首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous studies demonstrated that ricin induces the apoptotic death of U937 cells as evidenced by DNA fragmentation, nuclear morphological changes, and increases in caspase-like activities. In this study, we have found that intracellular NAD(+) and ATP levels decrease in ricin-treated U937 cells and that this decrease is followed by the ricin-mediated protein synthesis inhibition. The PARP inhibitor, 3-aminobenzamide (3-ABA), prevents the depletion in NAD(+) and ATP levels and concomitantly protects U937 cells from the lysis that follows ricin treatment. Hence, the protective action of 3-ABA is due to the inhibition of PARP and does not result from its other pharmacological side effects. Moreover, the enzymatic activity of PARP gradually increases and reaches a maximum level after ricin exposure for 3 h, whereas no significant change in activity was observed in untreated cells. However, 3-ABA has no effect on ricin-mediated DNA fragmentation. In addition, immunoblot analysis revealed that significant PARP cleavage occurred more than 12 h after ricin addition, while DNA fragmentation reached a maximum level within 6 h of incubation. Thus, in the case of ricin-induced apoptosis, it appears that PARP cleavage is not an early apoptotic event associated with the onset of apoptosis. Our results suggest that multiple apoptotic signaling pathways may be triggered by ricin-treatment. Probably, the pathway leading to cell lysis via PARP activation and NAD(+) depletion is independent of the pathway leading to DNA fragmentation in which caspases may be profoundly involved. Other protein synthesis inhibitors, including diphtheria toxin and cycloheximide, were less effective in terms of inducing DNA fragmentation and cytolysis, even at concentrations that cause significant inhibition of protein synthesis. Thus, a specific ricin action mechanism through which ribosomes are inactivated may be responsible for the apoptotic events induced by ricin.  相似文献   

2.
Ribosome inactivating proteins (RIPs) are toxic translation inhibitors that kill eukaryotic cells by arresting protein synthesis at the translocation step. Saporin-6, expressed in the seeds of Saponaria officinalis plant, is a type I RIP comprising of a single polypeptide chain. Saporin is a specific RNA N-glycosidase and it removes a specific adenine residue from a conserved loop of the large rRNA of eukaryotic cells. Saporin-6 is one of the most potent of several isoforms of saporin, obtained from different tissues of the Saponaria plant. In addition to potently inhibiting translation, saporin has been also shown to induce cell death by apoptosis in different cellular models. To elucidate the mechanism of apoptosis induction by saporin, we have investigated the apoptotic pathway triggered by saporin. We have also analyzed whether the inhibition of protein synthesis by the toxin is the trigger for induction of apoptosis. We demonstrate that saporin-6 induces caspase-dependent apoptosis in U937 cells via the mitochondrial or intrinsic pathway. Unlike many other toxins the catalytic N-glycosidase activity of saporin is not required for apoptosis induction, and the apoptosis onset occurs before any significant inhibition of protein synthesis ensues.  相似文献   

3.
We found that the treatment with 1 mM butyric acid for 2 days renders Vero cells highly sensitive to ricin-induced apoptosis reflected by cytolysis concomitant with apoptotic cellular and nuclear morphological changes, DNA fragmentation, and increase in caspase-3 like activity, whereas butyric acid alone had no cytotoxic effect on Vero cells. During the treatment with butyric acid, gradual increase in alkaline phosphatase activity, an indicator for butyric acid-induced differentiation, was observed in Vero cells. Although the potency of ricin-mediated protein synthesis was increased in butyric acid-treated Vero cells as compared to untreated cells, the binding and internalization of ricin to the cells were not much affected. Furthermore, DNA fragmentation caused by other protein synthesis inhibitors such as diphtheria toxin and anisomysin were also highly potentiated in butyric acid-treated Vero cells, whereas the potencies of these toxins to inhibit the protein synthesis were not affected by butyric acid treatment. These results suggest that the apoptosis signaling pathway, which may be triggered by cytotoxic stress response caused by toxins, is sensitized in butyric acid-treated cells, while the pathways leading to the protein synthesis inhibition by these toxins are relatively unchanged. No significant differences in the expression levels of p21, p53, and Bcl-2 proteins were observed between butyric acid-treated and untreated Vero cells. The treatment with ricin resulted in the activation of p38 MAP kinase, and this activation occurred on an accelerated time schedule in butyric acid-treated Vero cells than in untreated cells. The specific inhibitor of p38 MAP kinase SB203580 showed a partial inhibitory effect on ricin-induced apoptosis in control Vero cells, but it was less effective in butyric acid-treated Vero cells. Taken together, our results suggest that butyric acid-treatment may result in sensitization of multiple intracellular signal transduction pathways including apoptotic signaling pathways and p38 MAP kinase pathway.  相似文献   

4.
Several protein toxins, such as the potent plant toxin ricin, enter mammalian cells by endocytosis and undergo retrograde transport via the Golgi complex to reach the endoplasmic reticulum (ER). In this compartment the catalytic moieties exploit the ER-associated degradation (ERAD) pathway to reach their cytosolic targets. Bacterial toxins such as cholera toxin or Pseudomonas exotoxin A carry KDEL or KDEL-like C-terminal tetrapeptides for efficient delivery to the ER. Chimeric toxins containing monomeric plant ribosome-inactivating proteins linked to various targeting moieties are highly cytotoxic, but it remains unclear how these molecules travel within the target cell to reach cytosolic ribosomes. We investigated the intracellular pathways of saporin, a monomeric plant ribosome-inactivating protein that can enter cells by receptor-mediated endocytosis. Saporin toxicity was not affected by treatment with Brefeldin A or chloroquine, indicating that this toxin follows a Golgi-independent pathway to the cytosol and does not require a low pH for membrane translocation. In intoxicated Vero or HeLa cells, ricin but not saporin could be clearly visualized in the Golgi complex using immunofluorescence. The saporin signal was not evident in the Golgi, but was found to partially overlap with that of a late endosome/lysosome marker. Consistently, the toxicities of saporin or saporin-based targeted chimeric polypeptides were not enhanced by the addition of ER retrieval sequences. Thus, the intracellular movement of saporin differs from that followed by ricin and other protein toxins that rely on Golgi-mediated retrograde transport to reach their retrotranslocation site.  相似文献   

5.
We have previously reported that ricin, a toxic lectin that inhibits protein synthesis induced apoptotic cell death. In this study, we have found that isolated ricin CM-B-chain, which has no effect on cellular protein synthesis, induced DNA fragmentation in U937 cells in a dose- and time-dependent manner, albeit it required a longer incubation time and higher concentration than those of holotoxin ricin. Z-Asp-CH2-DCB, a caspase family inhibitor and serine protease inhibitor, 3,4-dichloroisocoumarine (DCI) effectively inhibited the CM-B-chain-mediated DNA fragmentation as well as in ricin. Thus, like ricin, multiple proteases with different substrate specificity may also be involved in the CM-B-chain-mediated apoptotic pathway. Furthermore, BFA inhibited both ricin- and CM-B-chain-mediated DNA fragmentation, suggesting an intracellular vesicle transport system through the Golgi complex may be involved in the apoptotic induction by these proteins as a common feature. On the other hand, cycloheximide (CHA) strongly increased the CM-B-chain-mediated DNA fragmentation, but inhibited ricin-mediated DNA fragmentation. The opposite effects of CHA may reflect the difference in the apoptotic mechanism between ricin and CM-B-chain. In conclusion, our results suggest that ricin-B-chain can induce apoptosis through its lectin activity, but the underlying mechanism may be distinct from that of ricin in which the A-chain contributes profoundly to the apoptotic induction.  相似文献   

6.
In the present study, we compared the abilities of ricin and diphtheria toxin to induce apoptosis in Vero cells. The cytolysis and DNA fragmentation by ricin paralleled its protein synthesis inhibitory activity. However, unlike ricin, diphtheria toxin could induce neither cytolysis nor DNA fragmentation in Vero cells up to very high concentration, in spite of the fact that Vero cells were even more sensitive to protein synthesis inhibition by diphtheria toxin than ricin. Interestingly, coexistence of brefeldin A (BFA) and okadaic acid (OA) significantly enhanced diphtheria toxin-mediated cytolysis and DNA fragmentation without affecting the activity of protein synthesis inhibition. Ammonium chloride almost completely abolished the ability of diphtheria toxin to induce apoptosis in the presence of BFA and OA as well as the protein synthesis inhibitory activity. The mutant CRM 197, which does not catalyze the ADP ribosylation of elongation factor-2 (EF-2), failed to induce apoptosis in Vero cells even in the presence of BFA and OA. Thus, translocation of diphtheria toxin into the cytosol and subsequent enzymatic inactivation of EF-2 may be necessary steps to induce apoptosis. Taken together our results suggest that protein synthesis inhibition by toxins is not sufficient to induce apoptosis, and underlying mechanisms of apoptosis induction may be distinct between ricin and diphtheria toxin. Since a morphological change in the Golgi complex was observed in Vero cells treated with BFA and OA, modulation of the Golgi complex by these reagents may be partly responsible for enhanced apoptosis induction by diphtheria toxin.  相似文献   

7.
The ability of ricin, a type II ribosome-inactivating protein, to induce hepatoma cell (BEL7404) to apoptosis in vitro was examined by fluorescence microscopy, flow cytometry, and DNA fragmentation assay. As a Bcl-2 lacking model, BEL7404 bore unique advantage to study the effect of over-expressing Bcl-2 on the apoptosis induced by the inhibitor of protein synthesis. By establishing a Bcl-2 over-expressing cell line (BEL7404/ Bcl-2), we found that Bcl-2 could promote the survival of the hepatoma cell against ricin insult. The ricin-induced apoptosis of BEL7404 was accompanied by increased expression of Bak and decreased levels of Bcl-xl and Bax. Caspases and PARP cleavage activity were found to be implicated in the death process. Through the inhibitor tests, our results excluded the participation of calcium-dependent proteases or protein kinase C in the apoptotic process induced by ricin, though an elevation of intracellular calcium did occur as an immediate response to ricin treatment. Cycloheximide, another protein synthesis inhibitor, did synergistically enhance rather than inhibit the cytotoxicity of ricin to hepatoma cell BEL7404. Actually, cycloheximide alone was able to induce hepatoma cell BEL7404 to death that could also be inhibited by over-expressing Bcl-2. The elevation of apoptotic protein Bak was discussed to challenge the notion that ricin exerted its cytotoxicity through nonspecific inhibition of all the de novo protein synthesis.  相似文献   

8.
Ricin is a member of the ribosome-inactivating protein (RIP) family of plant and bacterial toxins. In this study we used a high-throughput, cell-based assay to screen more than 118,000 compounds from diverse chemical libraries for molecules that reduced ricin-induced cell death. We describe three compounds, PW66, PW69, and PW72 that at micromolar concentrations significantly delayed ricin-induced cell death. None of the compounds had any demonstrable effect on ricin''s ability to arrest protein synthesis in cells or on ricin''s enzymatic activity as assessed in vitro. Instead, all three compounds appear to function by blocking downstream stress-induced signaling pathways associated with the toxin-mediated apoptosis. PW66 virtually eliminated ricin-induced TNF-α secretion by J774A.1 macrophages and concomitantly blocked activation of the p38 MAPK and JNK signaling pathways. PW72 suppressed ricin-induced TNF-α secretion, but not p38 MAPK and JNK signaling. PW69 suppressed activity of the executioner caspases 3/7 in ricin toxin- and Shiga toxin 2-treated cells. While the actual molecular targets of the three compounds have yet to be identified, these data nevertheless underscore the potential of small molecules to down-regulate inflammatory signaling pathways associated with exposure to the RIP family of toxins.  相似文献   

9.
The fate of the type I ribosome-inactivating protein (RIP) saporin when initially targeted to the endoplasmic reticulum (ER) in tobacco protoplasts has been examined. We find that saporin expression causes a marked decrease in protein synthesis, indicating that a fraction of the toxin reaches the cytosol and inactivates tobacco ribosomes. We determined that saporin is largely secreted but some is retained intracellularly, most likely in a vacuolar compartment, thus behaving very differently from the prototype RIP ricin A chain. We also find that the signal peptide can interfere with the catalytic activity of saporin when the protein fails to be targeted to the ER membrane, and that saporin toxicity undergoes signal sequence-specific regulation when the host cell is subjected to ER stress. Replacement of the saporin signal peptide with that of the ER chaperone BiP reduces saporin toxicity and makes it independent of cell stress. We propose that this stress-induced toxicity may have a role in pathogen defence.  相似文献   

10.
Saporin, a type I ribosome-inactivating protein (RIP), removes adenine residues from the 28S ribosomal RNA as part of a process that leads to inhibition of protein synthesis. However, as shown in this study, neither saporin nor his-tagged saporin (both 0.6-6 pM) exert toxicity on several human cell lines including H-2171, SK-N-SH, HEP-G2, MOLT-3, THP-1, HL-60 and ECV-304. Saporin and his-tagged saporin became highly cytotoxic when they were used in a combined treatment with Soapwort saponins (SA). When combined with SA (2-4 microg/ml) saporin became as cytotoxic as the highly toxic type II RIP rViscumin reflected by an IC50 of 42.5x10(-12) M for saporin and 21.5x10(-12) M for rViscumin. We demonstrated that saporin was internalized via clathrin-mediated endocytosis, followed by the release into the endosomal transport system. Our results indicate that SA triggers this endocytic event rendering the otherwise cell membrane impermeable type I RIP saporin a potent cytotoxin. This effect was not cell line-specific suggesting that saporin exploits a common SA-dependent mechanism to enter cells.  相似文献   

11.
Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type HSV blocks the execution of the cell death program triggered by viral gene products, by the effectors of the immune system such as the Fas and tumor necrosis factor pathways, or by nonspecific stress agents such as either osmotic shock induced by sorbitol or thermal shock. A report from this laboratory showed that caspase inhibitors do not block DNA fragmentation induced by infection with the HSV-1 d120 mutant. To identify the events in programmed cell death induced and blocked by HSV-1, we examined cells infected with wild-type virus or the d120 mutant or cells infected and exposed to sorbitol. We report that: (i) the HSV-1 d120 mutant induced apoptosis by a caspase-3-independent pathway inasmuch as caspase 3 was not activated and DNA fragmentation was not blocked by caspase inhibitors even though the virus caused cytochrome c release and depolarization of the inner mitochondrial membrane. (ii) Cells infected with wild-type HSV-1 exhibited none of the manifestations associated with programmed cell death assayed in these studies. (iii) Uninfected cells exposed to osmotic shock succumbed to caspase-dependent apoptosis inasmuch as cytochrome c was released, the inner mitochondrial potential was lost, caspase-3 was activated, and chromosomal DNA was fragmented. (iv) Although caspase-3 was activated in cells infected with wild-type HSV-1 and exposed to sorbitol, cytochrome c outflow, depolarization of the inner mitochondrial membrane, and DNA fragmentation were blocked. We conclude that although d120 induces apoptosis by a caspase-3-independent pathway, the wild-type virus blocks apoptosis induced by this pathway and also blocks the caspase-dependent pathway induced by osmotic shock. The block in the caspase-dependent pathway may occur downstream of caspase-3 activation.  相似文献   

12.
The protein toxins ricin, abrin, Shiga toxin, and diphtheria toxin were found to induce lysis of several cell lines in a manner characteristic for programmed cell death or apoptosis. The toxins induced DNA degradation, and light and electron microscopical studies revealed that lysis was preceded by reorganization of intracellular vacuoles, cell blebbing, and chromatin condensation both in Vero and in MDCK cells. Cell lysis was efficiently inhibited by cycloheximide and 3-methyladenine (3MA), a specific inhibitor of autophagy. Cycloheximide, which like 3MA inhibits autophagy, protected even when added at a time when the protein synthesis had been blocked by ricin, suggesting that the effect of cycloheximide on cell lysis is independent of its ability to inhibit protein synthesis. Also theophylline and dibutyryl-cGMP had some protective effect, whereas a number of compounds reported to protect against apoptosis in other systems were without protective effects. The data suggest that autophagy is important for the toxin-induced cell lysis.  相似文献   

13.
We have found that a brefeldin A (BFA)-resistant mutant cell line derived from Vero cells (BER-40) is highly resistant to ricin-induced apoptosis as compared with parental Vero cells. In BER-40 cells, all apoptotic events caused by ricin including cytolysis, nuclear morphological changes, and DNA fragmentation occur to a lesser extent than in Vero cells, even though both cell lines show similar sensitivities to ricin-mediated inhibition of protein synthesis. Furthermore, no significant apoptotic signaling events, such as increases in caspase-3 and -9-like activities, release of cytochrome c from mitochondria, or the cleavage of PARP, were observed in BER-40 cells under the conditions at which these changes were evident in Vero cells. Intracellular biochemical changes associated with ricin-induced apoptosis, such as the depletion of glutathione and an increase in free Zn2+, were also less apparent in BER-40 cells than in Vero cells. BER-40 cells were also found to be highly resistant to apoptosis induced by other toxins with different intoxication mechanisms such as diphtheria toxin, modeccin, and anisomycin. These results suggest that the entire apoptotic signal transduction mechanism in BER-40 cells, which may be triggered after the inhibition of protein synthesis by toxins, becomes resistant. Since MDCK cells, a naturally BFA resistant cell line, are highly sensitive to ricin-induced apoptosis, it seems likely that the BFA resistance phenotype may not necessarily lead to resistance to apoptotic cell death. Probably the underlaying BFA-resistance mechanism in BER-40 cells is distinct from that in MDCK cells, and the resistance to ricin-induced apoptosis of BER-40 cells may be a unique phenotype acquired concomitantly with BFA-resistance.  相似文献   

14.
Pathogens specifically target both the caspase 8-dependent apoptotic cell death pathway and the necrotic cell death pathway that is dependent on receptor-interacting protein 1 (RIP1; also known as RIPK1) and RIP3 (also known as RIPK3). The fundamental co-regulation of these two cell death pathways emerged when the midgestational death of mice deficient in FAS-associated death domain protein (FADD) or caspase 8 was reversed by elimination of RIP1 or RIP3, indicating a far more entwined relationship than previously appreciated. Thus, mammals require caspase 8 activity during embryogenesis to suppress the kinases RIP1 and RIP3 as part of the dialogue between two distinct cell death processes that together fulfil reinforcing roles in the host defence against intracellular pathogens such as herpesviruses.  相似文献   

15.
Although the depletion of reduced glutathione (GSH) has been observed in a variety of apoptotic systems, little is known about the mechanism of GSH depletion. In this study we used polarized MDCK cells to study the GSH flux during ricin-induced apoptosis. Here we report that the specific accumulation of GSH occurred in the basolateral medium during ricin treatment with similar kinetics to in apoptotic changes such as an increase in caspase-3 like activity and DNA fragmentation, while there was no significant increase in the GSH level in apical medium. These results suggest that GSH efflux occurred through a GSH-specific channel or transporter located in the basolateral membrane domain of polarized MDCK cells undergoing apoptosis. Treatment with other protein toxins such as modeccin, Pseudomonas toxin, and diphtheria toxin, which can induce apoptotic cell death, also resulted in selective GSH efflux from the basolateral side. Thus, GSH efflux through a specific transporter may be a common step of apoptosis induced by these toxins, while these toxins have different intoxication mechanisms leading to protein synthesis inhibition. Pretreatment of cells with Z-Asp-CH(2)-DCB, a caspase family inhibitor, inhibited ricin-induced basolateral GSH efflux as well as DNA fragmentation, suggesting that the activation of caspases, i.e. those that are inhibited by Z-Asp-CH(2)-DCB, is implicated in the opening of the GSH transporter.  相似文献   

16.
This study was to identify the signaling pathways for the induction of HL-60 cell apoptosis by Cordyceps sinensis mycelium extract (CSME). CSME at 25 mug/ml induced nuclear fragmentation and DNA degradation, two hallmark events of apoptosis, in the HL-60 cells within 12-24 hrs of treatment. Concomitantly, several major events in the mitochondrial signal pathway occurred, including the loss of MTP (DeltaPsi(m)), cytochrome c release into the cytoplasm, the decrease in Bcl-2 protein level, the translocation of Bax protein from cytoplasm into mitochondria, and the activation of caspase-2, -3, and -9, but caspase-8, the initiator caspase in the death receptor pathway, was not activated. These results suggest that CSME induces apoptosis in HL-60 cell through the mitochondrial pathway rather than the death receptor pathway.  相似文献   

17.
The toxicity of ricin in susceptible cells is well characterized biochemically, but the pathophysiological implications of its toxicity and the immune response to ricin challenge in the lung are unknown. Incubating macrophage cell line with ricin (1 pM-10 nM) for 4 hours markedly inhibited 3H-leucine incorporation (acid insoluble) into protein (>95%, at 1 nM) without affecting the acid-soluble radioactivity. In spite of increased uptake of total thymidine (141×13.5%) and total uridine (135×17.2%), DNA synthesis in ricin-treated cells was progressively inhibited although RNA synthesis was not affected. Fluocinolone (an anti-inflammatory glucocorticoid) pretreatment increased the ricin-induced inhibition of protein synthesis. The synergistic effect of fluocinolone on ricin-induced protein synthesis inhibition was due to an increased binding (167%, p < 0.01) and internalization (134×12%, p < 0.025) of ricin. Partial protection from ricin-induced inhibition of protein synthesis by indomethacin (nonsteroidal, anti-inflammatory agent) was due to decreased binding and internalization of ricin. These results show that macrophages are sensitive to ricin and that pharmacologically active drugs may regulate ricin's toxicity, perhaps by controlling synthesis and release of certain mediators of fast death.  相似文献   

18.
Acrolein is a highly reactive alpha,beta-unsaturated aldehyde, which is a product of lipid peroxidation. It is an environmental pollutant that has been implicated in multiple respiratory diseases. Acrolein is produced by the enzymatic oxidative deamination of spermine by amine oxidase. Oxidation products of polyamines have been involved in the inhibition of cell proliferation, apoptosis, and the inhibition of DNA and protein synthesis. The present study investigates the mechanism of cell death induced by acrolein. Acrolein induced apoptosis through a decrease in mitochondrial membrane potential, the liberation of cytochrome c, the activation of initiator caspase-9, and the activation of the effector caspase-7. However, acrolein inhibited enzymatic activity of the effector caspase-3, although a cleavage of pro-caspase-3 occurred. The activation of caspases-9 and -7 was confirmed by the cleavage of their pro-enzyme form by acrolein. Apoptosis was inhibited by an inhibitor of caspase-9, but not by an inhibitor of caspase-3. The induction of apoptosis by acrolein was confirmed morphologically by the condensation of nuclear chromatin and by the cleavage of the inhibitor of caspase activated DNase (ICAD), which leads to the liberation of CAD that causes DNA fragmentation. These results demonstrate that acrolein causes apoptosis through the mitochondrial pathway.  相似文献   

19.
We speculated that focal adhesion kinase (FAK) might play a critical role in the TNFalpha-induced cell death. In this study, we found that FAK-/- cells are more sensitive to TNFalpha-induced apoptosis in the presence of actinomycin D (Act D) compared to FAK+/- cells. Prosurvival pathways are activated by the rapid recruitment of complex I, comprising TNFR1, TRADD, RIP and TRAF2, which leads to the activation of the NF-kappaB pathway. On the other hand, proapoptotic pathways are activated by complex II, the death-inducing signaling complex (DISC), which contains TNFR1, TRADD, RIP, and FADD, and procaspase-8 proteins. As TNFR1, TRADD, and RIP are included in both Complex I and DISC, we speculated that RIP might be a key protein. Coimmunoprecipitation assays revealed that RIP is included in complex I in FAK+/- cells, and FAK was associated with RIP. On the other hand, RIP is included in DISC in FAK-/- cells. FAK might be a key protein in the formation of complex I and the activation of NF-kappaB. Furthermore, Akt was activated in FAK+/- cells, but not FAK-/- cells. In conclusion, we first demonstrated that FAK determines the pathway leading to death or survival in TNFalpha/ActD-stimulated fibroblasts.  相似文献   

20.
Mild insults to neurons caused by ischemia or glutamate induce apoptosis, whereas severe insults induce non apoptotic death, such as necrosis. The molecular targets that are damaged by these insults and ultimately induce cell death are not fully established. To determine if DNA damage can induce apoptotic or non apoptotic death depending on the severity, neurons were treated with up to 128 Gy of ionizing radiation. Such treatment induced a dose-related increase in DNA single-strand breaks but no immediate membrane disruption or lipid peroxidation. Following moderate doses of < or = 32 Gy, neuronal death had many characteristics of apoptosis including nuclear fragmentation and DNA laddering. Nuclear fragmentation and membrane breakdown after moderate DNA damage could be blocked by inhibition of active protein synthesis with cycloheximide and by inhibition of caspases. In contrast, cell death after doses of > 32 Gy was not blocked by cycloheximide or caspase inhibitors, and membrane breakdown occurred relatively early in the cell death process. These data suggest that cell death after high dose irradiation and severe DNA damage can occur by non apoptotic mechanisms and that blocking apoptotic pathways may not prevent death after severe damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号