首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kidney epithelia develop from the metanephric mesenchyme after receiving inductive signals from the ureteric bud and from the renal stroma. However, it is not clear how these signals induce the different types of epithelia that make up the nephron. To investigate inductive signaling, we have isolated clusters of epithelial progenitors from the metanephric mesenchyme, thereby separating them from the renal stroma. When the isolated progenitors were treated with the ureteric bud factor LIF, they expressed epithelial proteins (ZO-1, E-cadherin, laminin alpha(5)) and produced nephrons (36 glomeruli with 58 tubules), indicating that they are the target of inductive signaling from the ureteric bud, and that renal stroma is not absolutely required for epithelial development in vitro. In fact, stroma-depleted epithelial progenitors produced sevenfold more glomeruli than did intact metanephric mesenchyme (5 glomeruli, 127 tubules). Conversely, when epithelial progenitors were treated with both LIF and proteins secreted from a renal stromal cell line, glomerulogenesis was abolished but tubular epithelia were expanded (0 glomeruli, 47 tubules). Hence, by isolating epithelial progenitors from the metanephric mesenchyme, we show that they are targeted by factors from the ureteric bud and from the renal stroma, and that epithelial diversification is stimulated by the ureteric bud and limited by renal stroma.  相似文献   

2.
Growth and expansion of the embryonic kidney is driven in large part by continuous branching morphogenesis and nephron induction that occurs in a restricted domain beneath the renal capsule called the nephrogenic zone. Here, new ureteric bud branches and nephron aggregates form surrounded by a layer of cortical stromal cell progenitors. The boundaries and inductive activities of the nephrogenic zone are maintained as the kidney grows. As new ureteric bud branches and nephrogenic aggregates form, older generations of ureteric bud branches, renal vesicles and stromal progenitors are displaced from the nephrogenic zone and undergo further differentiation surrounded by medullary stroma, a different population of stromal cells. Recent studies suggest that cortical and medullary stromal progenitors may be an important source of signals that maintain outer and inner zones of differentiation in the embryonic kidney, and regulate distinct events important for differentiation of nephrons and the collecting duct system.  相似文献   

3.
《Organogenesis》2013,9(1):14-21
During kidney development, the growth and development of the stromal and nephrogenic mesenchyme cell populations and the ureteric bud epithelium is tightly coupled through intricate reciprocal signaling mechanisms between these three tissue compartments. Midkine, a target gene activated by retinoid signaling in the metanephros, encodes a secreted polypeptide with mitogenic and anti-apoptotic activities in a wide variety of cell types. Using immmunohistochemical methods we demonstrated that Midkine is found in the uninduced mesenchyme at the earliest stages of metanephric kidney development and only subsequently concentrated in the ureteric bud epithelium and basement membrane. The biological effects of purified recombinant Midkine were analyzed in metanephric organ culture experiments carried out in serum-free defined media. These studies revealed that Midkine selectively promoted the overgrowth of the Pax-2 and N-CAM positive nephrogenic mesenchymal cells, failed to stimulate expansion of the stromal compartment and suppressed branching morphogenesis of the ureteric bud. Midkine suppressed apoptosis and stimulated cellular proliferation of the nephrogenic mesenchymal cells, and was capable of maintaining the viability of isolated mesenchymes cultured in the absence of the ureteric bud. These results suggest that Midkine may regulate the balance of epithelial and stromal progenitor cell populations of the metanephric mesenchyme during renal organogenesis.  相似文献   

4.
During kidney development and in response to inductive signals, the metanephric mesenchyme aggregates, becomes polarized, and generates much of the epithelia of the nephron. As such, the metanephric mesenchyme is a renal progenitor cell population that must be replenished as epithelial derivatives are continuously generated. The molecular mechanisms that maintain the undifferentiated state of the metanephric mesenchymal precursor cells have not yet been identified. In this paper, we report that functional inactivation of the homeobox gene Six2 results in premature and ectopic differentiation of mesenchymal cells into epithelia and depletion of the progenitor cell population within the metanephric mesenchyme. Failure to renew the mesenchymal cells results in severe renal hypoplasia. Gain of Six2 function in cortical metanephric mesenchymal cells was sufficient to prevent their epithelial differentiation in an organ culture assay. We propose that in the developing kidney, Six2 activity is required for maintaining the mesenchymal progenitor population in an undifferentiated state by opposing the inductive signals emanating from the ureteric bud.  相似文献   

5.
To determine the importance of fibroblast growth factor receptors (fgfrs) 1 and 2 in the metanephric mesenchyme, we generated conditional knockout mice (fgfr(Mes-/-)). Fgfr1(Mes-/-) and fgfr2(Mes-/-) mice develop normal-appearing kidneys. Deletion of both receptors (fgfr1/2(Mes-/-)) results in renal aplasia. Fgfr1/2(Mes-/-) mice develop a ureteric bud (and occasionally an ectopic bud) that does not elongate or branch, and the mice do not develop an obvious metanephric mesenchyme. By in situ hybridization, regions of mutant mesenchyme near the ureteric bud(s) express Eya1 and Six1, but not Six2, Sall1, or Pax2, while the ureteric bud expresses Ret and Pax2 normally. Abnormally high rates of apoptosis and relatively low rates of proliferation are present in mutant mesenchyme dorsal to the mutant ureteric bud at embryonic day (E) 10.5, while mutant ureteric bud tissues undergo high rates of apoptosis by E11.5. Thus, fgfr1 and fgfr2 together are critical for normal formation of metanephric mesenchyme. While the ureteric bud(s) initiates, it does not elongate or branch infgfr1/2(Mes-/-) mice. In metanephric mesenchymal rudiments, fgfr1 and fgfr2 appear to function downstream of Eya1 and Six1, but upstream of Six2, Sall1, and Pax2. Finally, this is the first example of renal aplasia in a conditional knockout model.  相似文献   

6.
During kidney development, the growth and development of the stromal and nephrogenic mesenchyme cell populations and the ureteric bud epithelium is tightly coupled through intricate reciprocal signaling mechanisms between these three tissue compartments. Midkine, a target gene activated by retinoid signaling in the metanephros, encodes a secreted polypeptide with mitogenic and anti-apoptotic activities in a wide variety of cell types. Using immmunohistochemical methods we demonstrated that Midkine is found in the uninduced mesenchyme at the earliest stages of metanephric kidney development and only subsequently concentrated in the ureteric bud epithelium and basement membrane. The biological effects of purified recombinant Midkine were analyzed in metanephric organ culture experiments carried out in serum-free defined media. These studies revealed that Midkine selectively promoted the overgrowth of the Pax-2 and N-CAM positive nephrogenic mesenchymal cells, failed to stimulate expansion of the stromal compartment and suppressed branching morphogenesis of the ureteric bud. Midkine suppressed apoptosis and stimulated cellular proliferation of the nephrogenic mesenchymal cells, and was capable of maintaining the viability of isolated mesenchymes cultured in the absence of the ureteric bud. These results suggest that Midkine may regulate the balance of epithelial and stromal progenitor cell populations of the metanephric mesenchyme during renal organogenesis.Key Words: growth factor, proliferation, apoptosis, ureteric bud, branching morphogenesis, epithelial progenitor, development, signaling  相似文献   

7.
Glomerular endothelial and mesangial cells may originate from the metanephric mesenchyme. We used the MAb Thy1.1, a mesangial cell marker in the adult rat kidney, and rat endothelial cell markers MAb RECA-1, MAb PECAM-1 (CD31), and MAb Flk-1 as potential markers to characterize the spatial and temporal distribution of mesangial and endothelial cell precursors during nephrogenesis in the rat. At early stages of glomerulogenesis, RECA-1- and Thy1.1-positive cells were detected in the metanephric blastema at 14 days post conception (dpc) embryos and 15 dpc, respectively, with Thy1.1 expression in cells surrounding the ureteric bud. At 17 and 18 dpc, both RECA-1- and Thy1.1-positive cells were found in the cleft of the S-shaped bodies and in the capillary loops of maturing glomeruli. Double staining for BrdU, a marker of proliferation, and for RECA-1 or BrdU and Thy1.1 also localize in the cleft of S-shaped bodies and in glomerular capillary loops at later stages of development. PDGFRbeta co-localizes in cells expressing endothelial or mesangial markers. The data suggest that endothelial and mesangial cell precursors share common markers during the course of glomerulogenesis and that full differentiation of these cells occurs at late stages of glomerular maturation. Thy1.1- and RECA-1-positive cells may be derived from the metanephric blastemal cells at early stages of kidney development. A subpopulation of these Thy1.1- or RECA-1-positive cells may be precursors that can migrate into the cleft of comma and S-shaped bodies and proliferate in situ to form glomerular capillary tufts.  相似文献   

8.
9.
10.
Recent functional studies in mouse further illustrate the importance of the epithelial-mesenchymal interaction between the ureteric bud epithelium and the metanephric mesenchyme in kidney formation. Genetic ablation of Gdf11, Six1, Slit2/Robo2 reveal a role of these genes in regulating the outgrowth of a single ureteric bud from the Wolffian duct. Studies of Wnt11 and Fras1/Grip1, all expressed in the ureteric bud, show a role for these genes in regulating events in the adjacent metanephric mesenchyme. Furthermore, various approaches were used to address the function of Pod1, Pbx1, the Notch pathway and Brn1 in nephron formation.  相似文献   

11.
The mammalian metanephric kidney is derived from the intermediate mesoderm. In this report, we use molecular fate mapping to demonstrate that the majority of cell types within the metanephric kidney arise from an Osr1+ population of metanephric progenitor cells. These include the ureteric epithelium of the collecting duct network, the cap mesenchyme and its nephron epithelia derivatives, the interstitial mesenchyme, vasculature and smooth muscle. Temporal fate mapping shows a progressive restriction of Osr1+ cell fates such that at the onset of active nephrogenesis, Osr1 activity is restricted to the Six2+ cap mesenchyme nephron progenitors. However, low-level labeling of Osr1+ cells suggests that the specification of interstitial mesenchyme and cap mesenchyme progenitors occurs within the Osr1+ population prior to the onset of metanephric development. Furthermore, although Osr1+ progenitors give rise to much of the kidney, Osr1 function is only essential for the development of the nephron progenitor compartment. These studies provide new insights into the cellular origins of metanephric kidney structures and lend support to a model where Osr1 function is limited to establishing the nephron progenitor pool.  相似文献   

12.
Most studies on kidney development have considered the interaction of the metanephric mesenchyme and the ureteric bud to be the major inductive event that maintains tubular differentiation and branching morphogenesis. The mesenchyme produces Gdnf, which stimulates branching, and the ureteric bud stimulates continued growth of the mesenchyme and differentiation of nephrons from the induced mesenchyme. Null mutation of the Wt1 gene eliminates outgrowth of the ureteric bud, but Gdnf has been identified as a target of Pax2, but not of Wt1. Using a novel system for microinjecting and electroporating plasmid expression constructs into murine organ cultures, it has been demonstrated that Vegfa expression in the mesenchyme is regulated by Wt1. Previous studies had identified a population of Flk1-expressing cells in the periphery of the induced mesenchyme, and adjacent to the stalk of the ureteric bud, and that Vegfa was able to stimulate growth of kidneys in organ culture. Here it is demonstrated that signaling through Flk1 is required to maintain expression of Pax2 in the mesenchyme of the early kidney, and for Pax2 to stimulate expression of Gdnf. However, once Gdnf stimulates branching of the ureteric bud, the Flk1-dependent angioblast signal is no longer required to maintain branching morphogenesis and induction of nephrons. Thus, this work demonstrates the presence of a second set of inductive events, involving the mesenchymal and angioblast populations, whereby Wt1-stimulated expression of Vegfa elicits an as-yet-unidentified signal from the angioblasts, which is required to stimulate the expression of Pax2 and Gdnf, which in turn elicits an inductive signal from the ureteric bud.  相似文献   

13.
Branching morphogenesis is central to epithelial organogenesis. In the developing kidney, the epithelial ureteric bud invades the metanephric mesenchyme, which directs the ureteric bud to undergo repeated branching. A soluble factor(s) in the conditioned medium of a metanephric mesenchyme cell line is essential for multiple branching morphogenesis of the isolated ureteric bud. The identity of this factor had proved elusive, but it appeared distinct from factors such as HGF and EGF receptor ligands that have been previously implicated in branching morphogenesis of mature epithelial cell lines. Using sequential column chromatography, we have now purified to apparent homogeneity an 18 kDa protein, pleiotrophin, from the conditioned medium of a metanephric mesenchyme cell line that induces isolated ureteric bud branching morphogenesis in the presence of glial cell-derived neurotrophic factor. Pleiotrophin alone was also found to induce the formation of branching tubules in an immortalized ureteric bud cell line cultured three-dimensionally in an extracellular matrix gel. Consistent with an important role in ureteric bud morphogenesis during kidney development, pleiotrophin was found to localize to the basement membrane of the developing ureteric bud in the embryonic kidney. We suggest that pleiotrophin could act as a key mesenchymally derived factor regulating branching morphogenesis of the ureteric bud and perhaps other embryonic epithelial structures.  相似文献   

14.
TGF beta 2, LIF and FGF2 cooperate to induce nephrogenesis   总被引:6,自引:0,他引:6  
The metanephric kidney develops from interactions between the epithelial ureteric bud and adjacent metanephric mesenchyme, which is induced by the bud to form the epithelia of the nephron. We have found that leukemia inhibitory factor (LIF) and transforming growth factor beta 2 (TGF beta 2) are secreted by inductive rat bud cells and cooperate to enhance and accelerate renal tubule formation in uninduced rat metanephric mesenchymal explants. LIF alone or TGF beta 2 with fibroblast growth factor 2 induced numerous tubules in isolated mesenchymes over an 8 day period, while (in combination) all three caused abundant tubule formation in 72 hours. Furthermore, neutralization of Wnt ligands with antagonist-secreted Frizzled-related protein 1 abrogated these responses and combinatorial cytokine/growth factor stimulation of explants augmented nuclear activation of Tcf1/Lef1, suggesting that LIF and TGF beta 2/FGF2 cooperate to regulate nephrogenesis through a common Wnt-dependent mechanism.  相似文献   

15.
16.
In an attempt to elucidate the role of Slit2 in vertebrate kidney development, the effect of adding exogenous human Slit2 protein (hSlit2) to developing murine metanephric kidney explants was examined. To confirm the activity of the recombinant Slit2 protein, neurons from 8 day old chick sympathetic nerve chain dorsal root ganglia were cultured with hSlit2 protein, which induced significant neurite branching and outgrowth. Using kidney explants as a model system, metanephric development in the presence of hSlit2 protein was examined. Addition of hSlit2 up to a final concentration of 1 microg/ml had no detectable effect on the formation of nephrons or on branching morphogenesis of the ureteric tree after 2 or 4 days in culture, as assessed via immunofluorescence for the markers WT1 and calbindin 28K respectively. Similarly, maturation of the nephrogenic mesenchyme occurred in a phenotypically normal fashion. In situ analysis of the Slit receptors, Robo1 and Robo2, the vasculogenic markers VEGFA and Flk-1, and the stromal cell marker BF2 displayed no difference in comparison to controls.  相似文献   

17.
18.
SALL1, a causative gene for Townes-Brocks syndrome, encodes a zinc finger protein, and its mouse homolog (Sall1) is essential for metanephros development, as noted during gene targeting. In the embryonic kidney, Sall1 is expressed abundantly in mesenchyme-derived structures from condensed mesenchyme, S-, comma-shaped bodies, to renal tubules and podocytes. We generated mice in which a green fluorescent protein (GFP) gene was inserted into the Sall1 locus and we isolated the GFP-positive population from embryonic kidneys of these mice by fluorescein-activated cell sorting. The GFP-positive population indeed expressed mesenchymal genes, while the negative population expressed genes in the ureteric bud. To systematically search for genes expressed in the mesenchyme-derived cells, we compared gene expression profiles in the GFP-positive and -negative populations using microarray analysis, followed by in situ hybridization. We detected many genes known to be important for metanephros development including Sall1, GDNF, Raldh2, Pax8 and FoxD1, and genes expressed abundantly in the metanephric mesenchyme such as Unc4.1, Six2, Osr-2 and PDGFc. We also found groups of genes including SSB-4, Smarcd3, micro-Crystallin, TRB-2, which are not known to be expressed in the metanephric mesenchyme. Therefore a combination of microarray technology and Sall1-GFP mice is useful for systematic identification of genes expressed in the developing kidney.  相似文献   

19.
Organogenesis requires the differentiation and integration of distinct populations of cells to form a functional organ. In the kidney, reciprocal interactions between the ureter and the nephrogenic mesenchyme are required for organ formation. Additionally, the differentiation and integration of stromal cells are also necessary for the proper development of this organ. Much remains to be understood regarding the origin of cortical stromal cells and the pathways involved in their formation and function. By generating triple mutants in the Hox10 paralogous group genes, we demonstrate that Hox10 genes play a critical role in the developing kidney. Careful examination of control kidneys show that Foxd1-expressing stromal precursor cells are first observed in a cap-like pattern anterior to the metanephric mesenchyme and these cells subsequently integrate posteriorly into the kidney periphery as development proceeds. While the initial cap-like pattern of Foxd1-expressing cortical stromal cells is unaffected in Hox10 mutants, these cells fail to become properly integrated into the kidney, and do not differentiate to form the kidney capsule. Consistent with loss of cortical stromal cell function, Hox10 mutant kidneys display reduced and aberrant ureter branching, decreased nephrogenesis. These data therefore provide critical novel insights into the cellular and genetic mechanisms governing cortical cell development during kidney organogenesis. These results, combined with previous evidence demonstrating that Hox11 genes are necessary for patterning the metanephric mesenchyme, support a model whereby distinct populations in the nephrogenic cord are regulated by unique Hox codes, and that differential Hox function along the AP axis of the nephrogenic cord is critical for the differentiation and integration of these cell types during kidney organogenesis.  相似文献   

20.
Development of the metanephric kidney crucially depends on proper interactions between cells and the surrounding extracellular matrix. For example, we showed previously that in the absence of alpha8beta1 integrin, invasion by the ureteric bud into the metanephric mesenchyme is inhibited, resulting in renal agenesis. Here we present genetic evidence that the extracellular matrix protein nephronectin is an essential ligand that engages alpha8beta1 integrin during early kidney development. We show that embryos lacking a functional nephronectin gene frequently display kidney agenesis or hypoplasia, which can be traced to a delay in the invasion of the metanephric mesenchyme by the ureteric bud at an early stage of kidney development. Significantly, we detected no defects in extracellular matrix organization in the nascent kidneys of the nephronectin mutants. Instead, we found that Gdnf expression was dramatically reduced in both nephronectin- and alpha8 integrin-null mutants specifically in the metanephric mesenchyme at the time of ureteric bud invasion. We show that this reduction is sufficient to explain the agenesis and hypoplasia observed in both mutants. Interestingly, the reduction in Gdnf expression is transient, and its resumption presumably enables the nephronectin-deficient ureteric buds to invade the metanephric mesenchyme and begin branching. Our results thus place nephronectin and alpha8beta1 integrin in a pathway that regulates Gdnf expression and is essential for kidney development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号