首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P-450 and cytochrome b5 at levels of approximately 0.10 and 0.60 nanomole per milligram of microsomal protein were detected by spectral measurements in microsomes prepared from endosperm tissue of immature Marah macrocarpus seeds. TPNH-cytochrome c reductase, DPNH-cytochrome c reductase, andDPNH-cytochrome b5 reductase activities were also present in these microsomes at levels of approximately 0.060, 0.22, and 0.52 unit per milligram of microsomal protein, respectively. (One unit of reductase is the amount of enzyme catalyzing the reduction of 1 micromole of electron acceptor per minute.) Treatments of microsomes with steapsin or trypsin were not effective in solubilizing any of these electron transport components in detectable form. However, treatment of a microsomal suspension in 25% glycerol with 1% sodium deoxycholate led to the release of about 60% of the protein and each of the above hemoproteins and electron transfer activities to the fraction which was not pelleted after centrifugation for 2 hours at 105,000g. Some ent-kaur-16-ene oxidase activity could be detected in the solubilized fraction after removal of the detergent. Cytochrome b5 and DPNH-cytochrome b5 reductase activity were largely separated from one another and from an overlapping mixture of TPNH-cytochrome c reductase and DPNH-cytochrome c reductase when the sodium deoxycholate-solubilized fraction was chromatographed on a DEAE-cellulose column. No cytochrome P-450 or cytochrome P-420 was detected in the column fractions and no ent-kaur-16-ene oxidase activity was detected when the column fractions were tested singly or in combination.  相似文献   

2.
Microsomal and soluble cell-free extracts prepared from liquid endosperm of Cucurbita maxima L. were found to contain high concentrations of endogenous ent-kaurene and ent-kaurenol by gas chromatography-mass spectrometry-chemical ionization with deuterated internal standards. Increases in the levels of ent-kaurenol, ent-kaurenoic acid, and ent-7-hydroxykaurenoic acid are correlated with a decline in the amount of endogenous ent-kaurene following a 10 min incubation of microsomes with NADPH and FAD. The rate of oxidation of radiolabeled ent-kaurene by the microsomal fraction was determined, and the need to account for endogenous substrate is shown. Endogenous ent-kaurene present in soluble extracts had the effect of diluting the [14C]ent-kaurene synthesized from [14C]mevalonic acid, resulting in reduced specific radioactivity of the product. The dilution of [14C]ent-kaurene was more pronounced in extracts with higher endogenous ent-kaurene levels or when the reactions were run in the presence of O2 and NADPH. Evidence is presented that suggests differential metabolism of endogenous ent-kaurene and radiolabeled ent-kaurene in both microsomal and soluble extracts.Abbreviations Kaurene ent-kaur-16-ene - MVA mevalonic acid - kaurenol ent-kaur-16-en-19-ol - kaurenoic acid ent-kaur-16-en-19-oic acid - EtOAc ethyl acetate - MeOH methanol - GC-MS-CI gas chromatography-mass spectrometry-chemical ionization - 13-OH KA ent-13-hydroxykaur-16-en-19-oic acid - 7-OH kaurenoic acid ent-7-hydroxykaur-16-en-19-oic acid - kaurenal ent-kaur-16-en-19-al - Me(x) methyl ester of x - TMS(x) trimethylsilyl ether or ester of x - GA(x) gibberellin A(x)  相似文献   

3.
Candol A (7β-hydroxy-ent-kaur-16-ene) (6) is efficiently transformed by Gibberella fujikuroi into the gibberellin plant hormones. In this work, the biotransformation of its acetate by this fungus has led to the formation of 7β-acetoxy-ent-kaur-16-en-19-oic acid (3), whose corresponding alcohol is a short-lived intermediate in the biosynthesis of gibberellins and seco-ring ent-kaurenoids in this fungus. Further biotransformation of this compound led to the hydroxylation of the 3β-positions to give 7β-acetoxy-3β-hydroxy-ent-kaur-16-en-19-oic acid (14), followed by a 2β- or 18-hydroxylation of this metabolite. The incubation of epicandicandiol 7β-monoacetate (7β-acetoxy-18-hydroxy-ent-kaur-16-ene) (10) produces also the 19-hydroxylation to form the 18,19 diol (20), which is oxidized to give the corresponding C-18 or C-19 acids. These results indicated that the presence of a 7β-acetoxy group does not inhibit the fungal oxidation of C-19 in 7β-acetoxy-ent-kaur-16-ene, but avoids the ring B contraction that leads to the gibberellins and the 6β-hydroxylation necessary for the formation of seco-ring B ent-kaurenoids. The biotransformation of 7β-acetoxy-ent-trachylobane (trachinol acetate) (27) only led to the formation of 7β-acetoxy-18-hydroxy-ent-trachylobane (33).  相似文献   

4.
Two new ent-kauren-19-oic acid derivatives, ent-14S*-hydroxykaur-16-en-19-oic acid and ent-14S*,17-dihydroxykaur-15-en-19-oic acid together with eleven known compounds ent-kaur-16-en-19-oic acid, ent-kaur-16-en-19-al, ent-12β-hydroxykaur-16-en-19-oic acid, ent-12β-acetoxykaur-16-en-19-oic acid, 8R,13R-epoxylabd-14-ene, eudesm-4(15)-ene-1β,6α-diol, (?)-7-epivaleran-4-one, germacra-4(15), 5E,10(14)-trien-9β-ol, acetyl aleuritolic acid, β-amyrin, and stigmasterol were isolated from the stem bark of Croton pseudopulchellus (Euphorbiaceae). Structures were determined using spectroscopic techniques. Ent-14S*-hydroxykaur-16-en-19-oic acid, ent-kaur-16-en-19-oic acid, ent-12β-hydroxykaur-16-en-19-oic acid, ent-12β-acetoxykaur-16-en-19-oic acid and 8R,13R-epoxylabd-14-ene were tested for their effects on Semliki Forest virus replication and for cytotoxicity against human liver tumour cells (Huh-7 strain) but were found to be inactive. Ent-kaur-16-en-19-oic acid, the major constituent, showed weak activity against the Plasmodium falciparum (CQS) D10 strain.  相似文献   

5.
The investigation of five Espeletiopsis and two Coespeletia species afforded, in addition to numerous known compounds, two new kaurene derivatives 19-acetoxy-ent-kaurene and 17-oxo-ent-kaur- 15-en-19-oic acid, as well as two new tricyclic sesquiterpenes, one being the previously reported oxidation product of copaborneol and the second one the 5-oxo derivative of silphiperfol-6-ene. The structures were elucidated by NMR studies and by chemical transformations. The chemotaxonomic situation is discussed briefly.  相似文献   

6.
In previous studies, the conversion of geranylgeranyl pyrophosphate to ent-kaurene (kaurene synthetase AB activity) could not be detected readily in crude extracts of sunflower (Helianthus annuus L.) seedlings (Shen-Miller, West 1982 Plant Physiol 69: 637-641). These investigations also revealed the presence of inhibitors for Marah macrocarpus kaurene synthetase AB activity in crude extracts of sunflower seedlings. It has now been found that crude extracts prepared from intact sunflower seedlings stored in liquid N2 for several days have greatly enhanced AB activity in comparison with frozen, but not stored, controls. The levels of activity for the conversion of copalyl pyrophosphate to ent-kaurene (kaurene synthetase B activity) are affected only slightly by storage of intact seedlings in liquid N2. Extracts from intact seedlings that had been stored in liquid N2 also showed less inhibitory activity for Marah macrocarpus endosperm kaurene synthetase AB activity.  相似文献   

7.
It is shown that suspensor tissue of Phaseolus coccineus can biosynthesize ent-kaur-16-ene and ent-kaur-16-en-19β-ol, two key precursors in the biosynthesis of gibberellins.  相似文献   

8.
Experiments were carried out to explore the involvement of the plant hormone gibberellin (GA) in the light-induced germination of lettuce seeds. Three growth retardants known to be inhibitors of GA biosynthesis were tested for their effect on red-light-induced germination. Chlormequat chloride (CCC) and AMO-1618 had no effect, but ancymidol was strongly inhibitory. Moreover, the inhibition caused by ancymidol was completely overcome by GA3. CCC and AMO-1618 inhibit the formation ofent-kaurene, while ancymidol blocks the oxidation ofent-kaurene toent-kaurenoic acid. Ancymidol also was found to inhibit GA-induced dark germination of lettuce seeds, and this inhibition was partially reversed by higher levels of GA. Therefore, the results suggest two possibilities for the relationship between phytochrome and GA in this system: first, the rate-limiting step in the germination of light-sensitive lettuce seeds, that which is regulated by phytochrome, is the oxidation ofent-kaurene toent-kaurenoic acid. Alternatively, red-light treatment may result in the release of active GAlike substances which, in turn, induce germination. In either case the results presented here support the view that phytochrome exerts its effect on lettuce seed germination by means of GA rather than via an independent pathway.  相似文献   

9.
Yacon (Polymnia sonchifolia) leaves possess glandular trichomes on the surface. The exudate from the glandular trichome and the leaf are itself rich in ent-kaurenic acid (ent-kaur-16-en-19-oic acid). A kaurene derivative, 15-α-angeloyloxy-ent-kauren-19-oic acid 16-epoxide, was isolated from the leaves, together with two known angeloyloxykaurenic acids. The high content of ent-kaurenic acid in the leaf suggests that these diterpenes play a certain physiological role, since the glandular trichome exudates of other species function in their defensive mechanism.  相似文献   

10.
The isolation is reported of the new natural products from Viguiera quinqueradiata, acetylleptocarpin and (2R,3S-4′-hydroxy-3′,5,7-tri-O-methyl-flavan-3-ol. The diterpenes 15α-angeloyloxy-ent-kaur-16-en-19-oic acid, 15α-tigloyloxy-ent-kaur-16-en-19-oic acid and the sesquiterpene lactones leptocarpin and budlein A were also found.  相似文献   

11.
The plant growth retardant, N,N,N-trimethyl-1-methyl-(2′,6′,6′-trimethylcyclohex-2′-en-1′-yl)prop-2-enylammonium iodide, is shown to block gibberellin biosynthesis in Gibberella fujikuroi between mevalonate and ent-kaur-16-ene, probably by inhibiting ent-kaur-16-ene synthetase A-activity. In the presence of the plant growth retardant, cultures of the fungus incorporate (26.5%) added ent-[14C]-kaur-16-ene into gibberellin A3. Under the same conditions kaur-16-ene, 13β-kaur-16-ene, and ent-kaur-15-ene are not metabolised to gibberellin analogues.  相似文献   

12.
Biosynthesis of gibberellins (GAs) was studied in vivo in endosperms of Sechium edule Sw. Exogenous ent-[14C]kaurene was metabolized into four major products: GA12, GA4, GA7 and 16, 17-dihydro-16-hydroxy-GA15 alcohol glucoside. Other minor metabolites were also observed including ent-kaurenol and ent-kaurenal. Conversion of ent-[14C]kaurene to ent-kaurenol glucoside by endosperm cell-free preparations in the presence of UDPG was observed. However, the finding was not confirmed in in vivo studies and is probably artifactual. Overall evidence coming from the analysis of endogenous GAs and in vitro and in vivo biosynthetic studies are discussed in relation to the possible existence in the Sechium seeds of a different route, along with the known pathway, branching from ent-kaurene or ent-7-α-hydroxykaurenoic acid and this also leading to biologically active GAs.  相似文献   

13.
Gibberella fujikuroi (Fusarium moniliforme) is a complex group of plant pathogens. Some strains produce gibberellic acid and other gibberellins that promote growth and regulate various stages in plant development.The paper describes the research effort directed to development of genetic tools for this species. Furthermore the main features of the gibberellin biosynthetic pathway as established in Gibberella are described.Abbreviations AMO 1618 2-isopropyl-4-(trimethylammonium chloride)-5-methylphenylpiperidine-1-carboxylate - hydroxykaurenoic acid ent-kaur-16-en-7-ol-19-oic acid - kaurenal ent-kaur-16-en-19-al - kaurene ent-kaur-16-ene - kaurenoic acid ent-kaur-16-en-19-oic acid - kaurenol ent-kaur-16-en-19-ol - paclobutrazol 1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-lyl)pentan-3-ol - pefurazoate pent-4-enyl-N-furfuryl-N-imidazol-1-ylcarbonyl-DL-homoa laninate - tetcyclacis 5-(4-chlorophenyl)-3,4,5,9,10-pentaazatetracyclo-5,4,102.6,O8.11-dodeca-3,9-diene - triarimol -(2,4-dichlorophenyl)--phenyl-5-pyrimidine methyl alcohol  相似文献   

14.
《Phytochemistry》1987,26(3):779-781
Eight known diterpene acids, ent-12-oxokaur-9(11),16-dien-19-oic acid, ent-12β-hydroxykaur-9(11),16-dien-19-oic acid, ent-isokaur-15(16)-en-17,19-dioic acid, ent-15α,16-epoxy-17-hydroxykaura-19-oic acid, ent-kaura-17,19-dioic acid, ent-kaur-16-en-19-oic acid, grandifloric acid, angeloyloxygrandifloric acid, as well as a new sesquiterpene lactone, ladibranolide, were isolated from Viguiera ladibractate. The stereochemistry of the sesquiterpene lactone was established by NOE experiments.  相似文献   

15.
The conversion of ent-kaur-16-enes to gibberellic acid in Gibberella fujikuroi is blocked by A-ring modifications. Thus ent-3β-hydroxykaur-16-en-19-yl succinate gives good conversion (46%) to the 7β-hydroxy derivative.* Under the same conditions the 3β-epimer gives 7β- or 6α-hydroxylation and the former occurs for the 3-oxo analogue. The succinoyloxy function acts as a less efficient block and ent-kaur-16-en-19-yl succinate is converted to 7β-hydroxy and 6β,7β-dihydroxy derivatives along with gibberellic acid. Hydrolysis of the succinate block of the metabolities provides the 7β, 19-diol and 6β,7β, 19-triol. Of this pair only the former was effectively metabolized to gibberellic acid in G. fujikuroi.  相似文献   

16.
Cytokinins, which have some structural similarities to ancymidol, a plant growth retardant, were tested for their effects on the cell-free oxidation ofent-kaurene. Results indicate that several cytokinins inhibit this reaction in microsomal extracts of liquid endosperm from immature wild cucumber seeds. N6-cyclohexanemethyladenine was the most active (inhibiting 50% of the controlent-kaurene oxidation at 2×10?6 M). N6-isoamyladenine, N6-benzyladenine, N6-(Δ2-isopentenyl)adenine and dihydrozeatin were active at successively higher concentrations. Zeatin, kinetin, adenine, N6-benzyladenosine, and N6-(isopentenyl)adenosine were inactive in this system. The basis for the inhibition ofent-kaurene oxidation by cytokinins may be similar to that of ancymidol: interaction with cytochrome P-450. A binding spectrum similar to that of ancymidol with cytochrome P-450 from wild cucumber endosperm microsomes was obtained with four active cytokinins. The cytokinin binding properties of this protein are currently under investigation. No metabolism of N6-benzyladenine could be detected under conditions in which the cytokinin inhibited the oxidation ofent-kaurene toent-kaurenol.  相似文献   

17.
The aerial parts of Mikania banisterae afforded four new diterpenes, ent-kaur-16-en-18-al, 18-acetoxy-ent-kaurene, 18-hydroxy-16α,17-epoxy-ent-kaurane and 4β-19-epoxy-18-nor-ent-kaurene.  相似文献   

18.
The kauranoid precursors of gibberellins are difficult to isolate from heavily pigmented plant tissues. In this paper, we describe relatively simple and efficient procedures for the purification of these compounds from tissues containing chlorophyll and other high molecular weight pigments. Extracts of shoots from Thlaspi arvense L. were subjected first to size exclusion chromatography using ethyl acetate as the eluting solvent. This procedure resulted in the separation of kauranoids as a class of compounds from chlorophyll. Typically, a 90% reduction in mass of the kauranoid enriched-fraction was observed. This fraction was subjected to reverse phase high performance liquid chromatography and individual fractions analyzed by combined gas chromatography-mass spectrometry. Five kauranoids were identified in shoot extracts of T. arvense: ent-kaur-16-ene, ent-kaur-16-en-19-ol, ent-kaur-16-en-19-oic acid, trachylobanoic acid, and 7β, 13-dihydroxykaurenolide. The metabolic relationships of these compounds to the gibberellins previously identified in this species (JD Metzger, MC Mardaus [1986] Plant Physiol 80: 396-402) are discussed. In addition, the utility of size exclusion chromatography in preparative situations is demonstrated by the purification of ent-kaurenoic acid in milligram quantities from the florets of Helianthus annuus L.  相似文献   

19.
Kaurene synthetase B activity (conversion of copalyl pyrophosphate to ent-kaurene) is readily detectable in crude cell-free extracts of 3- to 4-day old dark-grown sunflower (Helianthus annuus cv. Mammoth) seedlings, whereas little or no kaurene synthetase AB activity (conversion of geranylgeranyl pyrophosphate to ent-kaurene) can be found in these extracts under comparable assay conditions. A low amount of AB activity is evident only if an extensively dialyzed extract is used in low concentrations as the enzyme source. One factor which may contribute to the low apparent levels of AB activity is the presence of inhibitory factors in the crude sunflower extract since these extracts can be shown to act as a potent inhibitor of Marah macrocarpus endosperm kaurene synthetase AB activity. Heat treatment (100°C) or dialysis of the sunflower extract reduces the amount of its inhibitory activity. Also, it was observed that low concentrations of extensively dialyzed sunflower extracts act to stimulate M. macrocarpus AB activity. There is no evidence for the presence of an inhibitory factor for M. macrocarpus kaurene synthetase B activity in sunflower extracts. However, there does appear to be present in the crude preparation of sunflower extract a dialyzable factor(s) that impedes its own B activity. There is little information to date on the nature of these inhibitory and stimulatory factors for kaurene synthetase activity or their possible roles in physiological regulation. The possible presence of such factors should be considered, however, when attempting to evaluate kaurene synthetase activities in extracts of vegetative plants.  相似文献   

20.
The biosynthesis of 7β-hydroxy- and 7β,18-dihydroxy-kaurenolides from ent-kaur-16-en-19-oic acid has been investigated by incubating unlabelled  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号