首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymatic catalysis has conflicting structural requirements of the enzyme. In order for the enzyme to form a Michaelis complex, the enzyme must be in an open conformation so that the substrate can get into its active center. On the other hand, in order to maximize the stabilization of the transition state of the enzymatic reaction, the enzyme must be in a closed conformation to maximize its interactions with the transition state. The conflicting structural requirements can be resolved by a flexible active center that can sample both open and closed conformational states. For a bisubstrate enzyme, the Michaelis complex consists of two substrates in addition to the enzyme. The enzyme must remain flexible upon the binding of the first substrate so that the second substrate can get into the active center. The active center is fully assembled and stabilized only when both substrates bind to the enzyme. However, the side-chain positions of the catalytic residues in the Michaelis complex are still not optimally aligned for the stabilization of the transition state, which lasts only approximately 10(-13) s. The instantaneous and optimal alignment of catalytic groups for the transition state stabilization requires a dynamic enzyme, not an enzyme which undergoes a large scale of movements but an enzyme which permits at least a small scale of adjustment of catalytic group positions. This review will summarize the structure, catalytic mechanism, and dynamic properties of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase and examine the role of protein conformational dynamics in the catalysis of a bisubstrate enzymatic reaction.  相似文献   

2.
Structural heterogeneity and the dynamics of the complexes of enzymes with substrates can determine the selectivity of catalysis; however, fully characterizing how remains challenging as heterogeneity and dynamics can vary at the spatial level of an amino acid residue and involve rapid timescales. We demonstrate the nascent approach of site-specific two-dimensional infrared (IR) spectroscopy to investigate the archetypical cytochrome P450, P450cam, to better delineate the mechanism of the lower regioselectivity of hydroxylation of the substrate norcamphor in comparison to the native substrate camphor. Specific locations are targeted throughout the enzyme by selectively introducing cyano groups that have frequencies in a spectrally isolated region of the protein IR spectrum as local vibrational probes. Linear and two-dimensional IR spectroscopy were applied to measure the heterogeneity and dynamics at each probe and investigate how they differentiate camphor and norcamphor recognition. The IR data indicate that the norcamphor complex does not fully induce a large-scale conformational change to a closed state of the enzyme adopted in the camphor complex. Additionally, a probe directed at the bound substrate experiences rapidly interconverting states in the norcamphor complex that explain the hydroxylation product distribution. Altogether, the study reveals large- and small-scale structural heterogeneity and dynamics that could contribute to selectivity of a cytochrome P450 and illustrates the approach of site-selective IR spectroscopy to elucidate protein dynamics.  相似文献   

3.
It is well known that enzyme flexibility is critical for function. This is due to the observation that the rates of intramolecular enzyme motions are often matched to the rates of intermolecular events such as substrate binding and product release. Beyond this role in progression through the reaction cycle, it has been suggested that enzyme dynamics may also promote the chemical step itself. Dihydrofolate reductase (DHFR) is a model enzyme for which dynamics have been proposed to aid in both substrate flux and catalysis. The G121V mutant of DHFR is a well studied form that exhibits a severe reduction in the rate of hydride transfer yet there remains dispute as to whether this defect is caused by altered structure, dynamics, or both. Here we address this by presenting an NMR study of the G121V mutant bound to reduced cofactor and the transition state inhibitor, methotrexate. NMR chemical shift markers demonstrate that this form predominantly adopts the closed conformation thereby allowing us to provide the first glimpse into the dynamics of a catalytically relevant complex. Based on (15)N and (2)H NMR spin relaxation, we find that the mutant complex has modest changes in ps-ns flexibility with most affected residues residing in the distal adenosine binding domain rather than the active site. Thus, aberrant ps-ns dynamics are likely not the main contributor to the decreased catalytic rate. The most dramatic effect of the mutation involves changes in μs-ms dynamics of the F-G and Met20 loops. Whereas loop motion is quenched in the wild type transition state inhibitor complex, the F-G and Met20 loops undergo excursions from the closed conformation in the mutant complex. These excursions serve to decrease the population of conformers having the correct active site configuration, thus providing an explanation for the G121V catalytic defect.  相似文献   

4.
Proteins are dynamic molecules that often undergo conformational changes while performing their specific functions, such as target recognition, ligand binding and catalysis. NMR spectroscopy is uniquely suited to study protein dynamics, because site-specific information can be obtained for motions that span a broad range of time scales. The information obtained from NMR dynamics experiments has provided insights into specific structural changes or conformational energetics associated with molecular function. In the last decade, a number of new advancements in NMR methodologies have further extended our ability to characterize protein dynamics. Here, we present an overview of current NMR technology that is used to monitor the dynamic properties of proteins.  相似文献   

5.
For several decades, molecular recognition has been considered one of the most fundamental processes in biochemistry. For enzymes, substrate binding is often coupled to conformational changes that alter the local environment of the active site to align the reactive groups for efficient catalysis and to reach the transition state. Adaptive substrate recognition is a well-known concept; however, it has been poorly characterized at a structural level because of its dynamic nature. Here, we provide a detailed mechanism for an induced-fit process at atomic resolution. We take advantage of a slow, tight binding inhibitor-enzyme system, actinonin-peptide deformylase. Crystal structures of the initial open state and final closed state were solved, as well as those of several intermediate mimics captured during the process. Ligand-induced reshaping of a hydrophobic pocket drives closure of the active site, which is finally "zipped up" by additional binding interactions. Together with biochemical analyses, these data allow a coherent reconstruction of the sequence of events leading from the encounter complex to the key-lock binding state of the enzyme. A "movie" that reconstructs this entire process can be further extrapolated to catalysis.  相似文献   

6.
Protein kinases play a critical role in the integration of signaling networks in eukaryotic cells. cAMP-dependent protein kinase (PKA) serves as a prototype for this large and highly diverse enzyme family. The catalytic subunit of PKA provides the best example of how a protein kinase recognizes its substrates, as well as inhibitors, and also show how the enzyme moves through the steps of catalysis. Many of the relevant conformational states associated with the catalytic cycle which have been captured in a crystal lattice are summarized here. From these structures, we can begin to appreciate the molecular events of catalysis as well as the intricate orchestration of critical residues in the catalytic subunit that contribute to catalysis. The entire molecule participates. To fully understand signaling by PKA, however, requires an understanding of a large set of related proteins, not just the catalytic subunit. This includes the regulatory subunits that serve as receptors for cAMP and the A kinase anchoring proteins (AKAPs) that serve as scaffolds for PKA. The AKAPs localize PKA to specific sites in the cell by docking to the N-terminus of the regulatory subunits, thus creating microenvironments for PKA signaling. To fully appreciate the diversity and integration of these molecules, one needs not only high-resolution structures but also an appreciation of how these molecules behave in solution. Thus, in addition to obtaining high-resolution structures by X-ray crystallography and NMR, we have used fluorescent tools and also hydrogen/deuterium exchange coupled with mass spectrometry to probe the dynamic properties of these proteins and how they interact with one another. The molecular features of these molecules are described. Finally, we describe a new recombinantly expressed PKA reporter that allows us to monitor PKA activity in living cells.  相似文献   

7.
Escherichia coli dihydrofolate reductase (DHFR) has several flexible loops surrounding the active site that play a functional role in substrate and cofactor binding and in catalysis. We have used heteronuclear NMR methods to probe the loop conformations in solution in complexes of DHFR formed during the catalytic cycle. To facilitate the NMR analysis, the enzyme was labeled selectively with [(15)N]alanine. The 13 alanine resonances provide a fingerprint of the protein structure and report on the active site loop conformations and binding of substrate, product, and cofactor. Spectra were recorded for binary and ternary complexes of wild-type DHFR bound to the substrate dihydrofolate (DHF), the product tetrahydrofolate (THF), the pseudosubstrate folate, reduced and oxidized NADPH cofactor, and the inactive cofactor analogue 5,6-dihydroNADPH. The data show that DHFR exists in solution in two dominant conformational states, with the active site loops adopting conformations that closely approximate the occluded or closed conformations identified in earlier X-ray crystallographic analyses. A minor population of a third conformer of unknown structure was observed for the apoenzyme and for the disordered binary complex with 5,6-dihydroNADPH. The reactive Michaelis complex, with both DHF and NADPH bound to the enzyme, could not be studied directly but was modeled by the ternary folate:NADP(+) and dihydrofolate:NADP(+) complexes. From the NMR data, we are able to characterize the active site loop conformation and the occupancy of the substrate and cofactor binding sites in all intermediates formed in the extended catalytic cycle. In the dominant kinetic pathway under steady-state conditions, only the holoenzyme (the binary NADPH complex) and the Michaelis complex adopt the closed loop conformation, and all product complexes are occluded. The catalytic cycle thus involves obligatory conformational transitions between the closed and occluded states. Parallel studies on the catalytically impaired G121V mutant DHFR show that formation of the closed state, in which the nicotinamide ring of the cofactor is inserted into the active site, is energetically disfavored. The G121V mutation, at a position distant from the active site, interferes with coupled loop movements and appears to impair catalysis by destabilizing the closed Michaelis complex and introducing an extra step into the kinetic pathway.  相似文献   

8.
Phosphorylation of membrane proteins is a central regulatory and signaling mechanism across cell compartments. However, the recognition process and phosphorylation mechanism of membrane-bound substrates by kinases are virtually unknown. cAMP-dependent protein kinase A (PKA) is a ubiquitous enzyme that phosphorylates several soluble and membrane-bound substrates. In cardiomyocytes, PKA targets phospholamban (PLN), a membrane protein that inhibits the sarcoplasmic reticulum Ca2+-ATPase (SERCA). In the unphosphorylated state, PLN binds SERCA, reducing the calcium uptake and generating muscle contraction. PKA phosphorylation of PLN at S16 in the cytoplasmic helix relieves SERCA inhibition, initiating muscle relaxation. Using steady-state kinetic assays, NMR spectroscopy, and molecular modeling, we show that PKA recognizes and phosphorylates the excited, membrane-detached R-state of PLN. By promoting PLN from a ground state to an excited state, we obtained a linear relationship between rate of phosphorylation and population of the excited state of PLN. The conformational equilibrium of PLN is crucial to regulate the extent of PLN phosphorylation and SERCA inhibition.  相似文献   

9.
para-Hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyzes a reaction in two parts: reduction of the enzyme cofactor, FAD, by NADPH in response to binding p-hydroxybenzoate to the enzyme, then oxidation of reduced FAD by oxygen to form a hydroperoxide, which oxygenates p-hydroxybenzoate to form 3,4-dihydroxybenzoate. These diverse reactions all occur within a single polypeptide and are achieved through conformational rearrangements of the isoalloxazine ring and protein residues within the protein structure. In this review, we examine the complex dynamic behavior of the protein that enables regulated fast and specific catalysis to occur. Original research papers (principally from the past 15 years) provide the information that is used to develop a comprehensive overview of the catalytic process. Much of this information has come from detailed analysis of many specific mutants of the enzyme using rapid reaction technology, biophysical measurements, and high-resolution structures obtained by X-ray crystallography. We describe how three conformations of the enzyme provide a foundation for the catalytic cycle. One conformation has a closed active site for the conduct of the oxygen reactions, which must occur in the absence of solvent. The second conformation has a partly open active site for exchange of substrate and product, and the third conformation has a closed protein structure with the isoalloxazine ring rotated out to the surface for reaction with NADPH, which binds in a surface cleft. A fundamental feature of the enzyme is a H-bond network that connects the phenolic group of the substrate in the buried active site to the surface of the protein. This network serves to protonate and deprotonate the substrate and product in the active site to promote catalysis and regulate the coordination of conformational states for efficient catalysis.  相似文献   

10.
Agarwal PK  Geist A  Gorin A 《Biochemistry》2004,43(33):10605-10618
A growing body of evidence suggests a connection between protein dynamics and enzymatic catalysis. In this paper, we present a variety of computational studies designed to investigate the role of protein dynamics in the detailed mechanism of peptidyl-prolyl cis-trans isomerization catalyzed by human cyclophilin A. The results identify a network of protein vibrations, extending from surface regions of the enzyme to the active site and coupled to substrate turnover. Indications are that this network may have a role in promoting catalysis. Crucial parts of this network are found to be conserved in 10 cyclophilin structures from six different species. Experimental evidence for the existence of this network comes from previous NMR relaxation studies, where motions in several residues, forming parts of this network, were detected only during substrate turnover. The high temperature factors (from X-ray crystal structures) associated with the network residues provide further evidence of these vibrations. Along with the knowledge of enzyme structure, this type of network could provide new insights into enzymatic catalysis and the effect of distant ligand binding on protein function. The procedure outlined in this paper is general and can be applied to other enzymatic systems as well. This presents an interesting opportunity; collaborative experimental and theoretical investigations designed to characterize in detail the nature and function of this type of network could enhance the understanding of protein dynamics in enzymatic catalysis.  相似文献   

11.
Proteins are not rigid structures; they are dynamic entities, with numerous conformational isomers (substates). The dynamic nature of protein structures amplifies the structural variation of the transition state for chemical reactions performed by proteins. This suggests that utilizing a transition state ensemble to describe chemical reactions involving proteins may be a useful representation. Here we re-examine the nature of the transition state of protein chemical reactions (enzyme catalysis), considering both recent developments in chemical reaction theory (Marcus theory for SN2 reactions), and protein dynamics effects. The classical theory of chemical reactions relies on the assumption that a reaction must pass through an obligatory transition-state structure. The widely accepted view of enzymatic catalysis holds that there is tight binding of the substrate to the transition-state structure, lowering the activation energy. This picture, may, however, be oversimplified. The real meaning of a transition state is a surface, not a single saddle point on the potential energy surface. In a reaction with a "loose" transition-state structure, the entire transition-state region, rather than a single saddle point, contributes to reaction kinetics. Consequently, here we explore the validity of such a model, namely, the enzymatic modulation of the transition-state surface. We examine its utility in explaining enzyme catalysis. We analyse the possibility that instead of optimizing binding to a well-defined transition-state structure, enzymes are optimized by evolution to bind efficiently with a transition-state ensemble, with a broad range of activated conformations. For enzyme catalysis, the key issue is still transition state (ensemble) stabilization. The source of the catalytic power is the modulation of the transition state. However, our definition of the transition state is the entire transition-state surface rather just than a single well-defined structure. This view of the transition-state ensemble is consistent with the nature of the protein molecule, as embodied and depicted in the protein energy landscape of folding, and binding, funnels.  相似文献   

12.
Tugarinov V  Kay LE 《Biochemistry》2005,44(49):15970-15977
A detailed understanding of molecular recognition is predicated not only on high-resolution static structures of the free and bound states but also on information about how these structures change with time, that is, molecular dynamics. Here we present a deuterium ((2)H) and carbon ((13)C) NMR relaxation study of methyl side chain dynamics in the 82 kDa enzyme malate synthase G (MSG) that is a promising target for the development of new antibiotic agents. It is shown that excellent agreement between (2)H- and (13)C-derived measures of dynamics is obtained, with correlation coefficients exceeding 0.95. The binding interface formed by MSG and its substrates is found to be highly dynamic in the ligand-free state of the enzyme with rigidification upon binding substrate. This study establishes that detailed, quantitative information about methyl side chain dynamics can be obtained by NMR on proteins with molecular masses on the order of 100 kDa and opens up the possibilities for studies of motion in a large number of important systems.  相似文献   

13.
During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme∶DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics.  相似文献   

14.
Flavoprotein monooxygenases are involved in a wide variety of biological processes including drug detoxification, biodegradation of aromatic compounds in the environment, biosynthesis of antibiotics and siderophores, and many others. The reactions use NAD(P)H and O2 as co-substrates and insert one atom of oxygen into the substrate. The flavin-dependent monooxygenases utilize a general cycle in which NAD(P)H reduces the flavin, and the reduced flavin reacts with O2 to form a C4a-(hydro)peroxyflavin intermediate, which is the oxygenating agent. This complicated catalytic process has diverse requirements that are difficult to be satisfied by a single site. Two general strategies have evolved to satisfy these requirements. para-Hydroxybenzoate hydroxylase, the paradigm for the single-component flavoprotein monooxygenases, is one of the most thoroughly studied of all enzymes. This enzyme undergoes significant protein and flavin dynamics during catalysis. There is an open conformation that gives access of substrate and product to solvent, and a closed or in conformation for the reaction with oxygen and the hydroxylation to occur. This closed form prevents solvent from destabilizing the hydroperoxyflavin intermediate. Finally, there is an out conformation achieved by movement of the isoalloxazine toward the solvent, which exposes its N5 for hydride delivery from NAD(P)H. The protein coordinates these dynamic events during catalysis. The second strategy uses a reductase to catalyze the reduction of the flavin and an oxygenase that uses the reduced flavin as a substrate to react with oxygen and hydroxylate the organic substrate. These two-component systems must be able to transfer reduced flavin from the reductase to the oxygenase and stabilize a C4a-peroxyflavin until a substrate binds to be hydroxylated, all before flavin oxidation and release of H2O2. Again, protein dynamics are important for catalytic success.  相似文献   

15.
Glu230, one of the acidic residues that cluster around the active site of the catalytic subunit of cAMP-dependent protein kinase, plays an important role in substrate recognition. Specifically, its side chain forms a direct salt-bridge interaction with the substrate's P-2 Arg. Previous studies showed that mutation of Glu230 to Gln (E230Q) caused significant decreases not only in substrate binding but also in the rate of phosphoryl transfer. To better understand the importance of Glu230 for structure and function, we solved the crystal structure of the E230Q mutant at 2.8 A resolution. Surprisingly, the mutant preferred an open conformation with no bound ligands observed, even though the crystals were grown in the presence of MgATP and the inhibitor peptide, IP20. This is in contrast to the wild-type protein that, under the same conditions, prefers the closed conformation of a ternary complex. The structure highlights the importance of the electrostatic surface not only for substrate binding and catalysis, but also for the mechanism for closing the active site cleft. This surface mutation clearly disrupts the recognition and binding of substrate peptide so that the enzyme prefers an open conformation that cannot trap ATP. This is consistent with the reinforcing concepts of conformational dynamics and the synergistic binding of ATP and substrate peptide. Another unusual feature of the structure is the observation of the entire N terminus (Gly1-Thr32) assumes an extended alpha-helix conformation. Finally, based on temperature factors, this mutant structure is more stable than the wild-type C-subunit in the apo state.  相似文献   

16.
The NADPH cytochrome P450 reductase (CPR), a diflavin enzyme, catalyzes the electron transfer (ET) from NADPH to the substrate P450. The crystal structures of mammalian and yeast CPRs show a compact organization for the two domains containing FMN (flavin mononucleotide) and FAD (flavin adenine dinucleotide), with a short interflavin distance consistent with fast ET from the NADPH-reduced FAD to the second flavin FMN. This conformation, referred as "closed", contrasts with the alternative opened or extended domain arrangements recently described for partially reduced or mutant CPR. Internal domain flexibility in this enzyme is indeed necessary to account for the apparently conflicting requirements of having FMN flavin accessible to both the FAD and the substrate P450 at the same interface. However, how interdomain dynamics influence internal and external ETs in CPR is still largely unknown. Here, we used NMR techniques to explore the global, domain-specific and residue-specific structural and dynamic properties of the nucleotide-free human CPR in solution in its oxidized state. Based on the backbone resonance assignment of this 70-kDa protein, we collected residue-specific (15)N relaxation and (1)H-(15)N residual dipolar couplings. Surprisingly and in contrast with previous studies, the analysis of these NMR data revealed that the CPR exists in a unique and predominant conformation that highly resembles the closed conformation observed in the crystalline state. Based on our findings and the previous observations of conformational equilibria of the CPR in partially reduced states, we propose that the large-scale conformational transitions of the CPR during the catalytic cycle are tightly controlled to ensure optimal electron delivery.  相似文献   

17.
The enzyme adenylate kinase (ADK) features two substrate binding domains that undergo large-scale motions during catalysis. In the apo state, the enzyme preferentially adopts a globally open state with accessible binding sites. Binding of two substrate molecules (AMP + ATP or ADP + ADP) results in a closed domain conformation, allowing efficient phosphoryl-transfer catalysis. We employed molecular dynamics simulations to systematically investigate how the individual domain motions are modulated by the binding of substrates. Two-dimensional free-energy landscapes were calculated along the opening of the two flexible lid domains for apo and holo ADK as well as for all single natural substrates bound to one of the two binding sites of ADK. The simulations reveal a strong dependence of the conformational ensembles on type and binding position of the bound substrates and a nonsymmetric behavior of the lid domains. Altogether, the ensembles suggest that, upon initial substrate binding to the corresponding lid site, the opposing lid is maintained open and accessible for subsequent substrate binding. In contrast, ATP binding to the AMP-lid induces global domain closing, preventing further substrate binding to the ATP-lid site. This might constitute a mechanism by which the enzyme avoids the formation of a stable but enzymatically unproductive state.  相似文献   

18.
A fundamental question is how enzymes can accelerate chemical reactions. Catalysis is not only defined by actual chemical steps, but also by enzyme structure and dynamics. To investigate the role of protein dynamics in enzymatic turnover, we measured residue-specific protein dynamics in hyperthermophilic and mesophilic homologs of adenylate kinase during catalysis. A dynamic process, the opening of the nucleotide-binding lids, was found to be rate-limiting for both enzymes as measured by NMR relaxation. Moreover, we found that the reduced catalytic activity of the hyperthermophilic enzyme at ambient temperatures is caused solely by a slower lid-opening rate. This comparative and quantitative study of activity, structure and dynamics revealed a close link between protein dynamics and catalytic turnover.  相似文献   

19.
As an aid to understanding the influence of dynamic fluctuations during esterolytic catalysis, we follow protein flexibility at three different steps along the catalytic pathway from substrate binding to product clearance via a covalently attached inhibitor, which represents a transition-state mimic. We have applied a classical approach, using molecular dynamics simulations to monitor protein dynamics in the nanosecond regime. We filter out small amplitude fluctuations and focus on the anharmonic contributions to the overall dynamics. This 'essential dynamics' analysis reveals different modes of response along the pathway suggesting that binding, catalysis and product clearance occur along different energy surfaces. Motions in the enzyme with a covalently attached ligand are more complex and occur along several eigenvectors. The magnitudes of the fluctuations in these individual subspaces are significantly smaller than those observed for the substrate and product molecules, indicating that the energy surface is shallow and that a relatively large number of conformational substates are accessible. On the other hand, substrate binding and product release occur at distinct modes of the protein flexibility suggesting that these processes occur along rough energy surfaces with only a few minima. Detailed energetic analyses along the trajectories indicated that in all cases binding is dominated by van der Waals interactions. The carboxylate form of the product is stabilized by a tight hydrogen bond network involving in particular Ser82, which may be a potential cause of product inhibition. Considerations such as these should aid the understanding of mechanisms of substrate, inhibitor or product recognition and could become of importance in the design of new substrates or inhibitors for enzymes.  相似文献   

20.
利用FRET技术在活细胞内观察EGF对PKA作用的时空成像   总被引:3,自引:0,他引:3  
cAMP依赖的蛋白激酶(protein kinase A,PKA)在细胞生长与分化过程中扮演重要角色,特别是在调节Ras信号通路引起的细胞增殖效应中起着重要作用。为了在活细胞内动态观察表皮生长因子(epidermal growth factor,EGF)对PKA的作用,采用一种可以检测PKA酶活性的报告蛋白(A-kinase activity reporter,AKAR)——这种报告蛋白是利用荧光共振能量转移(fluorescence resonance energy transfer,FRET)原理设计的,使其在人类肺癌细胞(ASTC-a-1)中稳定表达。加入EGF刺激因子后,随时间变化的成像分析显示出在活细胞生理条件下被EGF作用的PKA酶活性变化的时空信息。这些资料为EGF作用PKA提供了直接的实时证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号