of individual immunodominant CTL clones in PBMC. Some individual CTL clones were very large, comprising up to 3.1% of all CD8+ T cells in PBMC, and were generally maintained at a stable level for months. Individual virus-specific CTL clones were consistently more abundant in purified CD28- cells than in the CD8+ population as a whole. Because CD28-CD8+ cells as a population have been reported to proliferate poorly in response to mitogen, we studied the function of these virus-specific CD28- CTL clones by quantifying the frequency of peptide-specific CTL precursors using limiting dilution analysis. CD28-CD8+ T cells contained high frequencies of functional memory CTL precursors specific for peptides of HCMV or HIV, generally higher than in the CD8+ T cell population as a whole. We conclude that in asymptomatic HCMV and HIV infection, human CD28-CD8+ T cells contain high frequencies of functional virus-specific memory CTL clones.  相似文献   

2.
T cells play an important role in the control of human CMV (HCMV) infection. Peripheral blood CD4+ T cell proliferative responses to the HCMV lower tegument protein pp65 have been detected in most healthy HCMV carriers. To analyze the clonal composition of the CD4+ T cell response against HCMV pp65, we characterized three MHC class II-restricted peptide epitopes within pp65 in virus carriers. In limiting dilution analysis, we observed high frequencies of pp65 peptide-specific CD4+ T cells, many of which expressed peptide-specific cytotoxicity in addition to IFN-gamma secretion. We analyzed the clonal composition of CD4+ T cells specific for defined HCMV peptides by generating multiple independent peptide-specific CD4+ clones and sequencing the TCR beta-chain. In a given carrier, most of the CD4+ clones specific for a defined pp65 peptide had identical TCR nucleotide sequences. We used clonotype oligonucleotide probing to quantify the size of individual peptide-specific CD4+ clones in whole PBMC and in purified subpopulations of CD45RAhighCD45ROlow and CD45RAlowCD45ROhigh cells. Individual CD4+ T cell clones could be large (0.3-1.5% of all CD4+ T cells in PBMC) and were stable over time. Cells of a single clone were distributed in both the CD45RAhigh and CD45ROhigh subpopulations. In one carrier, the virus-specific clone was especially abundant in the small CD28-CD45RAhigh CD4+ T cell subpopulation. Our study demonstrates marked clonal expansion and phenotypic heterogeneity within daughter cells of a single virus-specific CD4+ T cell clone, which resembles that seen in the CD8+ T cell response against HCMV pp65.  相似文献   

3.
For viruses that establish persistent infection, continuous immunosurveillance by effector-competent antiviral CD8(+) T cells is likely essential for limiting viral replication. Although it is well documented that virus-specific memory CD8(+) T cells synthesize cytokines after short term in vitro stimulation, there is limited evidence that these T cells exhibit cytotoxicity, the dominant antiviral effector function. Here, we show that antiviral CD8(+) T cells in mice acutely infected by polyoma virus, a persistent mouse pathogen, specifically eliminate viral peptide-pulsed donor spleen cells within minutes after adoptive transfer and do so via a perforin-dependent mechanism. Antiviral memory CD8(+) T cells were similarly capable of rapidly mobilizing potent Ag-specific cytotoxic activity in vivo. These findings strongly support the concept that a cytotoxic effector-memory CD8(+) T cell population operates in vivo to control this persistent viral infection.  相似文献   

4.
Apoptosis is a critical regulator of homeostasis in the immune system. In this study we demonstrate that memory CD8(+) T cells are more resistant to apoptosis than naive cells. After whole body irradiation of mice, both naive and memory CD8(+) T cells decreased in number, but the reduction in the number of naive cells was 8-fold greater than that in memory CD8(+) T cells. In addition to examining radiation-induced apoptosis, we analyzed the expansion and contraction of naive and memory CD8(+) T cells in vivo following exposure to Ag. We found that memory CD8(+) T cells not only responded more quickly than naive cells after viral infection, but that secondary effector cells generated from memory cells underwent much less contraction compared with primary effectors generated from naive cells (3- to 5-fold vs 10- to 20-fold decrease). Increased numbers of secondary memory cells were observed in both lymphoid and non-lymphoid tissues. When naive and memory cells were transferred into the same animal, secondary effectors underwent less contraction than primary effector cells. These experiments analyzing apoptosis of primary and secondary effectors in the same animal show unequivocally that decreased downsizing of the secondary response reflects an intrinsic property of the memory T cells and is not simply due to environmental effects. These findings have implications for designing prime/boost vaccine strategies and also for optimizing immunotherapeutic regimens for treatment of chronic infections.  相似文献   

5.
Endothelial cell (EC)-selective alloreactive CTL may mediate alloimmune vascular injury. In the present study, EC-selective CTL were generated in cocultures of purified human CD8+ T cells with allogeneic EC and were compared with conventional CTL against corresponding B lymphoblastoid cells (BLC). EC caused activation and expansion of memory but not naive CD8+ T cells, which differentiated into EC-selective CTL that retained high surface expression of CD69, CD25, and CD62L and displayed low intracellular perforin content. In contrast, BLC-stimulated CTL could be generated from naive or memory CD8+ T cells and showed a more mature phenotype (low CD69, CD25, and CD62L with higher levels of perforin). The expansion of alloreactive T cells by EC stimulation was 5- to 20-fold less effective than in corresponding BLC-stimulated cultures, accounting for a reduction in the assayable cytotoxicity of individual microcultures. In these IL-2-supplemented cocultures, no effect on CTL generation or phenotype was observed by mAb blocking of costimulation provided by LFA-3, ICAM-1, or CD40, by addition of comitogenic anti-CD28 mAb, or by preactivation of EC with CD40 ligand. Cyclosporine inhibited CTL expansion and cytotoxicity similarly in both EC- and BLC-stimulated cultures but did not affect the phenotype of those CTL that did emerge. This study extends the characterization of endothelium as an immunoregulatory cell type distinct from conventional APC and may explain why graft rejection within the arterial intima, an anatomic compartment in which EC may be the primary type of APC, is separable from rejection in the graft parenchyma.  相似文献   

6.
T cells with specificity for self-Ags are normally present in the peripheral blood, and, upon activation, may target tissue Ags and become involved in the pathogenesis of autoimmune processes. In multiple sclerosis, a demyelinating disease of the CNS, it is postulated that inflammatory damage is initiated by CD4+ T cells reactive to myelin Ags. To investigate the potential naive vs memory origin of circulating myelin-reactive cells, we have generated myelin basic protein (MBP)- and tetanus toxoid-specific T cell clones from CD45RA+/RO- and CD45RO+/RA- CD4+ T cell subsets from the peripheral blood of multiple sclerosis patients and controls. Our results show that 1) the response to MBP, different from that to TT, predominantly emerges from the CD45RA+ subset; 2) the reactivity to immunodominant MBP epitopes mostly resides in the CD45RA+ subset; 3) in each individual, the recognition of single MBP epitopes is skewed to either subset, with no overlap in the Ag fine specificity; and 4) in spite of a lower expression of costimulatory and adhesion molecules, CD45RA+ subset-derived clones recognize epitopes with higher functional Ag avidity. These findings point to a central role of the naive CD45RA+ T cell subset as the source for immunodominant, potentially pathogenic effector CD4+ T cell responses in humans.  相似文献   

7.
The Ag-specific cellular recall response to herpes virus infections is characterized by a swift recruitment of virus-specific memory T cells. Rapid activation is achieved through formation of the immunological synapse and supramolecular clustering of signal molecules at the site of contact. During the formation of the immunological synapse, epitope-loaded MHC molecules are transferred via trogocytosis from APCs to T cells, enabling the latter to function as Ag-presenting T cells (T-APCs). The contribution of viral epitope expressing T-APCs in the regulation of the herpes virus-specific CD8+ T cell memory response remains unclear. Comparison of CD4+ T-APCs with professional APCs such as Ag-presenting CD40L-activated B cells (CD40B-APCs) demonstrated reduced levels of costimulatory ligands. Despite the observed differences, CD4+ T-APCs are as potent as CD40B-APCs in stimulating herpes virus-specific CD8+ T cells resulting in a greater than 35-fold expansion of CD8+ T cells specific for dominant and subdominant viral epitopes. Virus-specific CD8+ T cells generated by CD4+ T-APCs or CD40B-APCs showed both comparable effector function such as specific lysis of targets and cytokine production and also did not differ in their phenotype after expansion. These results indicate that viral epitope presentation by Ag-specific CD4+ T cells may contribute to the rapid recruitment of virus-specific memory CD8+ T cells during a viral recall response.  相似文献   

8.
This brief review focuses on the way that our understanding of virus-specific CD8(+) T-cell-mediated immunity evolved, giving particular attention to the early impact of the program at the Australian National University. The story developed through a sequence of distinct eras, each of which can be defined in the context of the technologies available at that time. The progress has been enormous, but there is a great deal still to be learned. A particular challenge is to use what we know for human benefit.  相似文献   

9.
Although a role for CD8+ T cells in the pathogenesis of rheumatoid arthritis (RA) has been suggested, the precise nature of their involvement is not fully understood. In the present study we examined the central and effector memory phenotypes of CD4+ and CD8+ T cells in the peripheral blood of patients with RA and systemic lupus erythematosus. Terminally differentiated effector memory CD45RA+CD62L-CD8+ T cells were significantly decreased in RA patients, whereas the central memory CD45RA-CD62L+ CD8+ T-cell population was increased as compared with levels in healthy control individuals. Na?ve and preterminally differentiated effector memory CD45RA-CD62L- CD8+ T cells did not differ between RA patients and control individuals. The CD45RA-CD62L+ central memory CD4+ T-cell subpopulation was increased in RA patients, whereas the na?ve and effector memory phenotype of CD4+ T cells did not differ between RA patients and control individuals. In patients with systemic lupus erythematosus the distribution of na?ve/memory CD4+ and CD8+ T cells did not differ from that in age- and sex-matched control individuals. These findings show that peripheral blood CD8+ T cells from RA patients exhibit a skewed maturation phenotype that suggests a perturbation in the homeostasis of these cells. The central memory CD45RA-CD62L+ CD4+ and CD8+ T-cell numbers were increased in RA, suggesting an accelerated maturation of na?ve T cells. The decreased numbers of terminally differentiated CD45RA+CD62L- effector memory CD8+ T cells in peripheral blood of RA patients may reflect increased apoptosis of these cells or enhanced migration of these cells to sites of inflammation, which may play a role in the pathogenesis of RA.  相似文献   

10.
A previously unreported CD8(+)CD28(+)CD11b(+) T cell subset occurs in healthy individuals and expands in patients suffering from primary viral infections. In functional terms, these cells share the features of naive/memory CD8(+)CD28(+)CD11b(-) and terminally differentiated effector CD8(+)CD28(-)CD11b(+) subpopulations. Like CD28(-) cells, CD28(+)CD11b(+) lymphocytes have the ability to produce IFN-gamma, to express perforin granules in vivo, and to exert a potent cytolytic activity. Moreover, these cells can respond to chemotactic stimuli and can efficiently cross the endothelial barrier. In contrast, like their CD11b(-) counterpart, they still produce IL-2 and retain the ability to proliferate following mitogenic stimuli. The same CD28(+)CD11b(+) subpopulation detected in vivo could be generated by culturing naive CD28(+)CD11b(-) cells in the presence of mitogenic stimuli following the acquisition of a CD45RO(+) memory phenotype. Considering both phenotypic and functional properties, we argue that this subset may therefore constitute an intermediate phenotype in the process of CD8(+) T cell differentiation and that the CD11b marker expression can distinguish between memory- and effector-type T cells in the human CD8(+)CD28(+) T cell subset.  相似文献   

11.
Memory CD8+ T cells protect dendritic cells from CTL killing   总被引:1,自引:0,他引:1  
CD8(+) T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8(+) T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8(+) T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4(+) and CD8(+) T cell populations. Moreover, memory CD8(+) T cells that release the DC-activating factor TNF-alpha before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4(+) Th cells. The currently identified DC-protective function of memory CD8(+) T cells helps to explain the phenomenon of CD8(+) T cell memory, reduced dependence of recall responses on CD4(+) T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization.  相似文献   

12.
Current knowledge of the processing of viral Ags into MHC class I-associated ligands is based almost completely on in vitro studies using nonprofessional APCs (pAPCs). This is two steps removed from real immune responses to pathogens and vaccines, in which pAPCs activate naive CD8(+) T cells in vivo. Rational vaccine design requires answers to numerous questions surrounding the function of pAPCs in vivo, including their abilities to process and present peptides derived from endogenous and exogenous viral Ags. In the present study, we characterize the in vivo dependence of Ag presentation on the expression of TAP by testing the immunogenicity of model Ags synthesized by recombinant vaccinia viruses in TAP1(-/-) mice. We show that the efficiency of TAP-independent presentation in vitro correlates with TAP-independent activation of naive T cells in vivo and provide the first in vivo evidence for proteolytic processing of antigenic peptides in the secretory pathway. There was, however, a clear exception to this correlation; although the presentation of the minimal SIINFEKL determinant from chicken egg OVA in vitro was strictly TAP dependent, it was presented in a TAP-independent manner in vivo. In vivo presentation of the same peptide from a fusion protein retained its TAP dependence. These results show that determinant-specific processing pathways exist in vivo for the generation of antiviral T cell responses. We present additional findings that point to cross-priming as the likely mechanism for these protein-specific differences.  相似文献   

13.
T cells are critical for clearing infection and preventing tumors induced by polyoma virus, a natural murine papovavirus. We previously identified the immunodominant epitope for polyoma virus-specific CTL in tumor-resistant H-2k mice as the Dk-restricted peptide, MT389-397, derived from the polyoma middle T oncoprotein. In this study, we developed tetrameric Dk complexes containing the MT389-397 peptide to directly visualize and enumerate MT389-397-specific CTL during polyoma virus infection. We found that Dk/MT389 tetramer+CD8+ T cells undergo a massive expansion during primary infection such that by day 7 postinfection these Ag-specific CD8+ T cells constitute approximately 20% of the total and approximately 40% of the activated CD8+ T cells in the spleen. This expansion of Dk/MT389 tetramer+CD8+ T cells parallels the emergence of MT389-397-specific ex vivo cytolytic activity and clearance of polyoma virus. Notably, Dk/MT389 tetramer+CD8+ T cells are maintained in memory at very high levels. The frequencies of Dk/MT389 tetramer+CD8+ effector and memory T cells in vivo match those of CD8+ T cells producing intracellular IFN-gamma after 6-h in vitro stimulation by MT389-397 peptide. Consistent with preferential Vbeta6 expression by MT389-397-specific CD8+CTL lines and clones, Dk/MT389 tetramer+CD8+ T cells exhibit biased expression of this Vbeta gene segment. Finally, we show that Dk/MT389 tetramer+CD8+ T cells efficiently infiltrate a polyoma tumor challenge to virus-immune mice. Taken together, these findings strongly implicate virus-induced MT389-397-specific CD8+ T cells as essential effectors in eliminating polyoma-infected and polyoma-transformed cells in vivo.  相似文献   

14.
Viruses can cause a severe lymphopenia early in infection and a subsequent, lasting loss of pre-existing CD8(+) memory T cells. We therefore questioned how well virus Ag-specific memory CD8(+) T cells could reconstitute mice rendered lymphopenic as a consequence of genetics, irradiation, or viral or poly(I:C)-induced cytokines. In each case, reconstitution of the CD8(+) compartment was associated with limited division of virus-specific memory T cells and a reduction in their proportion. This indicates that foreign Ag-experienced CD44(high)CD8(+) memory T cells may respond differently to homeostatic signals than other CD44(high)CD8(+) cells, and that events inducing lymphopenia may lead to a permanent reduction in T cell memory.  相似文献   

15.
Interleukin-7 (IL-7) regulates T-cell homeostasis, and its availability is augmented in lymphopenic hosts. Naive CD8+ T cells transferred to lymphopenic mice acquire a memory-like phenotype, raising the possibility that IL-7 is the biological mediator of this effect. Here, we provide direct evidence that IL-7 induces the acquisition of memory-cell markers not only in CD8+ T cells but also in CD4+ T-cell subsets in immune-competent Indian rhesus macaques. The increase of these memory-like populations was dependent on the dose of the cytokine, and these cells were found in the blood as well as secondary lymphoid organs. Memory-like CD4+ and CD8+ T cells acquired the ability to secrete tumor necrosis factor alpha and, to a lesser extent, gamma interferon following stimulation with a cognate antigen. The phenotypic change observed in naive T cells was promptly reversed after discontinuation of IL-7. Importantly, IL-7 induced cycling of both CD4+ and CD8+ central memory and effector memory T cells, demonstrating its contribution to the maintenance of the entire T-cell pool. Thus, IL-7 may be of benefit in the treatment of iatrogenic or virus-induced T-cell depletion.  相似文献   

16.
Latner DR  Kaech SM  Ahmed R 《Journal of virology》2004,78(20):10953-10959
Unlike naive CD8+ T cells, antigen-experienced memory CD8+ T cells persist over time due to their unique ability to homeostatically proliferate. It was hypothesized that memory cells might differentially regulate the expression of genes that control the cell cycle to facilitate homeostatic proliferation. To test this, the expression levels of 96 different cell cycle regulatory genes were compared between transgenic naive and memory CD8+ T cells that specifically recognize the GP33-41 epitope of lymphocytic choriomeningitis virus (LCMV). It was discovered that relative to naive cells, memory cells overexpress several important genes that control the transition between G(1) and S phase. Some of these genes include those encoding cyclins D3, D2, B1, C, and H, cyclin-dependent kinases (cdk's) 4 and 6, the cdk inhibitors p16, p15, and p18, and other genes involved in protein degradation and DNA replication. Importantly, these differences were observed both in total populations of LCMV-specific naive and memory CD8+ cells and in LCMV-specific CD8+ T-cell populations that were in the G(1) phase of the cell cycle only. In addition, the expression differences between naive and memory cells were exaggerated following antigenic stimulation. The fact that memory cells are precharged with several of the major factors that are necessary for the G(1)- to-S-phase transition suggests they may require a lower threshold of stimulation to enter the cell cycle.  相似文献   

17.
Previous studies have shown that vaccine-primed CD4(+) T cells can mediate accelerated clearance of respiratory virus infection. However, the relative contributions of Ab and CD8(+) T cells, and the mechanism of viral clearance, are poorly understood. Here we show that control of a Sendai virus infection by primed CD4(+) T cells is mediated through the production of IFN-gamma and does not depend on Ab. This effect is critically dependent on CD8(+) cells for the expansion of CD4(+) T cells in the lymph nodes and the recruitment of memory CD4(+) T cells to the lungs. Passive transfer of a CD8(+) T cell supernatant into CD8(+) T cell-depleted, hemagglutinin-neuraminidase (HN)(421-436)-immune muMT mice substantially restored the virus-specific memory CD4(+) response and enhanced viral control in the lung. Together, the data demonstrate for the first time that in vivo primed CD4(+) T cells have the capacity to control a respiratory virus infection in the lung by an Ab-independent mechanism, provided that CD8(+) T cell "help" in the form of soluble factor(s) is available during the virus infection. These studies highlight the importance of synergistic interactions between CD4(+) and CD8(+) T cell subsets in the generation of optimal antiviral immunity.  相似文献   

18.
IL-15 promotes the survival of naive and memory phenotype CD8+ T cells   总被引:18,自引:0,他引:18  
IL-15 stimulates the proliferation of memory phenotype CD44(high)CD8(+) T cells and is thought to play a key role in regulating the turnover of these cells in vivo. We have investigated whether IL-15 also has the capacity to affect the life span of naive phenotype (CD44(low)) CD8(+) T cells. We report that IL-15 promotes the survival of both CD44(low) and CD44(high) CD8(+) T cells, doing so at much lower concentrations than required to induce proliferation of CD44(high) cells. Rescue from apoptosis was associated with the up-regulation of Bcl-2 in both cell types, whereas elevated expression of Bcl-x(L) was observed among CD44(high) but not CD44(low) CD8(+) cells. An investigation into the role of IL-15R subunits in mediating the effects of IL-15 revealed distinct contributions of the alpha- and beta- and gamma-chains. Most strikingly, IL-15R alpha was not essential for either induction of proliferation or promotion of survival by IL-15, but did greatly enhance the sensitivity of cells to low concentrations of IL-15. By contrast, the beta- and gamma-chains of the IL-15R were absolutely required for the proliferative and pro-survival effects of IL-15, although it was not necessary for CD44(high)CD8(+) cells to express higher levels of IL-15R beta than CD44(low) cells to proliferate in response to IL-15. These results show that IL-15 has multiple effects on CD8 T cells and possesses the potential to regulate the life span of naive as well as memory CD8(+) T cells.  相似文献   

19.
A novel approach to visualize polyclonal virus-specific CD8 T cells in vivo   总被引:1,自引:0,他引:1  
Recent technical breakthroughs in generating soluble MHC class I-peptide tetramers now allow the direct visualization of virus-specific CD8 T cells after infection in vivo. However, this technique requires the knowledge of the immunodominant viral epitopes recognized by T cells. Here, we describe an alternative approach to visualize polyclonal virus-specific CD8 T cells in vivo using a simple adoptive transfer system. In our approach, C57BL/6 (Thy1.2) mice were infected with lymphocytic choriomeningitis virus, vesicular stomatitis virus, or vaccinia virus to induce virus-specific memory T cells. Tracer T cells (2 x 106) from these virus-immune mice were adoptively transferred into nonirradiated (C57BL/6 x B6.PL-Thy-1a)F1 mice. After infection of the F1-recipient mice with the appropriate virus, the transferred cells expanded vigorously, and on day 8 postinfection 60-80% of total CD8 T cells were of donor T cell origin. Under the same conditions memory CD4 T cells gave rise to at least 10 times less cell numbers than memory CD8 T cells. The transfer system described here not only allows to visualize effector and memory CD8 T cells in vivo but also to isolate them for further in vitro characterization without knowing the epitopes recognized by these Ag-specific CD8 T cells.  相似文献   

20.
Influenza A virus infection of C57BL/6 (B6) mice is characterized by prominent CD8(+) T cell responses to H2D(b) complexed with peptides from the viral nucleoprotein (NP(366), ASNENMETM) and acid polymerase (PA(224), SSLENFRAYV). An in vivo cytotoxicity assay that depends on the adoptive transfer of peptide-pulsed, syngeneic targets was used in this study to quantitate the cytotoxic potential of D(b)NP(366)- and D(b)PA(224)-specific acute and memory CD8(+) T cells following primary or secondary virus challenge. Both T cell populations displayed equivalent levels of in vivo effector function when comparable numbers were transferred into naive B6 hosts. Cytotoxic activity following primary infection clearly correlated with the frequency of tetramer-stained CD8(+) T cells. This relationship looked, however, to be less direct following secondary exposure, partly because the numbers of CD8(+)D(b)NP(366)(+) T cells were greatly in excess. However, calculating the in vivo E:T ratios indicated that in vivo lysis, like many other biological functions, is threshold dependent. Furthermore, the capacity to eliminate peptide-pulsed targets was independent of the differentiation state (i.e., primary or secondary effectors) and was comparable for the two T cell specificities that were analyzed. These experiments provide insights that may be of value for adoptive immunotherapy, where careful consideration of both the activation state and the number of effector cells is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号