首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Murine embryonal carcinoma F9 cells can be induced to differentiate by 2-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC). The differentiated phenotype is similar to that of retinoic acid (RA)-treated F9 cells. In contrast to F9 cells the differentiated cells secrete plasminogen activator and express keratin intermediate filaments. Both DFMO and RA reduce ornithine decarboxylase activity, polyamine levels and inhibit cell proliferation of F9 cells. These compounds also reduce ODC, polyamine levels and proliferation of mouse BALB/c 3T6 fibroblasts. RA inhibits the induction of ODC by insulin, serum and to a lesser extent that of epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA). The action of DFMO and RA can be distinguished by their response to putrescine. The induction of differentiation and the inhibition of cell proliferation by DFMO can be totally abolished upon the addition of putrescine, whereas the actions of RA are not affected at all. These results suggest that the inhibition of ODC and reduction of polyamines are not causal in the induction of differentiation and the inhibition of proliferation by RA.  相似文献   

2.
A transitory increase in ornithine decarboxylase (ODC) activity is shown not to be a prerequisite for the differentiation induced by hexamethylene bisacetamide (HMBA) in murine erythroleukemic (MEL) cells. On the contrary, conditions are described, where inhibition of the ODC activity with alpha-difluoromethyl ornithine (DFMO) stimulated the induced differentiation. Polyamine analysis demonstrated that a reduction in intracellular putrescine and spermidine occurred in MEL cells before commitment to erythrodifferentiation. The presence of DFMO increased the rapidity and the amplitude of these changes. No effect of dexamethasone on these changes in ODC activity or intracellular polyamines was observed.  相似文献   

3.
This paper reviews the relationships between the effects of glucocorticoids on rat pancreatic acinar AR42J cell polyamine levels and cellular growth and differentiation. Glucocorticoids inhibit the growth of AR42J cells. Glucocorticoids either stimulate or inhibit the formation of polyamines in a variety of cell types. Cells require polyamines for normal growth. Therefore, we tested the hypothesis that polyamines mediate the effects of glucocorticoids on AR42J cells. First, to confirm that AR42J cells required polyamines for growth we examined the effects of inhibiting ornithine decarboxylase (ODC). ODC is the most important and generally rate-limiting enzyme in the synthesis of the polyamines. As expected, the ODC inhibitor difluoromethylornithine (DFMO) inhibited AR42J cell DNA synthesis, and the addition of exogenous putrescine reversed this effect. The levels of growth inhibition by glucocorticoids and DFMO treatment were similar. Second, we examined the effects of glucocorticoids on ODC. Surprisingly, glucocorticoids increased levels of AR42J cell ODC mRNA, ODC activity, and putrescine. Glucocorticoids increased these parameters over a similar time-course as they decreased DNA synthesis. Analog specificity studies indicated that a glucocorticoid receptor mediated both the growth inhibitory and ODC stimulatory effects. Dose-response studies indicated, however, that growth inhibition was more sensitive to dexamethasone (DEX) than were ODC levels. Therefore, polyamines do not account for the effects of glucocorticoids on AR42J cell growth. In these cells, glucocorticoids have opposite and independent effects on ODC and growth.  相似文献   

4.
The objective of the present investigation was to evaluate the requirement for increased ornithine decarboxylase (ODC) activity and polyamine biosynthesis in the induction of cytolytic T lymphocytes (CTL). In this regard, we have utilized alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC. DFMO treatment completely abrogated Con A-induced NW T-cell ODC activity. Similarly, DFMO treatment reduced putrescine and spermidine biosynthesis 100 and 87% respectively by the end of a 48-hr incubation period. Polyamine depletion reduced the Con A-mediated polyclonal induction of CTL by 52 and 81% at 24 and 48 hr of culture, respectively. The effect of DFMO on CTL induction could be reversed by the addition of exogenous putrescine. These data indicate that the observed effects of DFMO on CTL induction were mediated through inhibition of polyamine biosynthesis. Therefore, increased ODC activity and polyamine biosynthesis are required for optimal CTL induction. Furthermore, polyamine depletion did not impair IL-2 production; however, IL-2-dependent proliferation was reduced. These data are the first to discriminate between the requirement for polyamines with regard to IL-2 responsiveness, rather than IL-2 production, during a primary T-cell mitogenic response.  相似文献   

5.
6.
7.
The roles of polyamines in intrauterine growth restriction (IUGR) is studied. The DL-alpha-difluoromethyl ornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC) which is a rate limiting enzyme of polyamine synthesis was administrated to pregnant rats so that we obtained rat fetuses with IUGR. The changes of maternal nutrition, damage of the placenta, and the direct effect of DFMO on the fetus were examined in this IUGR model. Administration of DFMO did not induced changes of maternal nutrition except for triglyceride and the fetal metabolic state. But the placental weight, ODC activity, and DNA in the placenta were decreased significantly. The ODC activity in the total placenta decreased to less than 10% of that of the control. Depression of ODC activity in the placenta may be the major cause of IUGR induced by DFMO administration, and polyamines play important roles to carry pregnancy.  相似文献   

8.
9.
The multiplication of A. culbertsoni in the peptone medium was not inhibited by 10-20 mM concentration of alpha-difluoromethyl ornithine (DMFO) while a partial and transient inhibition of cell multiplication was observed by 10-20 mM DFMO in proteose peptone, yeast extract, glucose (PYG) medium. Ornithine decarboxylase (ODC) activity in the cells and cell free extracts was strongly inhibited by DFMO, excluding enzyme refractoriness and impermeability of cells for DFMO as the possible causes of DFMO resistance. The presence of polyamines in the peptone and PYG media as well as uptake of polyamines by the amoebae has been demonstrated. The growth and multiplication of A. culbertsoni in chemically defined medium was not affected by 1-5 mM DFMO while 10-20 mM DMFO yielded partial inhibition. A lowering of diaminopropane levels and enhancement of spermidine levels was observed in DFMO inhibited cells and level of ODC was drastically reduced in the inhibited cultures. Uptake of polyamines from the growth media may partly account for DFMO resistance of A. culbertsoni. Alternative mechanisms for DFMO resistance are indicated.  相似文献   

10.
Treatment of EL-4 lymphoma cells with tetradecanoylphorbol-acetate (TPA), a well-known activator of protein kinase C, induces the production of the T cell growth factor interleukin-2 (IL-2) and the expression of IL-2-specific mRNA within 4-8 h. This system is an ideal model for studies on the induction of a differentiated function in a homogeneous lymphoid cell population by a defined signal. TPA induces also an increase of ornithine decarboxylase (ODC) activity and elevates the intracellular concentrations of putrescine and polyamines within 4-8 h. A similar increase of intracellular putrescine and polyamine concentrations can be achieved by administration of 2 mM putrescine to the culture medium. However, putrescine cannot induce the production of IL-2 in the absence of TPA and cannot reconstitute the IL-2 production in cultures with PGE2 or cyclosporine A, i.e., two well-known immunosuppressive substances which inhibit ODC activity. Putrescine has rather a counter-regulatory effect as concluded from the observation that the TPA-induced TCGF production and IL-2-specific mRNA expression are augmented (superinduced) by the ODC inhibitor D,L-alpha-difluoromethylornithine (DFMO) and again suppressed after the administration of putrescine or polyamines to DFMO-treated cultures. The glycolytic activity, general protein synthesis [( 3H]leucine incorporation), and the cell cycle progression from G2/M to G1, in contrast, are inhibited by DFMO and reconstituted by putrescine. This demonstrates that the cells are able to sacrifice to a large extent several vital functions including their general protein synthesis and to devote themselves at the same time to a fulminant production of their functionally most relevant protein IL-2. This process is downregulated by ODC and its product putrescine. A correlation between increased IL-2 production and accumulation of cells in the G2/M phase was also observed in cultures treated with hydroxyurea or with a combination of amethopterin and adenosine.  相似文献   

11.
Ornithine decarboxylase is the rate-limiting enzyme in the biosynthesis of polyamines, which are believed to play an essential role in diverse biological processes including cell proliferation and differentiation. We have previously reported [J. Bomser, K. Singletary, M. Wallig, M. Smith, Inhibition of TPA-induced tumor promotion in CD-1 mouse epidermis by a polyphenolic fraction from grape seeds, Cancer Letters 135 (1999) 151-157] that pre-application of a grape polyphenolic fraction (GPF) to mouse skin epidermis inhibits 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ornithine decarboxylase (ODC) activity, as well as 7, 12-dimethylbenz[a]anthracene (DMBA)-initiated, TPA-promoted mouse skin tumorigenesis. The present studies were designed to further characterize the effect of time and dose of application of GPF on TPA-induced ODC activity and protein expression, and on protein kinase C activity in mouse skin epidermis. In addition, the effect of GPF on ODC kinetics in vitro was examined. Application of 5, 10, and 20 mg of GPF 20 min prior to treatment with TPA resulted in a significant decrease in epidermal ODC activity of 54, 53, 90%, respectively, compared with controls. Yet, ODC protein levels (Western blot) in the 10 and 20 mg GPF groups were significantly increased by 1.8 and 1.9-fold, respectively, compared with controls. A similar response was observed with the ODC inhibitor 2-difluoromethylornithine (DFMO), which served as a positive control. Application of grape polyphenolics (20 mg) at 60 and 30 min prior to treatment with TPA inhibited ODC activity by 62 and 68%, respectively, compared with controls (P<0.05). In contrast, application of grape polyphenolics (20 mg) at 60, 120 and 240 min after treatment with TPA resulted in no significant changes in ODC activity. A similar increase in epidermal ODC protein was observed in these GPF-treated animals, similar to that observed when GPF application preceded TPA. When applied to mouse skin prior to TPA, GPF was associated with a decrease in subsequent PKC activity compared with controls at 10 and 30 min following TPA treatment. The GPF-associated decrease in PKC activity preceded the decrease in ODC activity. In a separate in vitro study, kinetic analyses indicated that GPF is a competitive inhibitor of ODC activity. Collectively these data suggest that the grape polyphenolic fraction is effective as an inhibitor of ODC activity when applied before TPA, and that the magnitude of inhibition is independent of epidermal ODC protein content. In addition, GPF is a competitive inhibitor of ODC activity in vitro. The decrease in TPA-induced ODC activity due to GPF treatment is preceded by an inhibition of TPA-induced PKC activity. Thus, the polyphenolic fraction from grapes warrants further examination as a skin cancer chemopreventive agent that interferes with cellular events associated with TPA promotion.  相似文献   

12.
Treatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and incubation with lipopolysaccharide (LPS) induces interleukin 1 beta (IL-1 beta) production in the histiocytic lymphoma cell line U937. Here we investigated the effect of treatment with both TPA and 1 alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3) on LPS-induced IL-1 beta production in U937 cells. To clarify the mechanism of IL-1 beta production, the possible role of polyamines in this process was examined. Combined treatment with TPA and 1,25(OH)2D3 for 72 h followed by incubation with LPS for 24 h caused synergistic induction of both IL-1 beta release and mRNA expression. On the other hand, TPA increased the numbers of vitamin D3 receptors, which may be one mechanism of this synergistic induction. Ornithine decarboxylase (ODC), a rate-limiting enzyme for polyamine biosynthesis, was also induced by these compounds biphasically: the first peak of ODC activity was observed at 4 h of the incubation with the two compounds and the second peak was at 4 h after the addition of LPS. To find whether these peaks were related to IL-1 beta production, DL-alpha-difluoromethylornithine (DFMO), a specific irreversible inhibitor of ODC, was added together with TPA and 1,25(OH)2D3. DFMO decreased the cellular levels of putrescine and spermidine and suppressed IL-1 beta release and IL-1 beta mRNA expression by 65%. Exogenous putrescine, but not spermidine, abrogated these kinds of inhibition. Similar results were obtained with DFMO and the polyamines during the differentiation of the cells up to the monocyte or macrophage stage. These results thus suggest that changes in either of these intracellular polyamines, especially putrescine, help to regulate the differentiation of U937 cells, resulting in partial control of the regulation of IL-1 beta production.  相似文献   

13.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

14.
The induction of ornithine decarboxylase activity was studied in a rat hepatoma cell line (Reuber H35) incubated with a group of structurally-related phorbol ester analogues. A single application of 1.6 μM of tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA) to H35 cells caused a dramatic increase in the activity of ornithine decarboxylase. The stimulation of the enzyme activity was rapid but transient, peaking at 4 to 5 hr with a value which was 116-fold greater than control and then declining to the basal level after 8 hr. In addition, the increase in ODC activity was dependent upon the concentration of TPA added to the culture medium and the EC50 was estimated to be about 2.63 × 10?7 M. Our studies of the effect of various phorbol ester analogues on the H35 ODC activity indicated an apparent correlation between the ability of phorbol ester derivatives to induce ODC activity in the H35 cells and their activity to promote papilloma formation in the mouse skin in that the various derivatives possessed the following relative abilities to increase ODC activity: TPA > PDB > PDA > 4 α-P > 4 α-PDD. Concurrent addition of either actinomycin D or cycloheximide abolished the increase in ODC activity after TPA treatment. Changes of intracellular concentrations of polyamines, particularly putrescine, were in good agreement with the increase in ODC activity in response to TPA: a 10-fold increase in putrescine over the control level was observed at 6 hr. Our data suggest that cultured Reuber H35 hepatoma cells exhibit a marked and specific response to the phorbol ester tumor promoters and may be of great value in studying the biochemical mechanism of ODC induction by these agents.  相似文献   

15.
Differentiation of mouse neuroblastoma cells has been shown to be accompanied by changes in polyamine metabolism and a decrease in polyamine content. We have previously shown that alpha-difluoromethyl ornithine, a suicide inhibitor of ornithine decarboxylase (ODC, EC 4.1.1.17) and suboptimal concentrations of dibutyryl cAMP (0.1 to 0.2 mM) are effective in inducing the differentiation of mouse Neuro-2a (N2a) neuroblastoma cells. Exogenously added putrescine or spermidine can block the action of DFMO and dibutyryl cAMP, suggesting that polyamines may play a regulatory role in neuroblastoma differentiation. We have now isolated from N2a cells a clonal variant line, DF-40, whose ODC gene has been amplified by 40-fold. The DF-40 cells overproduced the ODC enzyme and contained very high levels of putrescine, spermidine and spermine. Treatment of DF-40 cells with dibutyryl cAMP or DFMO/dibutyryl cAMP led to a more than 80% reduction in polyamine content. Such a decrease did not cause the DF-40 cells to differentiate. Polyamine content in the treated DF-40 cells was still comparable or higher than that in the undifferentiated N2a cells. In contrast, serum-deprivation induced full differentiation of DF-40 cells. Levels of polyamine in the differentiated DF-40 cells, however, were also found to be comparable to that in the undifferentiated N2a cells. Exogenously added polyamines could not block the differentiation of DF-40 cells induced by serum-deprivation, suggesting that the action of polyamines in regulating neuroblastoma differentiation may depend on the presence of serum factors.  相似文献   

16.
Ornithine decarboxylase (ODC, EC 4.1.1.17) expression is subject to negative feedback regulation by the polyamines. The results of previous studies favor either translational or post-translational regulation. To facilitate further analysis of the mechanism by which polyamines affect ODC expression we have used a cell line (L1210-DFMOr) that overproduces ODC. This cell line was isolated by selection for resistance to the antiproliferative effect of the ODC inhibitor alpha-difluoromethylornithine (DFMO). These cells respond similarly to polyamine depletion and repletion as do their wild-type counterparts. When L1210-DFMOr cells were grown in the presence of 20 mM DFMO (i.e., when their polyamine content was reduced to an extent that still permitted a normal growth rate) ODC represented 4-5% of the soluble protein synthesized. After transfer of the cells to a medium lacking DFMO (i.e., when their polyamine pools were repleted), the rate of incorporation of [35S]methionine into ODC was one order of magnitude lower. Since this difference in incorporation of radioactivity into ODC remained the same irrespective of the pulse-label time used (between 2 and 20 min) it is likely to represent a true difference in ODC synthesis rate. Consequently, the pulse-label experiments cannot be explained by rapid degradation of the enzyme during the labeling period. The difference in ODC synthesis rate was not accompanied by a corresponding difference in the steady-state level of ODC mRNA. Analyses of the distribution of ODC mRNA in polysome profiles did not demonstrate any major difference between cells grown in the absence or presence of DFMO, even though the ODC synthesis rate differed by as much as 10-fold. However, the distribution of the ODC mRNA in the polysome profiles indicated that the message was poorly translated. Thus, most of the ODC mRNA was present in fractions containing ribosomal subunits or monosomes. Inhibition of elongation by cycloheximide treatment resulted in a shift of the ODC mRNA from the region of the gradient containing ribosomal subunits to that containing mono- and polysomes, indicating that most of the ODC mRNA was accessible to translation. Taken together these data lend support to a translational control mechanism which involves both initiation and elongation.  相似文献   

17.
18.
DH23A cells, an α-difluoromethylornithine (DFMO)–resistant variant of rat hepatoma tissue culture cells (HTC), contain high levels of very stable ornithine decarboxylase (ODC). In the absence of DFMO, the high ODC activity results in a large accumulation of endogenous putrescine. Concomitant with the putrescine increase is a period of cytostasis and a subsequent loss of viable cells. In contrast, HTC cells with a moderate polyamine content can be maintained in exponential growth. This suggests that a moderate polyamine concentration is necessary for both optimal cell growth and survival. The cytoxicity observed in the DH23A cells is apparently not due to byproducts of polyamine oxidation or alterations in steady state intracellular pH or free [Ca2+]. It is possible to mimic the effects of high levels of stable ODC by treatment of cells with exogenous putrescine in the presence of DFMO. This suggests that overaccumulation of putrescine is the causative agent in the observed cytotoxicity, although the mechanism is unclear. These data support the hypothesis that downregulation of ODC may be necessary to prevent accumulation of cytotoxic concentrations of the polyamines. © 1994 Wiley-Liss, Inc.  相似文献   

19.
1. The effect of dichlororibofuranosylbenzimidazole (DiCl-RB), an inhibitor of hnRNA synthesis and casein kinase-2 activity, on ornithine decarboxylase (ODC) was investigated in a difluoromethylornithine (DFMO) resistant, ODC overproducing cell line. 2. In cells growing in the absence of DFMO, DiCl-RB provoked a marked, but transient increase in ODC activity and immunoreactive ODC content. 3. The ODC response to DiCl-RB was prevented by cycloheximide and was not due to stabilization of the enzyme. 4. The dibromo derivative analogue (DiBr-RB) exerted similar effects on ODC, but was effective at lower concentrations. 5. The halogenated ribofuranosylbenzimidazoles were ineffective in cells growing in the presence of DFMO and containing higher levels of ODC protein.  相似文献   

20.
Ornithine decarboxylase (ODC; EC4.1.1.17), the key enzyme in polyamine biosynthesis, and intracellular polyamines increase rapidly and markedly in tissues and cells that are actively proliferating as well as differentiating and decrease as these processes cease. ODC activity has also been implicated as playing a role in the proliferation and differentiation of cells derived from the developing palate. Ornithine decarboxylase activity was thus quantified and ODC localized in the developing murine palate in vivo. Levels of ODC activity showed little variation during the ontogeny of the palate, averaging 126 pmol CO2/mg protein/hr. When difluoromethylornithine (DFMO), an irreversible inhibitor of ODC activity, was administered to pregnant mice throughout the period of palate development (days 11-14), palatal tissue ODC activity was reduced by 85%. No craniofacial malformations were observed, however. The lack of a teratogenic effect by DFMO treatment could be due to sufficient remaining ODC activity in craniofacial tissue and/or maintenance of intracellular polyamine levels by the activity of a polyamine transport system. The activity of this system was demonstrated by the ability of palatal tissue in vivo to take up radiolabeled putrescine. The presence of a polyamine transport system was previously suggested by the demonstration of such a system in palate mesenchymal cells in vitro. Dramatic temporal and spatial shifts in tissue patterns of immunolocalization for ODC in developing palatal tissue were also seen. Immunostaining for ODC was evenly distributed in oral, nasal, and medial edge palate epithelial cells on day 12 of gestation. The basal aspects of epithelial cells were, however, more intensely stained. Mesenchymal cells exhibited a peri-nuclear immunostaining pattern. On days 12 and 13 of gestation, the staining patterns for ODC in palate epithelial and mesenchymal cells were comparable. On day 14 of gestation, all regions of the palate epithelium, particularly the medial edge epithelia, were immunostained for ODC, whereas the intensity of staining in the mesenchymal cells was significantly reduced. This study represents essential initial observations toward understanding the role that ODC may play in normal craniofacial development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号