首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oxidative stress and mitochondrial dysfunction have been implicated in the pathology of HD; however, the precise mechanisms by which mutant huntingtin modulates levels of oxidative damage in turn resulting in mitochondrial dysfunction are not known. We hypothesize that mutant huntingtin increases oxidative mtDNA damage leading to mitochondrial dysfunction. We measured nuclear and mitochondrial DNA lesions and mitochondrial bioenergetics in the STHdhQ7 and STHdhQ111 in vitro striatal model of HD. Striatal cells expressing mutant huntingtin show higher basal levels of mitochondrial-generated ROS and mtDNA lesions and a lower spare respiratory capacity. Silencing of APE1, the major mammalian apurinic/apyrimidinic (AP) endonuclease that participates in the base excision repair (BER) pathway, caused further reductions of spare respiratory capacity in the mutant huntingtin-expressing cells. Localization experiments show that APE1 increases in the mitochondria of wild-type Q7 cells but not in the mutant huntingtin Q111 cells after treatment with hydrogen peroxide. Moreover, these results are recapitulated in human HD striata and HD skin fibroblasts that show significant mtDNA damage (increased lesion frequency and mtDNA depletion) and significant decreases in spare respiratory capacity, respectively. These data suggest that mtDNA is a major target of mutant huntingtin-associated oxidative stress and may contribute to subsequent mitochondrial dysfunction and that APE1 (and, by extension, BER) is an important target in the maintenance of mitochondrial function in HD.  相似文献   

2.
Mitochondrial DNA (mtDNA) is essential for proper mitochondrial function and encodes 22 tRNAs, 2 rRNAs and 13 polypeptides that make up subunits of complex I, III, IV, in the electron transport chain and complex V, the ATP synthase. Although mitochondrial dysfunction has been implicated in processes such as premature aging, neurodegeneration, and cancer, it has not been shown whether persistent mtDNA damage causes a loss of oxidative phosphorylation. We addressed this question by treating mouse embryonic fibroblasts with either hydrogen peroxide (H(2)O(2)) or the alkylating agent methyl methanesulfonate (MMS) and measuring several endpoints, including mtDNA damage and repair rates using QPCR, levels of mitochondrial- and nuclear-encoded proteins using antibody analysis, and a pharmacologic profile of mitochondria using the Seahorse Extracellular Flux Analyzer. We show that a 60min treatment with H(2)O(2) causes persistent mtDNA lesions, mtDNA loss, decreased levels of a nuclear-encoded mitochondrial subunit, a loss of ATP-linked oxidative phosphorylation and a loss of total reserve capacity. Conversely, a 60min treatment with 2mM MMS causes persistent mtDNA lesions but no mtDNA loss, no decrease in levels of a nuclear-encoded mitochondrial subunit, and no mitochondrial dysfunction. These results suggest that persistent mtDNA damage is not sufficient to cause mitochondrial dysfunction.  相似文献   

3.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by choreic involuntary movements, decline in cognitive functions, behavioral disturbances, and progressive neuronal death affecting primarily the striatum. The fatal nature of HD makes it important to search for new effective methods of its treatment, which requires the development of experimental models of the disease. These models can be created using 3-nitropropionic acid (3-NPA), which is a neurotoxin causing typical changes in motor skills and memory impairment in animals due to induction of oxidative stress, impaired glutathione defense, and destruction of striatal cells. We modeled HD in rats by chronic daily intraperitoneal administration of 3-NPA for 17 days. Systemic administration of a low dose of 3-NPA (10 mg/kg) induced hyperactivity of animals in the open field test (including movement redundancy as a hyperkinesia analogue) and had no effect on the behavior of the animals in the X-maze test. On the contrary, rats administered with a toxic dose of 3-NPA (20 mg/kg) exhibited a significant decrease in their motor activity and a cognitive decline in behavioral tests. A histopathological analysis revealed damage and loss of neurons and a decrease in expression of dopaminergic markers (tyrosine hydroxylase and plasma membrane dopamine transporter) in the striatum. The gliotoxic effect of 3-NPA was also found in the striatum, which was confirmed by immunohistochemical staining for astrocytic proteins: GFAP, glutamine synthetase, and aquaporin-4. This HD model may be helpful for testing new experimental therapies at different stages of HD-like neurodegeneration, including therapies based on cell neurotransplantation.  相似文献   

4.
Abstract: There is substantial evidence for both metabolic dysfunction and oxidative damage in Huntington's disease (HD). In the present study, we used in vivo microdialysis to measure the conversion of 4-hydroxybenzoic acid to 3,4-dihydroxybenzoic acid (3,4-DHBA) as a measure of hydroxyl radical production in a transgenic mouse model of HD, as well as in littermate controls. The conversion of 4-hydroxybenzoic acid to 3,4-DHBA was unchanged in the striatum of transgenic HD mice at baseline. Following administration of the mitochondrial toxin 3-nitropropionic acid (3-NP), there were significant increases in 3,4-DHBA generation in both control and transgenic HD mice, and the increases in the transgenic HD mice were significantly greater than those in controls. Furthermore, administration of 3-NP produced significantly larger striatal lesions in transgenic HD mice than in littermate controls. The present results show increased sensitivity to the mitochondrial toxin 3-NP in transgenic HD mice, which suggests metabolic dysfunction in this mouse model of HD.  相似文献   

5.
Huntington's disease (HD) is caused by an expansion of CAG repeats within the huntingtin gene and is characterized by intraneuronal mutant huntingtin protein aggregates. In order to determine the role of tissue transglutaminase (tTG) in HD aggregate formation and disease progression, we cross-bred the R6/2 HD mouse model with a tTG knockout mouse line. R6/2 mice that were tTG heterozygous knockouts (R6/2 : tTG+/-) and tTG homozygous knockouts (R6/2 : tTG-/-) showed a very similar increase in aggregate number within the striatum compared with R6/2 mice that were wild-type with respect to tTG (R6/2 : tTG+/+). Interestingly, a significant delay in the onset of motor dysfunction and death occurred in R6/2 : tTG-/- mice compared with both R6/2 : tTG+/+ and R6/2 : tTG+/- mice. As aggregate number was similarly increased in the striatum of both R6/2 : tTG+/- and R6/2 : tTG-/- mice, whereas only R6/2 : tTG-/- mice showed delayed disease progression, these data suggest that the contribution of tTG towards motor dysfunction and death in the R6/2 mouse is independent of its ability to negatively regulate aggregate formation. Moreover, the combined results from this study suggest that the formation of striatal huntingtin aggregates does not directly influence motor dysfunction or death in this HD mouse model.  相似文献   

6.
The present investigation was designed to determine the efficacy of Bacopa monnieri (Brahmi; BM) to offset 3-nitropropionic acid (3-NPA) induced oxidative stress and mitochondrial dysfunction in dopaminergic (N27) cells and prepubertal mouse brain. Pretreatment of N27 cells with BM ethanolic extract (BME) significantly attenuated 3-NPA-induced cytotoxicity. Further, we determined the degree of oxidative stress induction, redox status, enzymic antioxidants, and protein oxidation in the striatal mitochondria of mice given BME prophylaxis followed by 3-NPA challenge. While 3-NPA-induced marked oxidative stress in the mitochondria of the striatum, BME prophylaxis markedly prevented 3-NPA-induced oxidative dysfunctions and depletion of reduced glutathione and thiol levels. The activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, glutathione reductase, thioredoxin reductase), Na(+),K(+)-ATPase, and citric acid cycle enzymes in the striatum discernible among 3-NPA mice were significantly restored with BME prophylaxis. Interestingly, BME offered protection against 3-NPA-induced mitochondrial dysfunctions as evidenced by the restoration of the activities of ETC enzymes (NADH:ubiquinone oxidoreductase, NADH:cytochrome c reductase, succinate-ubiquinone oxidoreductase, and cytochrome c oxidase) and mitochondrial viability. We hypothesize that the neuroprotective effects of BME may be wholly or in part related to its propensity to scavenge free radicals, maintain redox status, and upregulate antioxidant machinery in striatal mitochondria.  相似文献   

7.
Mitochondrial dysfunction and oxidative stress are known to occur following acute seizure activity but their contribution during epileptogenesis is largely unknown. The goal of this study was to determine the extent of mitochondrial oxidative stress, changes to redox status, and mitochondrial DNA (mtDNA) damage during epileptogenesis in the lithium-pilocarpine model of temporal lobe epilepsy. Mitochondrial oxidative stress, changes in tissue and mitochondrial redox status, and mtDNA damage were assessed in the hippocampus and neocortex of Sprague-Dawley rats at time points (24h to 3months) following lithium-pilocarpine administration. A time-dependent increase in mitochondrial hydrogen peroxide (H(2)O(2)) production coincident with increased mtDNA lesion frequency in the hippocampus was observed during epileptogenesis. Acute increases (24-48h) in H(2)O(2) production and mtDNA lesion frequency were dependent on the severity of convulsive seizure activity during initial status epilepticus. Tissue levels of GSH, GSH/GSSG, coenzyme A (CoASH), and CoASH/CoASSG were persistently impaired at all measured time points throughout epileptogenesis, that is, acutely (24-48h), during the 'latent period' (48h to 7days), and chronic epilepsy (21days to 3months). Together with our previous work, these results demonstrate the model independence of mitochondrial oxidative stress, genomic instability, and persistent impairment of mitochondrial specific redox status during epileptogenesis. Lasting impairment of mitochondrial and tissue redox status during the latent period, in addition to the acute and chronic phases of epileptogenesis, suggests that redox-dependent processes may contribute to the progression of epileptogenesis in experimental temporal lobe epilepsy.  相似文献   

8.
Diabetic retinopathy is a neurovascular diabetes complication resulting in vision loss. A wealth of literature reports retinal molecular changes indicative of neural deficits, inflammation, and vascular leakage with chronic diabetes, but the mechanistic causes of disease initiation and progression are unknown. Microvascular mitochondrial DNA (mtDNA) damage leading to mitochondrial dysfunction has been proposed to drive vascular dysfunction in retinopathy. However, growing evidence suggests that neural retina dysfunction precedes and may cause vascular damage. Therefore, we tested the hypothesis that neural mtDNA damage and mitochondrial dysfunction are an early initiating factor of neural diabetic retinopathy development in a rat streptozotocin‐induced, Type I diabetes model. Mitochondrial function (oxygen consumption rates) was quantified in retinal synaptic terminals from diabetic and non‐diabetic rats with paired retinal structural and function assessment (optical coherence tomography and electroretinography, respectively). Mitochondrial genome damage was assessed by identifying mutations and deletions across the mtDNA genome by high depth sequencing and absolute mtDNA copy number counting through digital PCR. Mitochondrial protein expression was assessed by targeted mass spectrometry. Retinal functional deficits and neural anatomical changes were present after 3 months of diabetes and prevented/normalized by insulin treatment. No marked dysfunction of mitochondrial activity, maladaptive changes in mitochondrial protein expression, alterations in mtDNA copy number, or increase in mtDNA damage was observed in conjunction with retinal functional and anatomical changes. These results demonstrate that neural retinal dysfunction with diabetes begins prior to mtDNA damage and dysfunction, and therefore retinal neurodegeneration initiation with diabetes occurs through other, non‐mitochondrial DNA damage, mechanisms.

  相似文献   

9.
Neurodegeneration has been correlated with mitochondrial DNA (mtDNA) damage and exposure to environmental toxins, but causation is unclear. We investigated the ability of several known environmental genotoxins and neurotoxins to cause mtDNA damage, mtDNA depletion, and neurodegeneration in Caenorhabditis elegans. We found that paraquat, cadmium chloride and aflatoxin B1 caused more mitochondrial than nuclear DNA damage, and paraquat and aflatoxin B1 also caused dopaminergic neurodegeneration. 6-hydroxydopamine (6-OHDA) caused similar levels of mitochondrial and nuclear DNA damage. To further test whether the neurodegeneration could be attributed to the observed mtDNA damage, C. elegans were exposed to repeated low-dose ultraviolet C radiation (UVC) that resulted in persistent mtDNA damage; this exposure also resulted in dopaminergic neurodegeneration. Damage to GABAergic neurons and pharyngeal muscle cells was not detected. We also found that fasting at the first larval stage was protective in dopaminergic neurons against 6-OHDA-induced neurodegeneration. Finally, we found that dopaminergic neurons in C. elegans are capable of regeneration after laser surgery. Our findings are consistent with a causal role for mitochondrial DNA damage in neurodegeneration, but also support non mtDNA-mediated mechanisms.  相似文献   

10.
The study of aging is critical for a better understanding of many age-related diseases. The free radical theory of aging, one of the prominent aging hypotheses, holds that during aging, increasing reactive oxygen species in mitochondria causes mutations in the mitochondrial DNA and damages mitochondrial components, resulting in senescence. Understanding a mitochondrial gene expression profile and its relationship to mitochondrial function becomes an important step in understanding aging. The objective of the present study was to determine mRNA expression of mitochondrial-encoded genes in brain slices from C57BL6 mice at four ages (2, 12, 18, and 24 months) and to determine how these altered mitochondrial genes influence age-related changes, including oxidative damage and cytochrome c in apoptosis. Using northern blot analysis, in situ hybridization, and immunofluorescence analyses, we analyzed changes in the expression of mitochondrial RNA encoding the mitochondrial genes, oxidative damage marker, 8-hydroxyguanosine (8-OHG), and cytochrome c in brain slices from the cortex of C57BL6 mice at each of the four ages. Our northern blot analysis revealed an increased expression of mitochondrial-encoded genes in complexes I, III, IV, and V of the respiratory chain in 12- and 18-month-old C57BL6 mice compared to 2-month-old mice, suggesting a compensatory mechanism that allows the production of proteins involved in the electron transport chain. In contrast to the up-regulation of mitochondrial genes in 12- and 18-month-old C57BL6 mice, mRNA expression in 24-month-old C57BL6 mice was decreased, suggesting that compensation maintained by the up-regulated genes cannot be sustained and that the down-regulation of expression results in the later stage of aging. Our in situ hybridization analyses of mitochondrial genes from the hippocampus and the cortex revealed that mitochondrial genes were over-expressed, suggesting that these brain areas are critical for mitochondrial functions. Our immunofluorescence analysis of 8-OHG and cytochrome c revealed increased 8-OHG and cytochrome c in 12-month-old C57BL6 mice, suggesting that age-related mitochondrial oxidative damage and apoptosis are associated with mitochondrial dysfunction. Our double-labeling analysis of in situ hybridization of ATPase 6 and our immunofluorescence analysis of 8-OHG suggest that specific neuronal populations undergo oxidative damage. Further, double-labeling analysis of in situ hybridization of ATPase 6 and immunofluorescence analysis of cytochrome c suggest cytochrome c release is related to mitochondrial dysfunction in the aging C57BL6 mouse brain. This study also suggests that these mitochondrial gene expression changes may relate to the role of mitochondrial dysfunction, oxidative damage, and cytochrome c in aging and in age-related diseases such as Alzheimer's disease and Parkinson's disease.  相似文献   

11.
A causal role for mitochondrial dysfunction in mammalian aging is supported by recent studies of the mtDNA mutator mouse (“PolG” mouse), which harbors a defect in the proofreading-exonuclease activity of mitochondrial DNA polymerase gamma. These mice exhibit accelerated aging phenotypes characteristic of human aging, including systemic mitochondrial dysfunction, exercise intolerance, alopecia and graying of hair, curvature of the spine, and premature mortality. While mitochondrial dysfunction has been shown to cause increased oxidative stress in many systems, several groups have suggested that PolG mutator mice show no markers of oxidative damage. These mice have been presented as proof that mitochondrial dysfunction is sufficient to accelerate aging without oxidative stress. In this study, by normalizing to mitochondrial content in enriched fractions we detected increased oxidative modification of protein and DNA in PolG skeletal muscle mitochondria. We separately developed novel methods that allow simultaneous direct measurement of mtDNA replication defects and oxidative damage. Using this approach, we find evidence that suggests PolG muscle mtDNA is indeed oxidatively damaged. We also observed a significant decrease in antioxidants and expression of mitochondrial biogenesis pathway components and DNA repair enzymes in these mice, indicating an association of maladaptive gene expression with the phenotypes observed in PolG mice. Together, these findings demonstrate the presence of oxidative damage associated with the premature aging-like phenotypes induced by mitochondrial dysfunction.  相似文献   

12.
Electron transport chain (ETC) dysfunction may arise from mitochondrial genetic, nuclear genetic, or toxic etiologies. Cytoplasmic hybrid (cybrid) systems can help distinguish between these possibilities by facilitating expression of suspect mitochondrial DNA (mtDNA) within a nuclear and environmentally controlled context. Perpetuation of ETC dysfunction in cybrids is consistent with an mtDNA pathogenesis while defect correction is not. We previously used cybrids to screen sporadic Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis patients for mtDNA mutation with positive results. To further address the fidelity of these experiments, we created and characterized cybrids expressing mtDNA from persons with Huntington's disease (HD), an autosomal dominant, nuclear DNA-determined disorder in which mitochondrial ETC functioning is abnormal. On ETC, oxidative stress, and calcium homeostasis assays HD cybrid lines were indistinguishable from control cybrid lines. These data support the use of the cybrid technique for mtDNA mutation screening in candidate diseases.  相似文献   

13.
Coenzyme Q10 (CoQ10) and creatine are promising agents for neuroprotection in neurodegenerative diseases via their effects on improving mitochondrial function and cellular bioenergetics and their properties as antioxidants. We examined whether a combination of CoQ10 with creatine can exert additive neuroprotective effects in a MPTP mouse model of Parkinson's disease, a 3-NP rat model of Huntington's disease (HD) and the R6/2 transgenic mouse model of HD. The combination of the two agents produced additive neuroprotective effects against dopamine depletion in the striatum and loss of tyrosine hydroxylase neurons in the substantia nigra pars compacta (SNpc) following chronic subcutaneous administration of MPTP. The combination treatment resulted in significant reduction in lipid peroxidation and pathologic α-synuclein accumulation in the SNpc neurons of the MPTP-treated mice. We also observed additive neuroprotective effects in reducing striatal lesion volumes produced by chronic subcutaneous administration of 3-NP to rats. The combination treatment showed significant effects on blocking 3-NP-induced impairment of glutathione homeostasis and reducing lipid peroxidation and DNA oxidative damage in the striatum. Lastly, the combination of CoQ10 and creatine produced additive neuroprotective effects on improving motor performance and extending survival in the transgenic R6/2 HD mice. These findings suggest that combination therapy using CoQ10 and creatine may be useful in the treatment of neurodegenerative diseases such as Parkinson's disease and HD.  相似文献   

14.
15.
Huntington’s disease (HD) is an autosomal dominantly inherited neurodegenerative disease characterized by symptoms attributable to the death of striatal and cortical neurons. The molecular mechanisms mediating neuronal death in HD involve oxidative stress and mitochondrial dysfunction. Administration of 3-nitropropionic acid (3-NP), an irreversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, in rodents has been proposed as a useful experimental model of HD. This study evaluated the effects of probucol, a lipid-lowering agent with anti-inflammatory and antioxidant properties, on the biochemical parameters related to oxidative stress, as well as on the behavioral parameters related to motor function in an in vivo HD model based on 3-NP intoxication in rats. Animals were treated with 3.5 mg/kg of probucol in drinking water daily for 2 months and, subsequently, received 3-NP (25 mg/kg i.p.) once a day for 6 days. At the end of the treatments, 3-NP-treated animals showed a significant decrease in body weight, which corresponded with impairment on motor ability, inhibition of mitochondrial complex II activity and oxidative stress in the striatum. Probucol, which did not rescue complex II inhibition, protected against behavioral and striatal biochemical changes induced by 3-NP, attenuating 3-NP-induced motor impairments and striatal oxidative stress. Importantly, probucol was able to increase activity of glutathione peroxidase (GPx), an enzyme important in mediating the detoxification of peroxides in the central nervous system. The major finding of this study was that probucol protected against 3-NP-induced behavioral and striatal biochemical changes without affecting 3-NP-induced mitochondrial complex II inhibition, indicating that long-term probucol treatment resulted in an increased resistance against neurotoxic events (i.e., increased oxidative damage) secondary to mitochondrial dysfunction. These data appeared to be of great relevance when extrapolated to human neurodegenerative processes involving mitochondrial dysfunction and indicates that GPx is an important molecular target involved in the beneficial effects of probucol.  相似文献   

16.
Alkaline gel electrophoresis, pulsed field gel electrophoresis, and quantitative PCR analyses (QPCR) of the nuclear (nDNA) and mitochondrial (mtDNA) genomes were used to assess DNA integrity in the spermatozoa of three species exposed to oxidative stress. In human and murine spermatozoa, the mtDNA was significantly more susceptible to H2O2-mediated damage than nDNA. In both eutherian species, exposure to 250 microM H2O2 induced around 0.6 lesions/10 kb of mtDNA. The mtDNA of human spermatozoa was particularly vulnerable to oxidative stress; 0.25, 1, and 5 mM H2O2 inducing DNA damage equivalent to 0.62, 1.34, and 1.42 lesions/10 kb, respectively. Such results emphasize the diagnostic significance of mtDNA as a biomarker of oxidative stress in the male germ line. In contrast, no damage could be detected by QPCR in the nDNA of either eutherian species, on exposure to H2O2 at doses as high as 5 mM. However, electrophoretic analysis indicated that severe oxidative stress could induce detectable nDNA fragmentation in human, but not murine spermatozoa. The mtDNA of tammar wallaby spermatozoa was relatively resistant to oxidative stress, only exhibiting damage (0.6 lesions/10 kb DNA) on exposure to 5 mM H2O2. By contrast, the nDNA of wallaby spermatozoa was significantly more susceptible to this oxidant than the other species. Such vulnerability is consistent with the lack of disulfide cross-linking in marsupial sperm chromatin and suggests that chromatin condensation during epididymal maturation may be important in establishing the resistance of these cells to the genotoxic effects of reactive oxygen species.  相似文献   

17.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease which is characterized by psychiatric symptoms, involuntary choreiform movements and dementia with maximum degeneration occurring in striatum and cerebral cortex. Several studies implicate mitochondrial dysfunction to the selective neurodegeneration happening in this disorder. Calcium buffering imbalance and oxidative stress in the mitochondria, critically impaired movement across axons and abnormal fission or fusion of this organelle in the cells are some of the salient features that results in the loss of mitochondrial electron transport chain (ETC) complex function in HD. Although several models involving mutant huntingtin, excitotoxins and mitochondrial complex-II inhibitors have been used to explore the disease, it is not clear how disturbances in mitochondrial functioning is associated with such selective neurodegeneration, or in the expression of huntingtonian phenotypes in animals or man. We have carefully assessed various mitochondrial abnormalities observed in human patient samples, postmortem HD brains, cellular, vertebrate and invertebrate models of the disease, to conclude that ETC dysfunction is an integral part of the disease and justify a causal role of mitochondrial ETC dysfunction for the genesis of this disorder  相似文献   

18.
Mitochondrial dysfunction and oxidative damage may play a role in the pathogenesis of Huntington's disease (HD). We examined concentrations of 8-hydroxy-2-deoxyguanosine (OH(8)dG), a well-established marker of oxidative damage to DNA, in a transgenic mouse model of HD (R6/2). Increased concentrations of OH(8)dG were found in the urine, plasma and striatal microdialysates of the HD mice. Increased concentrations were also observed in isolated brain DNA at 12 and 14 weeks of age. Immunocytochemistry showed increased OH(8)dG staining in late stages of the illness. These results suggest that oxidative damage may play a role in the pathogenesis of neuronal degeneration in the R6/2 transgenic mouse model of HD.  相似文献   

19.
20.
The accumulation of mitochondrial DNA (mtDNA) mutations is a suspected driver of aging and age‐related diseases, but forestalling these changes has been a major challenge. One of the best‐studied models is the prematurely aging mtDNA mutator mouse, which carries a homozygous knock‐in of a proofreading deficient version of the catalytic subunit of mtDNA polymerase‐γ (PolgA). We investigated how voluntary exercise affects the progression of aging phenotypes in this mouse, focusing on mitochondrial and protein homeostasis in both brain and peripheral tissues. Voluntary exercise significantly ameliorated several aspects of the premature aging phenotype, including decreased locomotor activity, alopecia, and kyphosis, but did not have major effects on the decreased lifespan of mtDNA mutator mice. Exercise also decreased the mtDNA mutation load. In‐depth tissue proteomics revealed that exercise normalized the levels of about half the proteins, with the majority involved in mitochondrial function and nuclear–mitochondrial crosstalk. There was also a specific increase in the nuclear‐encoded proteins needed for the tricarboxylic acid cycle and complex II, but not in mitochondrial‐encoded oxidative phosphorylation proteins, as well as normalization of enzymes involved in coenzyme Q biosynthesis. Furthermore, we found tissue‐specific alterations, with brain coping better as compared to muscle and with motor cortex being better protected than striatum, in response to mitochondrial dysfunction. We conclude that voluntary exercise counteracts aging in mtDNA mutator mice by counteracting protein dysregulation in muscle and brain, decreasing the mtDNA mutation burden in muscle, and delaying overt aging phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号