首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the role of peripheral chemoreceptor activity on the hypoxic and hypercapnic ventilatory drives in rabbits with induced hypothyroidism. Experiments were carried out in control and hypothyroid rabbits. Hypothyroidism was induced by an administration of an iodide-blocker, methimazole in food (75 mg/100 g food) for ten weeks. At the end of the tenth week, triiodothyronine (T3) and thyroxine (T4) levels significantly decreased (P<0.001) while thyroid stimulating hormone (TSH) increased (P<0.001). Tidal volume (VT), respiratory frequency (f/min), ventilation minute volume (VE) and systemic arterial blood pressure (BP) were recorded during the breathing of the normoxic, hypoxic (8% O2-92% N2) and hypercapnic (6% CO2-Air) gas mixtures, in the anaesthetised rabbits of both groups. At the end of each experimental phase, PaO2, PaCO2, and pHa were measured. The same experimental procedure was repeated after peripheral chemoreceptor denervation in both groups. VT significantly decreased in some of the rabbits with hypothyroidism during the breathing of the hypoxic gas mixture (nonresponsive subgroup) (P<0.05). After chemodenervation, a decrease in VT was observed in this nonresponsive subgroup during normoxia (P<0.05). The percent decrease in VT in nonresponsive subgroup of hypothyroid rabbits after chemodenervation was lower than that of the chemodenervated control animals (P<0.01). When these rabbits with hypothyroidism were allowed to breath the hypercapnic gas mixtures, increases in VT and VE were not significant. In conclusion, although there is a decrease in peripheral chemoreceptor activity in hypothyroidism, it does not seem to be the only cause of decrease in ventilatory drive during hypoxia and hypercapnia.  相似文献   

2.
The purpose of this study was to investigate the stimulatory effect of hypoxia on the secretion of serotonin by neuroepithelial bodies (NEB) as well as to determine the relation between its level and changes in pulmonary arterial pressure (PAP) and also to determinate the effect of serotonin antagonists (pizotifen and methysergide) on the responses of pulmonary and systemic arterial pressures. The experiments were carried out in peripheral chemoreceptor-denervated dogs anesthetized with Na penthabarbital (30 mg/kg i.v.). On the breathing of normoxic and hypoxic (7% O2-93% N2) gas mixtures and on the injection of KCN (80 microg/kg i.v.), PAP, systemic arterial blood pressure (BP), tidal volume (VT), respiratory frequency (f/min), ventilation minute volume (VE) were determined. Also PAP and BP were recorded before and after the injection of pizotifen (0.5 mg/kg i.v.) and methysergide (1 mg/kg i.v.) during normoxic or hypoxic gas mixture breathing. At the end of each experimantal phase, serotonin level, PaO2, PaCO2 and pHa values in blood samples obtained from left ventricle and femoral artery were determined. On the breathing of the hypoxic gas mixture of the chemodenervated dogs, VT, VE and BP significantly decreased (P < 0.001, P < 0.001, P < 0.01). The mean value of PAP and serotonin levels (ventricular and femoral) were found significantly increased when compared with the corresponding normoxic values (P < 0.001, P < 0.05). On the other hand, injection of KCN produced no significant changes in PAP, serotonin levels, BP and respiratory parameters. After the injection of pizotifen, PAP was significantly increased in hypoxia (P < 0.01). After the injection of methysergide, the response of PAP was completely abolished during the breathing of hypoxic gas mixture. The finding of the abolition of response of PAP to hypoxia after the injection of methysergide indicates that serotonin release from NEB may be responsible for the elevation of PAP in hypoxic hypoxia.  相似文献   

3.
Long-term neurochemical changes are responsible for therapeutic actions of fluoxetine. The role of increased central concentration of serotonin by inhibiting its re-uptake via fluoxetine on the central hypercapnic ventilatory response is complex and little is known. We aimed to research the effect of acute intracerebroventricular (ICV) injection of fluoxetine on hypercapnic ventilatory response in the absence of peripheral chemoreceptor impulses and the role of 5-HT2 receptors on responses. Eighteen anesthetized albino rabbits were divided as Fluoxetine and Ketanserin groups. For ICV administration of fluoxetine and ketanserin, a cannula was placed in the left lateral ventricle by the stereotaxic method. Respiratory frequency (fR), tidal volume (V(T)) and ventilation minute volume (V(E)) were recorded in both groups. ICV fluoxetine (10.12 mmol/kg) injection during normoxia caused significant increases in V(T) and V(E) (both P < 0.01) in the fluoxetine group. When the animals were switched to hypercapnia f/min, V(T) and V(E) increased significantly. The increases in percentage values in V(T) and V(E) in Fluoxetine + Hypercapnia phase were higher than those during hypercapnia alone (P < 0.01 and P < 0.05, respectively). On blocking of 5-HT2 receptors by ketanserin (0.25 mmol/kg), the ventilatory response to Fluoxetine was abolished and the degree of increases in V(T) and V(E) in the Ketanserin + Hypercapnia phase were lower than those during hypercapnia alone (P < 0.01 and P < 0.001, respectively). We concluded that acute central fluoxetine increases normoxic ventilation and also augments the stimulatory effect of hypercapnia on respiratory neuronal network by 5-HT2 receptors in the absence of peripheral chemoreceptor impulses.  相似文献   

4.
中枢β—内啡肽和5—羟色胺在低氧通气调控中的关系   总被引:4,自引:0,他引:4  
许铁  胡旭初 《生理学报》1991,43(6):589-593
实验在去双侧外周化学感受器传入的麻醉雄性家兔上进行。给动物吸低氧混合气(10%O_2于N_2中)导致通气抑制后,从动物侧脑室注入β-内啡肽拮抗剂纳洛酮使抑制的通气被“翻转”;注入拟似剂羟甲芬太尼则使抑制更加深化。此时中枢5-羟色胺含量均较给药前明显升高。给动物注入外源性5-羟色胺后,中枢β-内啡肽含量较给药前明显下降,此时通气回复至对照水平。结果提示:中枢β-内啡肽系统是引起低氧通气抑制的基本和直接因素,而5-羟色胺系统则是作为一种神经调质,通过调制其β-内啡肽活动而间接对低氧通气反应产生影响。  相似文献   

5.
Recent data suggest that the increase in ventilation during hypoxia may be related to the release of the excitatory amino acid neurotransmitter glutamate centrally. To further investigate this, we studied the effects of MK-801, a selective noncompetitive N-methyl-D-aspartate receptor antagonist, on the hypoxic ventilatory response in lightly anesthetized spontaneously breathing intact dogs. The cardiopulmonary effects of sequential ventriculocisternal perfusion (VCP) at the rate of 1 ml/min with mock cerebrospinal fluid (CSF, control) and MK-801 (2 mM) were compared during normoxia and 8 min of hypoxic challenge with 12% O2. Minute ventilation (VE), tidal volume (VT), and respiratory frequency (f) were recorded continuously, and hemodynamic parameters [heart rate (HR), blood pressure (MAP), cardiac output (CO), pulmonary arterial pressure, and pulmonary capillary wedge pressure] were measured periodically. Each dog served as its own baseline control before and after each period of sequential VCP under the two different O2 conditions. During 15 min of normoxia, there were no significant changes in the cardiopulmonary parameters with mock CSF VCP, whereas with MK-801 VCP for 15 min, VE decreased by approximately 27%, both by reductions in VT and f (17 and 9.5%, respectively). HR, MAP, and CO were unchanged. During 8 min of hypoxia with mock CSF VCP, VE increased by 171% associated with increased VT and f (25 and 125%, respectively). HR, MAP, and CO were likewise augmented. In contrast, the hypoxic response during MK-801 VCP was characterized by an increased VE of 84%, mainly by a rise in f by 83%, whereas the VT response was abolished. The cardiovascular excitation was also inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The contribution of the carotid body chemoreceptor to postnatal maturation of breathing was evaluated in lambs from 7 to 70 days of age. The study was conducted by comparing the eupneic ventilation and resting pneumograms in intact conscious lambs with those of lambs that were carotid body chemodenervated (CBD) at birth. In comparison to the 1-wk-old intact lambs, the CBD lambs had significant decreases in minute ventilation (VE, 313 vs. 517 ml/kg), tidal volume (VT, 7.2 vs. 10.5 ml/kg), respiratory rate (f, 44 vs. 51 breaths/min), and occlusion pressure (P0.1, 2.8 vs. 7.2 cmH2O). Arterial PO2's were 59 vs. 75 Torr (P less than 0.05) and arterial PCO2's 47 vs. 36 Torr (P less than 0.05), respectively, in CBD and intact lambs. In intact lambs from 7 to 70 days, resting VE decreased progressively from 517 to 274 ml/kg (P less than 0.01) due to a fall in VT, mean inspiratory flow (VT/TI), and f, whereas the ratio of inspiratory time to total breath duration remained constant. P0.1 decreased from 7.2 to 3.9 cmH2O from 7 to 42 days. In contrast the CBD lambs experienced only minimal changes in VE, VT, VT/TI, and f during the same period. VE only decreased from 313 to 218 and P0.1 from 2.8 to 2.4 cmH2O. In contrast to that of intact lambs the resting pneumogram of CBD lambs remained relatively fixed from 7 to 70 days. Three CBD lambs died unexpectedly, without apparent cause, in the 4th and 5th wk of life.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
This study investigated whether changes in GABA-mediated neurotransmission within the nucleus of the solitary tract (NTS) contribute to the changes in breathing (resting ventilation and the acute HVR) that occur following exposure to chronic hypoxia (CH). Rats were exposed to 9 days of hypobaric hypoxia (0.5 atm) and then subjected to acute hypoxic breathing trials before and after bilateral microinjections of GABA, bicuculline (a GABAA-receptor antagonist), or bicuculline plus CGP-35348 (a GABAB receptor antagonist) into the caudal regions of the NTS. Breathing was measured using whole body plethysmography. CH caused an increase in resting ventilation when the animals were breathing 30% O2 but did not alter ventilation during acute hypoxia (10% O2). GABA alone had no effect on breathing in either the control or chronically hypoxic rats. Bicuculline and bicuculline/CGP had no effect on breathing in control rats. Following CH, bicuculline and bicuculline/CGP reduced minute ventilation (VI) during acute exposure to 30% O2 but had no effect during acute exposure to 10% O2. The bicuculline-induced reduction in VI resulted from a decrease in breathing frequency (fR) and tidal volume (VT). The bicuculline/CGP-induced reduction in VI was due to a decrease in fR with no change in VT. The results suggest that changes in GABA receptor-mediated neurotransmission, within the NTS, are involved in the increase in resting ventilation that occurs following CH.  相似文献   

8.
Saiki C  Miura A  Furuya H  Matsumoto S 《Life sciences》2007,80(13):1206-1212
This study was designed to examine how systemic administration of an N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, altered respiratory timing in unanesthetized rats under normoxia and hypoxia. To detect fine changes in inspiratory time (TI) and expiratory time (TE), and cycle duration (TTOT), we prepared a diaphragmatic electromyogram (EMGdia). Diaphragm electrodes and arterial and venous catheters were inserted into Wistar rats (n = 8) under pentobarbital anesthesia. The next day, EMGdia was recorded before and after intravenous administration of MK-801 (3 mg/kg) under normoxia and hypoxia (12% O2) without anesthesia, and the respiratory timing (TI, TE, TTOT), respiratory frequency (fR), and amplitude of the integrated EMGdia were measured. Arterial blood gases (ABGs), mean arterial pressure (MAP), and heart rate (fH) were also measured with the EMGdia. Under normoxia, MK-801 increased fR owing to a significant decrease in TE, and elevated both MAP and fH. Under hypoxia, MK-801 suppressed an increase in fR owing to a significant increase in TI, and did not accelerate fH. In both gaseous conditions, on ABGs, MK-801 did not alter partial pressure of O2 (PaO2) or CO2 (PaCO2), and slightly decreased pH (but not less than 7.4). MK-801 significantly decreased hypoxic response (%change from normoxia) in fR, and increased that in EMGdia amplitude, and did not alter a total ventilatory index (fRxEMGdia amplitude). The results suggest that an NMDA receptor-mediated mechanism partially determines fR through significant alterations in respiratory timing, particularly in which the hypoxic ventilatory response was obtained in unanesthetized rats.  相似文献   

9.
This study determined whether "living high-training low" (LHTL)-simulated altitude exposure increased the hypoxic ventilatory response (HVR) in well-trained endurance athletes. Thirty-three cyclists/triathletes were divided into three groups: 20 consecutive nights of hypoxic exposure (LHTLc, n = 12), 20 nights of intermittent hypoxic exposure (four 5-night blocks of hypoxia, each interspersed with 2 nights of normoxia, LHTLi, n = 10), or control (Con, n = 11). LHTLc and LHTLi slept 8-10 h/day overnight in normobaric hypoxia (approximately 2,650 m); Con slept under ambient conditions (600 m). Resting, isocapnic HVR (DeltaVE/DeltaSp(O(2)), where VE is minute ventilation and Sp(O(2)) is blood O(2) saturation) was measured in normoxia before hypoxia (Pre), after 1, 3, 10, and 15 nights of exposure (N1, N3, N10, and N15, respectively), and 2 nights after the exposure night 20 (Post). Before each HVR test, end-tidal PCO(2) (PET(CO(2))) and VE were measured during room air breathing at rest. HVR (l. min(-1). %(-1)) was higher (P < 0.05) in LHTLc than in Con at N1 (0.56 +/- 0.32 vs. 0.28 +/- 0.16), N3 (0.69 +/- 0.30 vs. 0.36 +/- 0.24), N10 (0.79 +/- 0.36 vs. 0.34 +/- 0.14), N15 (1.00 +/- 0.38 vs. 0.36 +/- 0.23), and Post (0.79 +/- 0.37 vs. 0.36 +/- 0.26). HVR at N15 was higher (P < 0.05) in LHTLi (0.67 +/- 0.33) than in Con and in LHTLc than in LHTLi. PET(CO(2)) was depressed in LHTLc and LHTLi compared with Con at all points after hypoxia (P < 0.05). No significant differences were observed for VE at any point. We conclude that LHTL increases HVR in endurance athletes in a time-dependent manner and decreases PET(CO(2)) in normoxia, without change in VE. Thus endurance athletes sleeping in mild hypoxia may experience changes to the respiratory control system.  相似文献   

10.
Respiratory long-term facilitation (LTF), a serotonin-dependent, persistent augmentation of respiratory activity after episodic hypoxia, is enhanced by pretreatment of chronic intermittent hypoxia (CIH; 5 min 11-12% O2-5 min air, 12 h/night for 7 nights). The present study examined the effects of methysergide (serotonin 5-HT1,2,5,6,7 receptor antagonist), ketanserin (5-HT2 antagonist), or clozapine (5-HT2,6,7 antagonist) on both ventilatory LTF and the CIH effect on ventilatory LTF in conscious male adult rats to determine which specific receptor subtype(s) is involved. In untreated rats (i.e., animals not exposed to CIH), LTF, induced by five episodes of 5-min poikilocapnic hypoxia (10% O2) separated by 5-min normoxic intervals, was measured twice by plethysmography. Thus the measurement was conducted 1-2 days before (as control) and approximately 1 h after systemic injection of methysergide (1 mg/kg ip), ketanserin (1 mg/kg), or clozapine (1.5 mg/kg). Resting ventilation, metabolic rate, and hypoxic ventilatory response (HVR) were unchanged, but LTF ( approximately 18% above baseline) was eliminated by each drug. In CIH-treated rats, LTF was also measured twice, before and approximately 8 h after CIH. Vehicle, methysergide, ketanserin, or clozapine was injected approximately 1 h before the second measurement. Neither resting ventilation nor metabolic rate was changed after CIH and/or any drug. HVR was unchanged after methysergide and ketanserin but reduced in four of seven clozapine rats. The CIH-enhanced LTF ( approximately 28%) was abolished by methysergide and clozapine but only attenuated by ketanserin (to approximately 10%). Collectively, these data suggest that ventilatory LTF requires 5-HT2 receptors and that the CIH effect on LTF requires non-5-HT2 serotonin receptors, probably 5-HT6 and/or 5-HT7 subtype(s).  相似文献   

11.
Amyothrophic lateral sclerosis (ALS) is a progressive, lethal neuromuscular disease that is associated with the degeneration of cortical and spinal motoneurons, leading to atrophy of limb, axial, and respiratory muscles. Patients with ALS invariably develop respiratory muscle weakness and most die from pulmonary complications. Overexpression of superoxide dismutase 1 (SOD1) gene mutations in mice recapitulates several of the clinical and pathological characteristics of ALS and is therefore a valuable tool to study this disease. The present study is intended to evaluate an age-dependent progression of respiratory complications in SOD1(G93A) mutant mice. In each animal, baseline measurements of breathing pattern [i.e., breathing frequency and tidal volume (VT)], minute ventilation (VE), and metabolism (i.e., oxygen consumption and carbon dioxide production) were repeatedly sampled at variable time points between 10 and 20 wk of age with the use of whole-body plethysmographic chambers. To further characterize the neurodegeneration of breathing, VE was also measured during 5-min challenges of hypercapnia (5% CO(2)) and hypoxia (10% O(2)). At baseline, breathing characteristics and metabolism remained relatively unchanged from 10 to 14 wk of age. From 14 to 18 wk of age, there were significant (P < 0.05) increases in baseline VT, VE, and the ventilatory equivalent (VE/oxygen consumption). After 18 wk of age, there was a rapid decline in VE due to significant (P < 0.05) reductions in both breathing frequency and VT. Whereas little change in hypoxic VE responses occurred between 10 and 18 wk, hypercapnic VE responses were significantly (P < 0.05) elevated at 18 wk due to an augmented VT response. Like baseline breathing characteristics, hypercapnic VE responses also declined rapidly after 18 wk of age. The phenotypic profile of SOD1(G93A) mutant mice was apparently unique because similar changes in respiration and metabolism were not observed in SOD1 controls. The present results outline the magnitude and time course of respiratory complications in SOD1(G93A) mutant mice as the progression of disease occurs in this mouse model of ALS.  相似文献   

12.
Ventilation volume Vg - mlH2O.min-1 ), respiratory frequency (fR - breaths.min-1) and tidal volume (VT - mlH2O.breath-1 ) were measured in a group of Piaractus mesopotamicus (650.4 +/- 204.7 g; n = 10) during normoxia and in response to graded hypoxia. The fR was maintained constant, around 100 breaths.min-1, from normoxia until the O2 tension of the inspired water (PiO2) of 53 mmHg, below which it increased progressively, reaching maximum values (157.6 +/- 6.3 breaths.min-1) at 10 mmHg. The VT rose from 1.8 +/- 0.1 to 6.0 +/- 0.5 and 5.7 +/- 0.4 mlH2O. breath-1 in the PiO2 of 16 and 10 mmHg, respectively. The Vg increased from 169.3 11.0 (normoxia) to 940.1 +/- 85.6 mlH2O. min-1 at the PiO2 of 16 mmHg, below which it also tended to decrease. A second group of fish (29 to 1510.0 g, n = 34) was used for the evaluation of allometric relationships concerning ventilation and dimensions of the buccal and opercular cavities. At maximum Vg, the VT corresponded to 93.2 +/- 2.4% of the buccal volume and 94.9 2.3% of the opercular volume, suggesting that the Vg of P. mesopotamicus is limited by the volumes of buccal and opercular cavities in severe hypoxia.  相似文献   

13.
To investigate the hypothesis that the impaired respiratory drive noted in morbid obesity was attributable to altered dopaminergic mechanisms acting on peripheral and/or central chemoreflex sensitivity, seven obese and seven lean Zucker rats were studied at 11 wk of age. Ventilation (VE) was measured by the barometric technique during hyperoxic (100% O(2)), normoxic (21% O(2)), hypoxic (10% O(2)), and hypercapnic (7% CO(2)) exposures after the administration of vehicle (control), haloperidol [Hal, 1 mg/kg, a central and peripheral dopamine (Da) receptor antagonist], or domperidone (Dom, 0.5 mg/kg, a peripheral Da receptor antagonist). In both lean and obese rats, Hal increased tidal volume and decreased respiratory frequency during hyperoxia or normoxia, resulting in an unchanged VE. In contrast, Dom did not affect tidal volume, frequency, or VE during hyperoxia or normoxia. During hypoxia, however, VE significantly increased from 1,132 +/- 136 to 1,348 +/- 98 ml. kg(-1). min(-1) (P < 0.01) after the administration of Dom in obese rats, whereas no change was observed in lean rats. Hal significantly decreased VE during hypoxia compared with control in lean but not obese rats. In both lean and obese rats, Hal decreased VE in response to hypercapnia, whereas Dom had no effect. Our major findings suggest that peripheral chemosensitivity to hypoxia in obese Zucker rats is reduced as a result of an increased dopaminergic receptor modulation in the carotid body.  相似文献   

14.
To study the inhibitory effect of hypoxia on the cold defense mechanism, pigeons were exposed at low ambient temperature (5 degrees C) to various inhaled gas mixtures: normoxia [0.21 fractional concentration of O2 (FIO2)], hypoxia (0.07 FIO2), and normocapnic hypoxia (0.07 FIO2 + 0.045 FICO2). Electromyographic (EMG) activity indicative of shivering thermogenesis was inhibited during hypoxia, and body temperature (Tre) fell by 0.09 degrees C/min. Respiratory frequency (f) and minute ventilation (VE) increased by 143 and 135%, respectively, compared with normoxia, but tidal volume (VT) was not changed. PO2, PCO2, and O2 contents in the arterial and mixed venous blood were decreased and pH was enhanced. During normocapnic hypoxia, shivering EMG was present at approximately 50% of the normoxic intensity; Tre fell by only 0.04 degrees C/min. Arterial and mixed venous PCO2 and pH were the same as during normoxia, but VE increased by 430% because of twofold increases in both f and VT. During normocapnic hypoxia, arterial PO2 and O2 content were higher than during hypoxia alone. We conclude that the persistence of shivering during normocapnic hypoxia is due to maintenance of critical levels of arterial PO2 and O2 content.  相似文献   

15.
The purpose of this study was to determine oxygen uptake (VO2) at various water flow rates and maximal oxygen uptake (VO2max) during swimming in a hypobaric hypoxic environment. Seven trained swimmers swam in normal [N; 751 mmHg (100.1 kPa)] and hypobaric hypoxic [H; 601 mmHg (80.27 kPa)] environments in a chamber where atmospheric pressure could be regulated. Water flow rate started at 0.80 m.s-1 and was increased by 0.05 m.s-1 every 2 min up to 1.00 m.s-1 and then by 0.05 m.s-1 every minute until exhaustion. At submaximal water flow rates, carbon dioxide production (VCO2), pulmonary ventilation (VE) and tidal volume (VT) were significantly greater in H than in N. There were no significant differences in the response of submaximal VO2, heart rate (fc) or respiratory frequency (fR) between N and H. Maximal VE, fR, VT, fc, blood lactate concentration and water flow rate were not significantly different between N and H. However, VO2max under H [3.65 (SD 0.11) l.min-1] was significantly lower by 12.0% (SD 3.4)% than that in N [4.15 (SD 0.18) l.min-1]. This decrease agrees well with previous investigations that have studied centrally limited exercise, such as running and cycling, under similar levels of hypoxia.  相似文献   

16.
The effect of atrial natriuretic peptide (ANP) on histamine-induced bronchoconstriction was studied in vivo (in normoxic and in hypoxic rabbits) and in vitro. Thirty-two anesthetized rabbits, spontaneously breathing room air or 10% O2, received infusions of ANP (20, 40, or 80 ng/min/kg normoxia; 20 ng/min/kg hypoxia) or the vehicle for 100 min. After 75 min of ANP infusion, bronchoconstriction was induced inhaling histamine; respiratory resistance (Rrs) was measured prior to and until 20 min posthistamine. The results show that the histamine-induced increase in Rrs was significantly reduced by ANP 80 ng/kg/min in normoxia, and by ANP 20 ng/kg/min in hypoxia. In vitro, ANP had no effect on tracheal and bronchial smooth muscle precontracted with histamine or acetylcholine. These results show that ANP can decrease a histamine-induced bronchoconstriction in vivo but not in vitro, suggesting an indirect mechanism of action.  相似文献   

17.
The influence of cardiovascular changes on ventilation has been demonstrated in adult animals and humans (Jones, French, Weissman & Wasserman, 1981; Wasserman, Whipp & Castagna 1974). It has been suggested that neonatal hypoxic ventilatory depression may be related to some of the hemodynamic changes that occur during hypoxia (Brown & Lawson, 1988; Darnall, 1985; Suguihara, Bancalari, Bancalari, Hehre & Gerhardt, 1986). To test the possible relationship between the cardiovascular and ventilatory response to hypoxia in the newborn, eleven sedated spontaneously breathing piglets (age: 5.9 +/- 1.6 days; weight: 1795 +/- 317 g; SD) were studied before and after alpha adrenergic blockade with phenoxybenzamine. Minute ventilation (VE) was measured with a pneumotachograph, cardiac output (CO) by thermodilution and total and regional brain blood flow (BBF) with radiolabeled microspheres. Measurements were performed while the animals were breathing room air and after 10 min of hypoxia induced by breathing 10% O2. Hypoxia was again induced one hour after infusion of phenoxybenzamine (6 mg/kg over 30 min). After 10 min of hypoxia, in the absence of phenoxybenzamine, the animals responded with marked increases in VE (P less than 0.001), CO (P less than 0.001), BBF, and brain stem blood flow (BSBF) (P less than 0.02). However, the normal hemodynamic response to hypoxia was eliminated after alpha adrenergic blockade. There were significant decreases in systemic arterial blood pressure, CO, and BBF during hypoxia after phenoxybenzamine infusion; nevertheless, VE increased significantly (P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We determined the effect of acute hypoxia on the ventilatory (VE) and electromyogram (EMG) responses of inspiratory (diaphragm) and expiratory (transversus abdominis) muscles in awake spontaneously breathing ponies. Eleven carotid body-intact (CBI) and six chronic carotid body-denervated (CBD) ponies were studied during normoxia (fractional inspired O2 concn [FIO2] = 0.21) and two levels of hypoxia (FIO2 approximately 0.15 and 0.12; 6-10 min/period). Four CBI and five CBD ponies were also hilar nerve (pulmonary vagal) denervated. Mean VE responses to hypoxia were greater in CBI ponies (delta arterial PCO2 = -4 and -7 Torr in CBI during hypoxic periods; -1 and -2 Torr in CBD). Hypoxia increased the rate of rise and mean activity of integrated diaphragm EMG in CBI (P less than 0.05) and CBD (P greater than 0.05) ponies relative to normoxia. Duration of diaphragm activity was reduced in CBI (P less than 0.05) but unchanged in CBD ponies. During hypoxia in both groups of ponies, total and mean activities per breath of transversus abdominis were reduced (P less than 0.05) without a decrease in rate of rise in activity. Time to peak and total duration of transversus abdominis activity were markedly reduced by hypoxia in CBI and CBD ponies (P less than 0.05). Hilar nerve denervation did not alter the EMG responses to hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We examined the influence of vagal pulmonary receptors exerted on the breathing pattern and inspiratory activities of phrenic nerve and intercostal electromyograms (EMG) during hypoxia in rabbit pups. Animals in their second week of life were anaesthetized with ketamine (50 mg/kg) and acepromazine (3 mg/kg) and tracheostomized. While they breathed spontaneously, we recorded tidal volume (VT), integrated phrenic activity (PHR), integrated external intercostal EMG (INT), and blood pressure (BP). To prevent secondary ventilatory depression, animals were exposed to 12% O2 (balanced with N2) for no longer than 5 min before and after vagotomy. All measurements were taken from 1 min following the onset of hypoxic exposure until the end of the run. During hypoxia, VT, PHR, and INT increased in intact rabbit pups. There was an almost immediate decrease in BP that was maintained during the total period of hypoxia exposure. Hypoxia resulted in inconsistent changes in inspiratory (TI) and expiratory (TE) time in intact animals. Following vagotomy, PHR, INT, VT, BP, and TE responses were the same as in intact animals. However, TI significantly decreased in all animals. In response to hypoxia with and without vagal feedback, INT increased less than PHR in most cases. Qualitatively similar effects of hypoxia were observed in an adult rabbit. The results reveal that the increase in VT and the shortening of TI in response to hypoxia do not depend on vagal feedback in rabbits during the early postnatal period. In fact TI shortening was significant only without vagal feedback.  相似文献   

20.
Episodic hypoxia evokes a sustained augmentation of respiratory motor output known as long-term facilitation (LTF). Phrenic LTF is prevented by pretreatment with the 5-hydroxytryptamine (5-HT) receptor antagonist ketanserin. We tested the hypothesis that 5-HT receptor activation is necessary for the induction but not maintenance of phrenic LTF. Peak integrated phrenic nerve activity (integralPhr) was monitored for 1 h after three 5-min episodes of isocapnic hypoxia (arterial PO(2) = 40 +/- 2 Torr; 5-min hyperoxic intervals) in four groups of anesthetized, vagotomized, paralyzed, and ventilated Sprague-Dawley rats [1) control (n = 11), 2) ketanserin pretreatment (2 mg/kg iv; n = 7), and ketanserin treatment 0 and 45 min after episodic hypoxia (n = 7 each)]. Ketanserin transiently decreased integralPhr, but it returned to baseline levels within 10 min. One hour after episodic hypoxia, integralPhr was significantly elevated from baseline in control and in the 0- and 45-min posthypoxia ketanserin groups. Conversely, ketanserin pretreatment abolished phrenic LTF. We conclude that 5-HT receptor activation is necessary to initiate (during hypoxia) but not maintain (following hypoxia) phrenic LTF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号