首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li C  Salditt T 《Biophysical journal》2006,91(9):3285-3300
We have investigated the structure of lipid bilayers containing varied molar ratios of different lipids and the antimicrobial peptides magainin and alamethicin. For this structural study, we have used x-ray reflectivity on highly aligned solid-supported multilamellar lipid membranes. The reflectivity curves have been analyzed by semi-kinematical reflectivity theory modeling the bilayer density profile rho(z). Model simulations of the reflectivity curves cover a large range of vertical momentum transfer q(z), and yield excellent agreement between data and theory. The structural changes observed as a function of the molar peptide/lipid concentration P/L are discussed in a comparative way.  相似文献   

2.
The effect of the small anesthetic molecule, benzyl alcohol, on the structure of various bilayer system has been studied by optical, electrical, and x-ray diffraction techniques. We find that the modifications in bilayer thickness caused by benzyl alcohol differ dramatically for planar (or black lipid) bilayers containing solvent, planar bilayers containing little or no solvent, and vesicular bilayers. Benzyl alcohol increases the thickness of planar bilayers containing n-alkane solvents, yet decreases the thickness of "solvent-free" planar bilayers. The effect of benzyl alcohol on vesicular bilayers below the phase transition temperature also depends on whether solvent is present in the bilayers. Without solvent, gel-state bilayers are reduced in thickness by benzyl alcohol, whereas in the presence of solvent, the thickness is unchanged. Above the phase transition temperature, benzyl alcohol has no measurable effect on vesicular bilayer thickness, whether solvent is present or not. These results indicate that different model membrane systems respond quite differently to a particular anesthetic.  相似文献   

3.
Quantitative structures of the fully hydrated fluid phases of dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) were obtained at 30 degrees C. Data for the relative form factors F(q(z)) for DMPC were obtained using a combination of four methods. 1), Volumetric data provided F(0). 2), Diffuse x-ray scattering from oriented stacks of bilayers provided relative form factors |F(q(z))| for high q(z), 0.22 < q(z) < 0.8 A(-1). 3), X-ray scattering from extruded unilamellar vesicles with diameter 600 A provided |F(q(z))| for low q(z), 0.1 < q(z) < 0.3 A(-1). 4), Previous measurements using a liquid crystallographic x-ray method provided |F(2 pi h/D)| for h = 1 and 2 for a range of nearly fully hydrated D-spacings. The data from method 4 overlap and validate the new unilamellar vesicles data for DMPC, so method 4 is not required for DLPC or future studies. We used hybrid electron density models to obtain structural results from these form factors. Comparison of the model electron density profiles with that of gel phase DMPC provides areas per lipid A, 60.6 +/- 0.5 A(2) for DMPC and 63.2 +/- 0.5 A(2) for DLPC. Constraints on the model provided by volume measurements and component volumes obtained from simulations put the electron density profiles rho(z) and the corresponding form factors F(q(z)) on absolute scales. Various thicknesses, such as the hydrophobic thickness and the steric thickness, are obtained and compared to literature values.  相似文献   

4.
This study reports the solid-state NMR spectroscopic characterization of a long chain phospholipid bilayer system which spontaneously aligns in a static magnetic field. Magnetically aligned phospholipid bilayers or bicelles are model systems which mimic biological membranes for magnetic resonance studies. The oriented membrane system is composed of a mixture of the bilayer forming phospholipid palmitoylstearoylphosphatidylcholine (PSPC) and the short chain phospholipid dihexanoylphosphatidylcholine (DHPC) that breaks up the extended bilayers into bilayered micelles or bicelles that are highly hydrated (approx. 75% aqueous). Traditionally, the shorter 14 carbon chain phospholipid dimyristoylphosphatidylcholine (DMPC) has been utilized as the bilayer forming phospholipid in bicelle studies. Alignment (perpendicular) was observed with a PSPC/DHPC q ratio between 1.6 and 2.0 slightly above T(m) at 50 degrees C with (2)H and (31)P NMR spectroscopy. Paramagnetic lanthanide ions (Yb(3+)) were added to flip the bilayer discs such that the bilayer normal was parallel with the static magnetic field. The approx. 1.8 (PSPC/DHPC) molar ratio yields a thicker membrane due to the differences in the chain lengths of the DMPC and PSPC phospholipids. The phosphate-to-phosphate thickness of magnetically aligned PSPC/DHPC phospholipid bilayers in the L(alpha) phase may enhance the activity and/or incorporation of different types of integral membrane proteins for solid-state NMR spectroscopic studies.  相似文献   

5.
Planar lipid bilayer membranes are formed from mixtures of pure lipids in the absence of non-biological solvents. The solventless bilayers are characterized by a large specific capacitance (586-957 nF/cm2) comparable to that of cell membranes but considerably greater than that of conventional lipid/decane bilayers. Hydrocarbon solvents, such as n-alkanes or squalene, thicken the bilayer. Membrane dielectric thickness is used as an indicator of bilayer lipid composition. For membranes made from pure monoglyceride/triglyceride mixtures the thickness of the solventless lipid bilayer is independent of both the chain length (11-22 carbons) and mol fraction (0.1-0.9) of triglyceride in the bulk mixture. In contrast, the thickness of the bilayer (2.0-3.3 nm) depends strongly upon the length (16-24 carbons) of the monoglyceride component. Molecular volume considerations lead to the conclusion that the bulk lipid mixture disproportionates to yield bilayer membranes composed of nearly pure monoglyceride. The dielectric thickness of the monoglyceride bilayer is consistent with the notion that the lipid fatty acyl chains are fluid.  相似文献   

6.
Summary Monoolein lipid bilayers were formed using a monolayer transfer technique and from dispersions of monoolein in squalene, triolein, 1-chlorodecane and 1-bromodecane. Measurements of optical reflectance and electrical capacitance were used to determine the thickness and dielectric constant of the bilayers. The thickness of the hydrocarbon region of the five bilayer systems ranged from 2.5 to 3.0 nm. Two of the bilayer systems (made from 1-chlorodecane and 1-bromodecane solvents) had a high dielectric constant (2.8 to 2.9) whereas the other bilayer systems had dielectric constants close to that of pure hydrocarbons (2.2). The charge-pulse technique was used to study the transport kinetics of three lipophilic ions and two ion carrier complexes in the bilayers. For the low dielectric constant bilayers, the transport of the lipophilic ions tetraphenylborate, tetraphenylarsonium and dipicrylamine was governed mainly by the thickness of the hydrocarbon region of the bilayer whereas the transport of the ion-carrier complexes proline valinomycin-K+ and valinomycin-Rb+ was nearly independent of thickness. This is consistent with previous studies on thicker monoolein bilayers. The transport of lipophilic anions across bilayers with a high dielectric constant was 20 to 50 times greater than expected on the basis of thickness alone. This agrees qualitatively with predictions based on Born charging energy calculations. High dielectric constant bilayers were three times more permeable to the proline valinomycin-K+ complex than were low dielectric constant bilayers but were just as permeable as low dielectric constant bilayers to the valinomycin-Rb+ complex.  相似文献   

7.
New structural model for mixed-chain phosphatidylcholine bilayers   总被引:13,自引:0,他引:13  
Multilamellar suspensions of a mixed-chain saturated phosphatidylcholine with 18 carbon atoms in the sn-1 chain and 10 carbon atoms in the sn-2 chain have been analyzed by X-ray diffraction techniques. The structural parameters for this lipid in the gel state are quite different than usual phosphatidylcholine bilayer phases. A symmetric and sharp wide-angle reflection at 4.11 A indicates that the hydrocarbon chains in hydrated C(18):C(10)PC bilayers are more tightly packed than in usual gel-state phosphatidylcholine bilayers and that there is no hydrocarbon chain tilt. The lipid thickness is about 12 A smaller than would be expected in a normal bilayer phase, and the area per molecule is 3 times the area per hydrocarbon chain. In addition, the bilayer thickness increases upon melting to the liquid-crystalline state, whereas normal bilayer phases decrease in thickness upon melting. On the basis of these data, we propose a new lipid packing model for gel-state C(18):C(10)PC bilayers in which the long C(18) chain spans the entire width of the hydrocarbon region of the bilayer and the short C(10) chain aligns or abuts with the C(10) chain from the apposing molecule. This model is novel in that there are three hydrocarbon chains per head group at the lipid-water interface. Calculations show that this phase is energetically favorable for mixed-chain lipids provided the long acyl chain is nearly twice the length of the shorter chain. In the liquid-crystalline state C(18):C(10)PC forms a normal fluid bilayer, with two chains per head group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have measured the microscopic isothermal compressibility of dioleoyl- and dimyristyl-phosphatidylcholine multilayers and bilayers as a function of membrane depth by the pressure dependence of the polarization of a series of anthroyloxy fatty acids. In both systems, within experimental error, the compressibility did not change with membrane depth. The magnitudes of the compressibilities matched those of organic solids and those reported for dipalmitoylphosphatidylcholine multilayers from neutron diffraction measurements (Braganza, L. F., and D. L. Worcester. 1986. Biochemistry, 25:7484-7488). The bilayer compressibility decreased with temperature and this decrease was similar with membrane depth consistent with the isotropic thermal expansion of membranes previously observed (Scarlata, S. 1989. Biophys. J. 55:1215-1223). The vertical compressibility in the z direction is much lower than the horizontal (xy planes) for probes that lie parallel to the hydrocarbon chains which is consistent with an increase in bilayer thickness. The compressibility for probes that lie perpendicular to the hydrocarbon chains is more isotropic due to their limited spatial access to the z plane.  相似文献   

9.
Transmembrane segments of ion channels tend to match the hydrophobic thickness of lipid bilayers to minimize mismatch energy and to maintain their proper organization and function. To probe how ion channels respond to mismatch with lipid bilayers of different thicknesses, we examined the single channel activities of BK(Ca) (hSlo alpha-subunit) channels in planar bilayers of binary mixtures of DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) with phosphatidylcholines (PCs) of varying chain lengths, including PC 14:1, PC 18:1, PC 22:1, PC 24:1, and with porcine brain sphingomyelin. Bilayer thickness and structure was measured with small angle x-ray diffraction and atomic force microscopy. The open probability (P(o)) of the BK(Ca) channel was finely tuned by bilayer thickness, first decreasing with increases in bilayer thickness from PC 14:1 to PC 22:1 and then increasing from PC 22:1 to PC 24:1 and to porcine brain sphingomyelin. Single channel kinetic analyses revealed that the mean open time of the channel increased monotonically with bilayer thickness and, therefore, could not account for the biphasic changes in P(o). The mean closed time increased with bilayer thickness from PC 14:1 up to PC 22:1 and then decreased with further increases in bilayer thickness to PC 24:1 and sphingomyelin, correlating with changes in P(o). This is consistent with the proposition that bilayer thickness affects channel activity mainly through altering the stability of the closed state. We suggest a simple mechanical model that combines forces of lateral stress within the lipid bilayer with local hydrophobic mismatch between lipids and the protein to account for the biphasic modulation of BK(Ca) gating.  相似文献   

10.
T J McIntosh  A D Magid  S A Simon 《Biochemistry》1989,28(19):7904-7912
Well-ordered multilamellar arrays of liquid-crystalline phosphatidylcholine and equimolar phosphatidylcholine-cholesterol bilayers have been formed in the nonaqueous solvents formamide and 1,3-propanediol. The organization of these bilayers and the interactions between apposing bilayer surfaces have been investigated by X-ray diffraction analysis of liposomes compressed by applied osmotic pressures up to 6 X 10(7) dyn/cm2 (60 atm). The structure of egg phosphatidylcholine (EPC) bilayers in these solvents is quite different than in water, with the bilayer thickness being largest in water, 3 A narrower in formamide, and 6 A narrower in 1,3-propanediol. The incorporation of equimolar cholesterol increases the thickness of EPC bilayers immersed in each solvent, by over 10 A in the case of 1,3-propanediol. The osmotic pressures of various concentrations of the neutral polymer poly(vinylpyrrolidone) dissolved in formamide or 1,3-propanediol have been measured with a custom-built membrane osmometer. These measurements are used to obtain the distance dependence of the repulsive solvation pressure between apposing bilayer surfaces. For each solvent, the solvation pressure decreases exponentially with distance between bilayer surfaces. However, for both EPC and EPC-cholesterol bilayers, the decay length and magnitude of this repulsive pressure strongly depend on the solvent. The decay length for EPC bilayers in water, formamide, and 1,3-propanediol is found to be 1.7, 2.4, and 2.6 A, respectively, whereas the decay length for equimolar EPC-cholesterol bilayers in water, formamide, and 1,3-propanediol is found to be 2.1, 2.9, and 3.1 A, respectively. These data indicate that the decay length is inversely proportional to the cube root of the number of solvent molecules per unit volume.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Deuterium (2H) NMR was used to study bilayer hydrophobic thickness and mechanical properties when cholesterol and/or synthetic amphiphillic polypeptides were added to deuterated POPC lipid bilayer membranes in the liquid-crystalline (fluid) phase. Smoothed acyl chain orientational order profiles were used to calculate bilayer hydrophobic thickness. Addition of 30 mol% cholesterol to POPC at 25 degrees C increased the bilayer thickness from 2.58 to 2.99 nm. The peptides were chosen to span the bilayers with more or less mismatch between the hydrophobic peptide length and membrane hydrophobic thickness. The average thickness of the pure lipid bilayers was significantly perturbed upon addition of peptide only in cases of large mismatch, being increased (decreased) when the peptide hydrophobic length was greater (less) than that of the pure bilayer, consistent with the "mattress" model of protein lipid interactions (Mouritsen, O.G., and M. Bloom. 1984. Biophys. J. 46:141-153). The experimental results were also used to examine the combined influence of the polypeptides and cholesterol on the orientational order profile and thickness expansivity of the membranes. A detailed model for the spatial distribution of POPC and cholesterol molecules in the bilayers was proposed to reconcile the general features of these measurements with micromechanical measurements of area expansivity in closely related systems. Experiments to test the model were proposed.  相似文献   

12.
Quantitative structures are obtained at 30 degrees C for the fully hydrated fluid phases of palmitoyloleoylphosphatidylcholine (POPC), with a double bond on the sn-2 hydrocarbon chain, and for dierucoylphosphatidylcholine (di22:1PC), with a double bond on each hydrocarbon chain. The form factors F(qz) for both lipids are obtained using a combination of three methods. (1) Volumetric measurements provide F(0). (2) X-ray scattering from extruded unilamellar vesicles provides /F(qz)/ for low q(z). (3) Diffuse X-ray scattering from oriented stacks of bilayers provides /F(qz)/ for high q(z). Also, data using method (2) are added to our recent data for dioleoylphosphatidylcholine (DOPC) using methods (1) and (3); the new DOPC data agree very well with the recent data and with (4) our older data obtained using a liquid crystallographic X-ray method. We used hybrid electron density models to obtain structural results from these form factors. The result for area per lipid (A) for DOPC 72.4 +/- 0.5 A(2) agrees well with our earlier publications, and we find A = 69.3 +/- 0.5 A2 for di22:1PC and A = 68.3 +/- 1.5 A2 for POPC. We obtain the values for five different average thicknesses: hydrophobic, steric, head-head, phosphate-phosphate and Luzzati. Comparison of the results for these three lipids and for our recent dimyristoylphosphatidylcholine (DMPC) determination provides quantitative measures of the effect of unsaturation on bilayer structure. Our results suggest that lipids with one monounsaturated chain have quantitative bilayer structures closer to lipids with two monounsaturated chains than to lipids with two completely saturated chains.  相似文献   

13.
A set of 49 protein nanopore-lipid bilayer systems was explored by means of coarse-grained molecular-dynamics simulations to study the interactions between nanopores and the lipid bilayers in which they are embedded. The seven nanopore species investigated represent the two main structural classes of membrane proteins (α-helical and β-barrel), and the seven different bilayer systems range in thickness from ∼28 to ∼43 Å. The study focuses on the local effects of hydrophobic mismatch between the nanopore and the lipid bilayer. The effects of nanopore insertion on lipid bilayer thickness, the dependence between hydrophobic thickness and the observed nanopore tilt angle, and the local distribution of lipid types around a nanopore in mixed-lipid bilayers are all analyzed. Different behavior for nanopores of similar hydrophobic length but different geometry is observed. The local lipid bilayer perturbation caused by the inserted nanopores suggests possible mechanisms for both lipid bilayer-induced protein sorting and protein-induced lipid sorting. A correlation between smaller lipid bilayer thickness (larger hydrophobic mismatch) and larger nanopore tilt angle is observed and, in the case of larger hydrophobic mismatches, the simulated tilt angle distribution seems to broaden. Furthermore, both nanopore size and key residue types (e.g., tryptophan) seem to influence the level of protein tilt, emphasizing the reciprocal nature of nanopore-lipid bilayer interactions.  相似文献   

14.
Magnetically oriented lipid/detergent bilayers are potentially useful for studies of membrane-associated molecules and complexes using x-ray scattering and nuclear magnetic resonance (NMR). To establish whether the system is a reasonable model of a phospholipid bilayer, we have studied the system using x-ray solution scattering to determine the bilayer thickness, interparticle spacing, and orientational parameters for magnetically oriented lipid bilayers. The magnetically orientable samples contain the phospholipid L-alpha-dilauroylphosphatidylcholine (DLPC) and the bile salt analog 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) in a 3:1 molar ratio in 70% water (w/v) and are similar to magnetically orientable samples used as NMR media for structural studies of membrane-associated molecules. A bilayer thickness of 30 A was determined for the DLPC/CHAPSO particles, which is the same as the bilayer thickness of pure DLPC vesicles, suggesting that the CHAPSO is not greatly perturbing the lipid bilayer. These data, as well as NMR data on molecules incorporated in the oriented lipid particles, are consistent with the sample consisting of reasonably homogeneous and well dispersed lipid particles. Finally, the orientational energy of the sample suggests that the size of the cooperatively orienting unit in the samples is 2 x 10(7) phospholipid molecules.  相似文献   

15.
Gramicidin A (gA) is a 15-amino-acid antibiotic peptide with an alternating L-D sequence, which forms (dimeric) bilayer-spanning, monovalent cation channels in biological membranes and synthetic bilayers. We performed molecular dynamics simulations of gA dimers and monomers in all-atom, explicit dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dioleoylphosphatidylcholine (DOPC), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers. The variation in acyl chain length among these different phospholipids provides a way to alter gA-bilayer interactions by varying the bilayer hydrophobic thickness, and to determine the influence of hydrophobic mismatch on the structure and dynamics of both gA channels (and monomeric subunits) and the host bilayers. The simulations show that the channel structure varied little with changes in hydrophobic mismatch, and that the lipid bilayer adapts to the bilayer-spanning channel to minimize the exposure of hydrophobic residues. The bilayer thickness, however, did not vary monotonically as a function of radial distance from the channel. In all simulations, there was an initial decrease in thickness within 4–5 Å from the channel, which was followed by an increase in DOPC and POPC or a further decrease in DLPC and DMPC bilayers. The bilayer thickness varied little in the monomer simulations—except one of three independent simulations for DMPC and all three DLPC simulations, where the bilayer thinned to allow a single subunit to form a bilayer-spanning water-permeable pore. The radial dependence of local lipid area and bilayer compressibility is also nonmonotonic in the first shell around gA dimers due to gA-phospholipid interactions and the hydrophobic mismatch. Order parameters, acyl chain dynamics, and diffusion constants also differ between the lipids in the first shell and the bulk. The lipid behaviors in the first shell around gA dimers are more complex than predicted from a simple mismatch model, which has implications for understanding the energetics of membrane protein-lipid interactions.  相似文献   

16.
Two alternative mechanisms are frequently used to describe ionic permeation of lipid bilayers. In the first, ions partition into the hydrophobic phase and then diffuse across (the solubility-diffusion mechanism). The second mechanism assumes that ions traverse the bilayer through transient hydrophilic defects caused by thermal fluctuations (the pore mechanism). The theoretical predictions made by both models were tested for halide anions by measuring the permeability coefficients for chloride, bromide, and iodide as a function of bilayer thickness, ionic radius, and sign of charge. To vary the bilayer thickness systematically, liposomes were prepared from monounsaturated phosphatidylcholines (PC) with chain lengths between 16 and 24 carbon atoms. The fluorescent dye MQAE (N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide) served as an indicator for halide concentration inside the liposomes and was used to follow the kinetics of halide flux across the bilayer membranes. The observed permeability coefficients ranged from 10(-9) to 10(-7) cm/s and increased as the bilayer thickness was reduced. Bromide was found to permeate approximately six times faster than chloride through bilayers of identical thickness, and iodide permeated three to four times faster than bromide. The dependence of the halide permeability coefficients on bilayer thickness and on ionic size were consistent with permeation of hydrated ions by a solubility-diffusion mechanism rather than through transient pores. Halide permeation therefore differs from that of a monovalent cation such as potassium, which has been accounted for by a combination of the two mechanisms depending on bilayer thickness.  相似文献   

17.
This review details how bilayer structural/elastic properties impact three distinct areas of biological significance. First, the partitioning of melittin into bilayers and melittin-induced bilayer leakage depended strongly on bilayer composition. The incorporation of cholesterol into phosphatidylcholine bilayers decreased melittin-induced leakage from 73 to 3%, and bilayers composed of lipopolysaccharide (LPS), the main lipid on the surface of Gram-negative bacteria, also had low (3%) melittin-induced leakage. Second, transbilayer peptides of different hydrophobic lengths were largely excluded from bilayer microdomains (“rafts”) enriched in sphingomyelin (SM) and cholesterol, even when the length of the transbilayer peptide domain matched the hydrocarbon thickness of the raft bilayer. This is likely due to the large area compressibility modulus of SM:cholesterol bilayers. Third, the major water barrier of skin, the extracellular lamellae of the stratum corneum, was found to contain tightly packed asymmetric lipid bilayers with cholesterol located preferentially on one side of the bilayer and a unique skin ceramide containing an unsaturated acyl chain on the opposite side. We argue that, in each of these three areas, key factors are differences in lipid hydrocarbon chain packing for different lipids, particularly the tight hydrocarbon chain packing caused by cholesterol’s strong interaction with saturated chains.  相似文献   

18.
We examined the permeabilization of lipid bilayers by the beta-sheet, cyclic antimicrobial decapeptide gramicidin S (GS) in phospholipid bilayers formed either by mixtures of zwitterionic diphytanoylphosphatidylcholine and anionic diphytanoylphosphatidylglycerol or by single zwitterionic unsaturated phosphatidylcholines having various hydrocarbon chain lengths, with and without cholesterol. In the zwitterionic bilayers formed by the phosphatidylcholines, without or with cholesterol, the peptide concentrations and membrane potentials required to initiate membrane permeabilization vary little as function of bilayer thickness and cholesterol content. In all the systems tested, the GS-induced transient ion conductance events exhibit a broad range of conductances, which are little affected by the bilayer composition or thickness. In the zwitterionic phosphatidylcholine bilayers, the effect of GS does not depend on the polarity of the transmembrane potential; however, in bilayers formed from mixtures of phosphatidylcholines and anionic phospholipids, the polarity of the transmembrane potential becomes important, with the GS-induced conductance events being much more frequent when the GS-containing solution is positive relative to the GS-free solution. Overall, these results suggest that GS does not form discrete, well-defined, channel-like structures in phospholipid bilayers, but rather induces a wide variety of transient, differently sized defects which serve to compromise the bilayer barrier properties for small electrolytes.  相似文献   

19.
The fully hydrated liquid crystalline phase of the dimyristoylphosphatidycholine lipid bilayer at 30 degrees C was simulated using molecular dynamics with the CHARMM potential for five surface areas per lipid (A) in the range 55-65 A(2) that brackets the previously determined experimental area 60.6 A(2). The results of these simulations are used to develop a new hybrid zero-baseline structural model, denoted H2, for the electron density profile, rho(z), for the purpose of interpreting x-ray diffraction data. H2 and also the older hybrid baseline model were tested by fitting to partial information from the simulation and various constraints, both of which correspond to those available experimentally. The A, rho(z), and F(q) obtained from the models agree with those calculated directly from simulation at each of the five areas, thereby validating this use of the models. The new H2 was then applied to experimental dimyristoylphosphatidycholine data; it yields A = 60.6 +/- 0.5 A(2), in agreement with the earlier estimate obtained using the hybrid baseline model. The electron density profiles also compare well, despite considerable differences in the functional forms of the two models. Overall, the simulated rho(z) at A = 60.7 A(2) agrees well with experiment, demonstrating the accuracy of the CHARMM lipid force field; small discrepancies indicate targets for improvements. Lastly, a simulation-based model-free approach for obtaining A is proposed. It is based on interpolating the area that minimizes the difference between the experimental F(q) and simulated F(q) evaluated for a range of surface areas. This approach is independent of structural models and could be used to determine structural properties of bilayers with different lipids, cholesterol, and peptides.  相似文献   

20.
Under physiological conditions, multicomponent biological membranes undergo structural changes which help define how the membrane functions. An understanding of biomembrane structure-function relations can be based on knowledge of the physical and chemical properties of pure phospholipid bilayers. Here, we have investigated phase transitions in dipalmitoylphosphatidylcholine (DPPC) and dioleoylphosphatidylcholine (DOPC) bilayers. We demonstrated the existence of several phase transitions in DPPC and DOPC mica-supported bilayers by both atomic force microscopy imaging and force measurements. Supported DPPC bilayers show a broad L(beta)-L(alpha) transition. In addition to the main transition we observed structural changes both above and below main transition temperature, which include increase in bilayer coverage and changes in bilayer height. Force measurements provide valuable information on bilayer thickness and phase transitions and are in good agreement with atomic force microscopy imaging data. A De Gennes model was used to characterize the repulsive steric forces as the origin of supported bilayer elastic properties. Both electrostatic and steric forces contribute to the repulsive part of the force plot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号