首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sexual reproduction in fungi is governed by a specialized genomic region called the mating-type locus (MAT). The human fungal pathogenic and basidiomycetous yeast Cryptococcus neoformans has evolved a bipolar mating system (a, α) in which the MAT locus is unusually large (>100 kb) and encodes >20 genes including homeodomain (HD) and pheromone/receptor (P/R) genes. To understand how this unique bipolar mating system evolved, we investigated MAT in the closely related species Tsuchiyaea wingfieldii and Cryptococcus amylolentus and discovered two physically unlinked loci encoding the HD and P/R genes. Interestingly, the HD (B) locus sex-specific region is restricted (~2 kb) and encodes two linked and divergently oriented homeodomain genes in contrast to the solo HD genes (SXI1α, SXI2a) of C. neoformans and Cryptococcus gattii. The P/R (A) locus contains the pheromone and pheromone receptor genes but has expanded considerably compared to other outgroup species (Cryptococcus heveanensis) and is linked to many of the genes also found in the MAT locus of the pathogenic Cryptococcus species. Our discovery of a heterothallic sexual cycle for C. amylolentus allowed us to establish the biological roles of the sex-determining regions. Matings between two strains of opposite mating-types (A1B1×A2B2) produced dikaryotic hyphae with fused clamp connections, basidia, and basidiospores. Genotyping progeny using markers linked and unlinked to MAT revealed that meiosis and uniparental mitochondrial inheritance occur during the sexual cycle of C. amylolentus. The sexual cycle is tetrapolar and produces fertile progeny of four mating-types (A1B1, A1B2, A2B1, and A2B2), but a high proportion of progeny are infertile, and fertility is biased towards one parental mating-type (A1B1). Our studies reveal insights into the plasticity and transitions in both mechanisms of sex determination (bipolar versus tetrapolar) and sexual reproduction (outcrossing versus inbreeding) with implications for similar evolutionary transitions and processes in fungi, plants, and animals.  相似文献   

3.
Sex in basidiomycete fungi is controlled by tetrapolar mating systems in which two unlinked gene complexes determine up to thousands of mating specificities, or by bipolar systems in which a single locus (MAT) specifies different sexes. The genus Ustilago contains bipolar (Ustilago hordei) and tetrapolar (Ustilago maydis) species and sexual development is associated with infection of cereal hosts. The U. hordei MAT-1 locus is unusually large (approximately 500 kb) and recombination is suppressed in this region. We mapped the genome of U. hordei and sequenced the MAT-1 region to allow a comparison with mating-type regions in U. maydis. Additionally the rDNA cluster in the U. hordei genome was identified and characterized. At MAT-1, we found 47 genes along with a striking accumulation of retrotransposons and repetitive DNA; the latter features were notably absent from the corresponding U. maydis regions. The tetrapolar mating system may be ancestral and differences in pathogenic life style and potential for inbreeding may have contributed to genome evolution.  相似文献   

4.
5.
The smut fungi are obligately parasitic during the sexual phase of their life cycle, and the mating-type genes of these fungi play key roles in both sexual development and pathogenicity. Among species of smut fungi it is common to find a bipolar mating system in which one locus with two alternate alleles is believed to control cell fusion and establishment of the infectious cell type. Alternatively, several species have a tetrapolar mating system in which two different genetic loci, one of which has multiple alleles, control fusion and subsequent development of the infection hyphae. Cloned sequences from the a and b mating-type loci of the tetrapolar smut fungus Ustilago maydis were used as hybridization probes to DNAs from 23 different fungal strains, including smut fungi with both tetrapolar and bipolar mating systems. In general, all of the smut fungi hybridized with the mating-type genes from U. maydis, suggesting conservation of the sequences involved in mating interactions. A selection of DNAs from other ascomycete and basidiomycete fungi failed to hybridize with the U. maydis mating-type sequences. Exceptions to this finding include hybridization of DNA from the a1 idiomorph of U. maydis to DNA from one strain of U. violacea and hybridization of both a idiomorphs to DNA from Saccharomyces cerevisiae.  相似文献   

6.
有性生殖是真菌的生殖方式之一,是真菌遗传重组的重要驱动力。交配型(mating-type,MAT)位点控制真菌性别,在有性生殖过程中起决定性作用。不同类型真菌MAT位点的基因组成、排列方式和编码蛋白不尽相同。近年来,MAT位点和MAT基因的功能与调控网络研究进展较快。本文对子囊菌交配型位点的基因组成及分布、MAT基因的功能、MAT位点与有性生殖调控通路的关系等进行了综述。  相似文献   

7.
8.
9.
Blastomyces dermatitidis is a dimorphic fungal pathogen that primarily causes blastomycosis in the midwestern and northern United States and Canada. While the genes controlling sexual development have been known for a long time, the genes controlling sexual reproduction of B. dermatitidis (teleomorph, Ajellomyces dermatitidis) are unknown. We identified the mating-type (MAT) locus in the B. dermatitidis genome by comparative genomic approaches. The B. dermatitidis MAT locus resembles those of other dimorphic fungi, containing either an alpha-box (MAT1-1) or an HMG domain (MAT1-2) gene linked to the APN2, SLA2, and COX13 genes. However, in some strains of B. dermatitidis, the MAT locus harbors transposable elements (TEs) that make it unusually large compared to the MAT locus of other dimorphic fungi. Based on the MAT locus sequences of B. dermatitidis, we designed specific primers for PCR determination of the mating type. Two B. dermatitidis isolates of opposite mating types were cocultured on mating medium. Immature sexual structures were observed starting at 3 weeks of coculture, with coiled-hyphae-containing cleistothecia developing over the next 3 to 6 weeks. Genetic recombination was detected in potential progeny by mating-type determination, PCR-restriction fragment length polymorphism (PCR-RFLP), and random amplification of polymorphic DNA (RAPD) analyses, suggesting that a meiotic sexual cycle might have been completed. The F1 progeny were sexually fertile when tested with strains of the opposite mating type. Our studies provide a model for the evolution of the MAT locus in the dimorphic and closely related fungi and open the door to classic genetic analysis and studies on the possible roles of mating and mating type in infection and virulence.  相似文献   

10.
Summary: Sex is shrouded in mystery. Not only does it preferentially occur in the dark for both fungi and many animals, but evolutionary biologists continue to debate its benefits given costs in light of its pervasive nature. Experimental studies of the benefits and costs of sexual reproduction with fungi as model systems have begun to provide evidence that the balance between sexual and asexual reproduction shifts in response to selective pressures. Given their unique evolutionary history as opisthokonts, along with metazoans, fungi serve as exceptional models for the evolution of sex and sex-determining regions of the genome (the mating type locus) and for transitions that commonly occur between outcrossing/self-sterile and inbreeding/self-fertile modes of reproduction. We review here the state of the understanding of sex and its evolution in the fungal kingdom and also areas where the field has contributed and will continue to contribute to illuminating general principles and paradigms of sexual reproduction.  相似文献   

11.
12.
Rhynchosporium secalis, the causal agent of scald on barley, is thought to be exclusively asexual because no teleomorph has been found. Partial sequences of the HMG-box and alpha-domain of Rhynchosporium secalis isolates were identified and used to develop a PCR assay for the mating-type locus. PCR amplification of only one of these two domains was possible in each strain, suggesting that R. secalis has a MAT organization that is similar to other known heterothallic fungi. A multiplex PCR with primers amplifying either a MAT1-1- or MAT1-2-specific amplicon was used to determine the distribution of mating types in several R. secalis populations. In total, 1101 isolates from Australia, Switzerland, Ethiopia, Scandinavia, California, and South Africa were included in the analysis. Mating types occurred in equal frequencies for most of these populations, suggesting frequency-dependent selection consistent with sexual reproduction. In addition, both mating types were frequently found occupying the same lesion or leaf, providing opportunities for isolates of opposite mating type to interact and reproduce sexually. We propose that R. secalis should be considered a sexual pathogen, although the sexual cycle may occur infrequently in some populations.  相似文献   

13.
14.
15.
Acremonium chrysogenum, the fungal producer of the pharmaceutically relevant beta-lactam antibiotic cephalosporin C, is classified as asexual because no direct observation of mating or meiosis has yet been reported. To assess the potential of A. chrysogenum for sexual reproduction, we screened an expressed sequence tag library from A. chrysogenum for the expression of mating type (MAT) genes, which are the key regulators of sexual reproduction. We identified two putative mating type genes that are homologues of the alpha-box domain gene, MAT1-1-1 and MAT1-1-2, encoding an HPG domain protein defined by the presence of the three invariant amino acids histidine, proline, and glycine. In addition, cDNAs encoding a putative pheromone receptor and pheromone-processing enzymes, as well as components of a pheromone response pathway, were found. Moreover, the entire A. chrysogenum MAT1-1 (AcMAT1-1) gene and regions flanking the MAT region were obtained from a genomic cosmid library, and sequence analysis revealed that in addition to AcMAT1-1-1 and AcMAT1-1-2, the AcMAT1-1 locus comprises a third mating type gene, AcMAT1-1-3, encoding a high-mobility-group domain protein. The alpha-box domain sequence of AcMAT1-1-1 was used to determine the phylogenetic relationships of A. chrysogenum to other ascomycetes. To determine the functionality of the AcMAT1-1 locus, the entire MAT locus was transferred into a MAT deletion strain of the heterothallic ascomycete Podospora anserina (the PaDeltaMAT strain). After fertilization with a P. anserina MAT1-2 (MAT(+)) strain, the corresponding transformants developed fruiting bodies with mature ascospores. Thus, the results of our functional analysis of the AcMAT1-1 locus provide strong evidence to hypothesize a sexual cycle in A. chrysogenum.  相似文献   

16.
G. Bakkeren  J. W. Kronstad 《Genetics》1996,143(4):1601-1613
The MAT region of Ustilago hordei, a bipolar barley pathogen, harbors distinct mating functions (a and b loci). Here, we show that the b locus is essential for mating and pathogenicity, and can induce pathogenicity when introduced into a strain carrying a b locus of opposite specificity. Transformation experiments using components of the a1 locus and analysis of resulting dual mating phenotypes revealed that this locus harbors a pheromone receptor gene (Uhpra1) and a pheromone gene (Uhmfa1). These U. hordei a1 genes, when introduced by transformation, are necessary and sufficient to make U. maydis, a tetrapolar corn pathogen, intercompatible with U. hordei MAT-2, but not MAT-1, strains. U. hordei strains transformed with the U. maydis a1 locus also become intercompatible with U. maydis a2, but not a1, strains. The interspecies hybrids produced dikaryotic hyphae but were not fully virulent on either corn or barley. Partial, natural intercompatibility was shown to exist between the sugarcane smut U. scitaminea and both U. hordei and U. maydis. These results show that the signal transduction pathway for mating responses is conserved between different smut species. We conclude that, apart from intraspecies compatibility, the Ustilago a locus also dictates intercompatibility in this group of fungi.  相似文献   

17.
Linkage of genes determining separate self‐incompatibility mechanisms is a general expectation of sexual eukaryotes that helps to resolve conflicts between reproductive assurance and recombination. However, in some organisms, multiple loci are required to be heterozygous in offspring while segregating independently in meiosis. This condition, termed “tetrapolarity” in basidiomycete fungi, originated in the ancestor to that phylum, and there have been multiple reports of subsequent transitions to “bipolarity” (i.e., linkage of separate mating factors). In the genus Microbotryum, we present the first report of the breaking of linkage between two haploid self‐incompatibility factors and derivation of a tetrapolar breeding system. This breaking of linkage is associated with major alteration of genome structure, with the compatibility factors residing on separate mating‐type chromosome pairs, reduced in size but retaining the structural dimorphism characteristic for regions of recombination suppression. The challenge to reproductive assurance from unlinked compatibility factors may be overcome by the automictic mating system in Microbotryum (i.e., mating among products of the same meiosis). As a curious outcome, this linkage transition and its effects upon outcrossing compatibility rates may reinforce automixis as a mating system. These observations contribute to understanding mating systems and linkage as fundamental principles of sexual life cycles, with potential impacts on conventional wisdom regarding mating‐type evolution.  相似文献   

18.
子囊菌具有无性态与有性态的复杂性,以及人们对其系统发育和亲缘关系了解的局限性,进而导致菌物学家对子囊菌分类尚持不同意见。子囊菌的交配型基因(MAT)进化保守,且编码的蛋白质调控子囊菌的有性生殖过程。核盘菌Sclerotinia sclerotiorum (Lib.) de Bary隶属于子囊菌门Ascomycota、盘菌纲Discomycete,是一种典型丝状同宗配合真菌,控制该菌有性生殖的交配型基因MAT1-1MAT1-2紧密连锁,且该菌并无有性态与无性态的复杂性。故此,本文根据所克隆的核盘菌交配型基因MAT1-1,利用PAUP*软件将82种含有Alpha-box交配型基因的子囊菌进行了系统进化分析,通过核苷酸及氨基酸水平的系统发育分析,并结合Ainsworth(1973)分类系统及最新的Deep Hyphae(2006)分类系统的对比研究,发现所构建的系统进化树与传统分类所表现的进化关系基本一致,且核盘菌交配型基因MAT1-1在进化过程中功能相对保守,该分析结果有助于对其他子囊菌交配型基因的克隆、系统分类与进化研究,同时对核盘菌的亲缘关系、病害预测及防治等具有重要意义。  相似文献   

19.
20.
Pyrenophora teres f. sp. teres mating-type genes (MAT-1: 1190 bp; MAT-2: 1055 bp) have been identified. Their predicted proteins, measuring 379 and 333 amino acids, respectively, are similar to those of other Pleosporales, such as Pleospora sp., Cochliobolus sp., Alternaria alternata, Leptosphaeria maculans, and Phaeosphaeria nodorum. The structure of the MAT locus is discussed in comparison with those of other fungi. A mating-type PCR assay has also been developed; with this assay we have analyzed 150 isolates that were collected from 6 Sardinian barley landrace populations. Of these, 68 were P. teres f. sp. teres (net form; NF) and 82 were P. teres f. sp. maculata (spot form; SF). Within each mating type, the NF and SF amplification products were of the same length and were highly similar in sequence. The 2 mating types were present in both the NF and the SF populations at the field level, indicating that they have all maintained the potential for sexual reproduction. Despite the 2 forms being sympatric in 5 fields, no intermediate isolates were detected with amplified fragment length polymorphism (AFLP) analysis. These results suggest that the 2 forms are genetically isolated under the field conditions. In all of the samples of P. teres, the ratio of the 2 mating types was consistently in accord with the 1:1 null hypothesis. This ratio is expected when segregation distortion and clonal selection among mating types are absent or asexual reproduction is rare. Overall, sexual reproduction appears to be the major process that equalizes the frequencies of the 2 mating types within populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号