首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Septin filaments form ordered hourglass and ring-shaped structures in close apposition to the yeast bud-neck membrane. The septin hourglass scaffolds the asymmetric localization of many essential cell division proteins. However, it is unknown whether the septin structures have an overall polarity along the mother-daughter axis that determines the asymmetric protein localization. Here we engineered rigid septin- green fluorescent protein (GFP) fusions with various fluorescence dipole directions by changing the position of the GFP beta-barrel relative to the septin filament axis. We then used polarized fluorescence microscopy to detect potential asymmetries in the filament organization. We found that both the hourglass and ring filament assemblies have sub-resolution C(2) symmetry and lack net polarity along the mother-daughter axis. The hourglass filaments have an additional degree of symmetry relative to the ring filaments, most likely due to a twist in their higher-order structure. We previously reported that during the hourglass to rings transition septin filaments change their direction. Here we show that the filaments also undergo a change in their lateral organization, consistent with filament untwisting. The lack of net septin polarity along the mother-daughter axis suggests that there are no septin-based structural reasons for the observed asymmetry of other proteins. We discuss possible anisotropic processes that could break the septin symmetry and establish the essential bud-neck asymmetry.  相似文献   

3.
Differential scanning calorimetry was performed to monitor the heat-induced changes that occur in the structural domain of lens alpha-crystallin. Circular dichroism and fluorescence also were used to resolve the controversial issue of the quaternary structure of alpha-crystallin. Based on the thermal behavior as monitored by these techniques, a model is proposed that can account for all previous data as well as the currently reported thermal data. The proposed model of native alpha-crystallin has a three-layer structure in which the inner layer (core) is a micelle containing 12 subunits arranged in cuboctahedral symmetry. The apolar region is directed inward constituting a hydrophobic core similar to a micelle and adding structural stability. A second layer of six subunits has a similar but not identical structure to the first layer, directing its apolar face toward the hydrophobic core. Thus, these two layers constitute a micelle-like structure with octahedral symmetry. The third layer adds more subunits for a total of not more than 24. Differential scanning calorimetry, circular dichroism, and fluorescence studies indicated that the inner two-layer structure of molecular mass 360 kDa is highly stable and is most likely of the alpha m form. The three-layer structure of the native protein, however, is rather unstable. At 35-45 degrees C the outer layer dissociates from the inner two layers, and at higher temperatures rapidly reassociates to a slightly modified two-layer structure with a stability similar to that of alpha m. The proposed model does not require any specific assembly of the alpha A and alpha B subunits in each layer, but the fluorescence results suggest that the native inner two layers probably contain mostly alpha A.  相似文献   

4.
Lie group analysis of the photo-induced fluorescence of Drosophila oogenesis with the asymmetrically localized Gurken protein has been performed systematically to assess the roles of ligand-receptor complexes in follicle cells. The (2×2) matrix representations resulting from the polarized tissue spectra were employed to characterize the asymmetrical Gurken distributions. It was found that the fluorescence of the wild-type egg shows the Lie point symmetry X 23 at early stages of oogenesis. However, due to the morphogen regulation by intracellular proteins and extracellular proteins, the fluorescence of the embryogenesis with asymmetrically localized Gurken expansions exhibits specific symmetry features: Lie point symmetry Z 1 and Lie point symmetry X 1. The novel approach developed herein was successfully used to validate that the invariant-theoretical characterizations are consonant with the observed asymmetric fluctuations during early embryological development.  相似文献   

5.
The 2B protein of enteroviruses is the viral membrane-active protein that is responsible for the modifications in host cell membrane permeability that take place in enterovirus-infected cells. The 2B protein shows structural similarities to the group of lytic polypeptides, polypeptides that permeate membranes either by forming multimeric membrane-integral pores or, alternatively, by lying parallel to the lipid bilayer and disturbing the curvature and symmetry of the membrane. Our aim is to gain more insight into the molecular architecture of the 2B protein in vivo. In this study, the possible existence of multimers of the coxsackie B3 virus 2B protein in single living cells was explored by fluorescence resonance energy transfer (FRET) microscopy. FRET between fusion proteins 2B-ECFP and 2B-EYFP (enhanced cyan and yellow fluorescent variants of green fluorescent protein) was monitored by using spectral imaging microscopy (SPIM) and fluorescence lifetime imaging microscopy (FLIM). Both techniques revealed the occurrence of intermolecular FRET between 2B-ECFP and 2B-EYFP, providing evidence for the formation of protein 2B homomultimers. Putative models for the mode of action of the membrane-active 2B protein and the formation of membrane-integral pores by 2B multimers are discussed.  相似文献   

6.
K A Gol'fand  A B Kaulin 《Tsitologiia》1977,19(12):1353-1361
Theoretical aspects of the experiment dealing with measurements of fluorescence polarization degrees in stained myelinated nerve fibres are considered. Fluorescence polarization (FP) largely depends on the excitation azimuth, i.e. on the angle between the electrical vector of the polarized exciting light and the nerve fibre axis (geometrically it is a figure with the cylinder symmetry). The dependence of FP on the excitation azimuth is shown to be related to the degree of molecular orientation of dyes adsorbed on anisotropic layers of myelin membranes. This permits to associate FP with the structural changes of myelin membranes.  相似文献   

7.
We present a new approach for studying individual protein domains within the nuclear pore complex (NPC) using fluorescence polarization microscopy. The NPC is a large macromolecular complex, the size and complexity of which presents experimental challenges. Using fluorescence anisotropy and exploiting the symmetry of the NPC and its organization in the nuclear envelope, we have resolved order and disorder of individual protein domains. Fluorescently tagging specific domains of individual nucleoporins revealed both rigid and flexible domains: the tips of the FG domains are disordered, whereas the NPC-anchored domains are ordered. Our technique allows the collection of structural information in vivo, providing the ability to probe the organization of protein domains within the NPC. This has particular relevance for the FG domain nucleoporins, which are crucial for nucleocytoplasmic transport.  相似文献   

8.
The excited state kinetics of three different allophycocyanin (AP) complexes has been studied by picosecond fluorescence spectroscopy. Both the fluorescence kinetics and the decay-associated fluorescence spectra of the different complexes can be understood on the basis of a structural model for AP which uses (a) an analogy to the known x-ray determined structure of C-phycocyanin, (b) the biochemical analogies of AP and C-phycocyanin, and (c) the biochemical composition of AP-B (AP-681). A model is developed that describes the excited state kinetics as a mixture of internal conversion processes within a coupled exciton pair and energy transfer processes between exciton pairs. We found excited state relaxation times in the range of 13 ps (AP with linker peptide) up to 66 ps (AP-B). The trimeric aggregates AP 660 and AP 665 show one fast relaxation component each, as was expected on the basis of their symmetry properties. The lower symmetry of AP-B (AP-681) gives rise to two fast lifetime components (τ1 = 23 ps and τ2 = 66 ps) which are attributed to internal conversion and/or energy transfer between excitonic states formed by the coupling of symmetrically and spectrally nonequivalent chromophores. It is proposed that the internal conversion between exciton states of strongly coupled chromophores fulfills the requirements of the small energy gap limit. Thus, internal conversion rates in the order of tens of picoseconds are feasible. The influence of the interaction of the linker peptide on the properties of the AP trimer are manifested in the fluorescence kinetics. Lack of the linker peptide in AP 660 gives rise to a heterogeneity in the chromophore conformations and chromophore-chromophore interactions.  相似文献   

9.
Internal symmetry is commonly observed in the majority of fundamental protein folds. Meanwhile, sufficient evidence suggests that nascent polypeptide chains of proteins have the potential to start the co-translational folding process and this process allows mRNA to contain additional information on protein structure. In this paper, we study the relationship between gene sequences and protein structures from the viewpoint of symmetry to explore how gene sequences code for structural symmetry in proteins. We found that, for a set of two-fold symmetric proteins from left-handed beta-helix fold, intragenic symmetry always exists in their corresponding gene sequences. Meanwhile, codon usage bias and local mRNA structure might be involved in modulating translation speed for the formation of structural symmetry: a major decrease of local codon usage bias in the middle of the codon sequence can be identified as a common feature; and major or consecutive decreases in local mRNA folding energy near the boundaries of the symmetric substructures can also be observed. The results suggest that gene duplication and fusion may be an evolutionarily conserved process for this protein fold. In addition, the usage of rare codons and the formation of higher order of secondary structure near the boundaries of symmetric substructures might have coevolved as conserved mechanisms to slow down translation elongation and to facilitate effective folding of symmetric substructures. These findings provide valuable insights into our understanding of the mechanisms of translation and its evolution, as well as the design of proteins via symmetric modules.  相似文献   

10.
M Irving 《Biophysical journal》1996,70(4):1830-1835
Steady-state fluorescence polarization measurements provide a relatively simple method for investigating the orientation of molecular components in ordered biological systems. However, the observed fluorescence polarization ratios also depend on any mobility of the fluorophores on the time scale of the fluorescence lifetime. Such mobility commonly arises from incomplete immobilization of a fluorescent probe on the macromolecule of interest. A theoretical formalism is presented for the interpretation of steady-state fluorescence polarization ratios in the presence of such rapid fluorophore motion. It is assumed that the fluorophores move freely within a cone between absorption and emission of a photon. Only one new parameter is introduced to describe fluorophore motion, the semi-angle of the cone, and this can be measured in separate experiments on an isotropic system. The fluorophore orientations are assumed to have cylindrical symmetry, but the symmetry axis need not be in the same plane as the center axes of the absorption and emission cones. This geometry applies to muscle and other biological fibers.  相似文献   

11.
A characteristic of virus assembly is the use of symmetry to construct a complex capsid from a limited number of different proteins. Many spherical viruses display not only icosahedral symmetry, but also local symmetries, which further increase the redundancy of their structural proteins. We have developed a computational procedure for evaluating the quality of these local symmetries that allows us to probe the extent of local structural variations among subunits. This type of analysis can also provide orientation parameters for carrying out non-icosahedral averaging of quasi-equivalent subunits during three-dimensional structural determination. We have used this procedure to analyze the three types of hexon (P, E and C) in the 8.5 A resolution map of the herpes simplex virus type 1 (HSV-1) B capsid, determined by electron cryomicroscopy. The comparison of the three hexons showed that they have good overall 6-fold symmetry and are almost identical throughout most of their lengths. The largest difference among the three lies near the inner surface in a region of about 34 A in thickness. In this region, the P hexon displays slightly lower 6-fold symmetry than the C and E hexons. More detailed analysis showed that parts of two of the P hexon subunits are displaced counterclockwise with respect to their expected 6-fold positions. The most highly displaced subunit interacts with a subunit from an adjacent P hexon (P'). Using the local 6-fold symmetry axis of the P hexon as a rotation axis, we examined the geometrical relationships among the local symmetry axes of the surrounding capsomeres. Deviations from exact symmetry are also found among these local symmetry axes. The relevance of these findings to the process of capsid assembly is considered.  相似文献   

12.
We carry out a systematic analysis of the correlation between similarity of protein three-dimensional structures and their evolutionary relationships. The structural similarity is quantitatively identified by an all-against-all comparison of the spatial arrangement of secondary structural elements in nonredundant 967 representative proteins, and the evolutionary relationship is judged according to the definition of superfamily in the SCOP database. We find the following symmetry rule: a protein pair that has similar folds but belong to different superfamilies has (with a very rare exception) certain internal symmetry in its common similar folds. Possible reasons behind the symmetry rule are discussed.  相似文献   

13.
E Boy de la Tour  U K Laemmli 《Cell》1988,55(6):937-944
We have studied the three-dimensional folding of the scaffolding in histone H1-depleted chromosomes by immunofluorescence with an antibody specific for topoisomerase II. Two different types of decondensed chromosomes are observed. The majority of the chromosomes are expanded, and the central fluorescence signal is surrounded by a large halo of chromatin. A much smaller number of chromosomes are more compact in length; they contain a smaller halo of chromatin and their scaffolds are not extended but folded into a genuine, quite regular helical coil. This conclusion is based on a three-dimensional structural analysis by optical sectioning. The number of helical coils is related to chromosome length. Surprisingly, sister chromatids have predominantly opposite helical handedness; that is, they are related by mirror symmetry.  相似文献   

14.
Fluorescent derivatives of cytochrome c were prepared by replacing the heme iron with closed-shell metals such as zinc or tin. The iron-free derivatives of cytochrome c bind to yeast lactate dehydrogenase (cytochrome b2) stoichiometrically and with high affinity. Spectral overlap exists between the fluorescence of porphyrin, Zn(II) or Sn(IV) cytochrome c and the absorption of the heme of cytochrome b; therefore dipole-dipole interaction is possible as predicted by F?rster's theory of energy transfer. Changes in the fluorescence yield and the fluorescent decay profile of the cytochrome c derivatives are consistent with the view that the heme distance is sufficiently close for dipolar interactions. The distance calculated from the data depends upon assumptions in the theory for energy transfer and uncertainties in the experiment. It can be argued that due to the symmetry of the metalloporphyrins the relative orientations of the two hemes do not introduce a significant uncertainty in the calculation. However the decay profiles of the iron-free cytochromes are complex, possibly reflecting structural rearrangement of the polypeptide chain during the fluorescent lifetime. The steady-state fluorescent yields would indicate that the mean distance is around 1.8 nm.  相似文献   

15.
Viruses with icosahedral capsids, which form the largest class of all viruses and contain a number of important human pathogens, can be modelled via suitable icosahedrally invariant finite subsets of icosahedral 3D quasicrystals. We combine concepts from the theory of 3D quasicrystals, and from the theory of structural phase transformations in crystalline solids, to give a framework for the study of the structural transitions occurring in icosahedral viral capsids during maturation or infection. As 3D quasicrystals are in a one-to-one correspondence with suitable subsets of 6D icosahedral Bravais lattices, we study systematically the 6D-analogs of the classical Bain deformations in 3D, characterized by minimal symmetry loss at intermediate configurations, and use this information to infer putative viral-capsid transition paths in 3D via the cut-and-project method used for the construction of quasicrystals. We apply our approach to the Cowpea Chlorotic Mottle virus (CCMV) and show that the putative transition path between the experimentally observed initial and final CCMV structures is most likely to preserve one threefold axis. Our procedure suggests a general method for the investigation and prediction of symmetry constraints on the capsids of icosahedral viruses during structural transitions, and thus provides insights into the mechanisms underlying structural transitions of these pathogens.  相似文献   

16.
Glutathione S-transferases are a family of multifunctional enzymes involved in the metabolism of drugs and xenobiotics. Two tyrosine residues, Tyr 7 and Tyr 111, in the active site of the enzyme play an important role in the binding and catalysis of substrate ligands. The crystal structures of Schistosoma japonicum glutathione S-transferase tyrosine 7 to phenylalanine mutant [SjGST(Y7F)] in complex with the substrate glutathione (GSH) and the competitive inhibitor S-octylglutathione (S-octyl-GSH) have been obtained. These new structural data combined with fluorescence spectroscopy and thermodynamic data, obtained by means of isothermal titration calorimetry, allow for detailed characterization of the ligand-binding process. The binding of S-octyl-GSH to SjGST(Y7F) is enthalpically and entropically driven at temperatures below 30 degrees C. The stoichiometry of the binding is one molecule of S-octyl-GSH per mutant dimer, whereas shorter alkyl derivatives bind with a stoichiometry of two molecules per mutant dimer. The SjGST(Y7F).GSH structure showed no major structural differences compared to the wild-type enzyme. In contrast, the structure of SjGST(Y7F).S-octyl-GSH showed asymmetric binding of S-octyl-GSH. This lack of symmetry is reflected in the lower symmetry space group of the SjGST(Y7F).S-octyl-GSH crystals (P6(3)) compared to that of the SjGST(Y7F).GSH crystals (P6(3)22). Moreover, the binding of S-octyl-GSH to the A subunit is accompanied by conformational changes that may be responsible for the lack of binding to the B subunit.  相似文献   

17.
X-ray diffraction analysis of pressure-induced structural changes in the Aequorea yellow fluorescent protein Citrine reveals the structural basis for the continuous fluorescence peak shift from yellow to green that is observed on pressurization. This fluorescence peak shift is caused by a reorientation of the two elements of the Citrine chromophore. This study describes the structural linkages in Citrine that are responsible for the local reorientation of the chromophore. The deformation of the Citrine chromophore is actuated by the differential motion of two clusters of atoms that compose the β-barrel scaffold of the molecule, resulting in a slight bending of the β-barrel. The high-pressure structures also show a perturbation of the hydrogen bonding network that stabilizes the excited state of the Citrine chromophore. The perturbation of this network is implicated in the reduction of fluorescence intensity of Citrine. The blue-shift of the Citrine fluorescence spectrum resulting from the bending of the β-barrel provides structural insight into the transient blue-shifting of isolated yellow fluorescent protein molecules under ambient conditions and suggests mechanisms to alter the time-dependent behavior of Citrine under ambient conditions.  相似文献   

18.
Symmetry is an important feature of protein tertiary and quaternary structures that has been associated with protein folding, function, evolution, and stability. Its emergence and ensuing prevalence has been attributed to gene duplications, fusion events, and subsequent evolutionary drift in sequence. This process maintains structural similarity and is further supported by this study. To further investigate the question of how internal symmetry evolved, how symmetry and function are related, and the overall frequency of internal symmetry, we developed an algorithm, CE-Symm, to detect pseudo-symmetry within the tertiary structure of protein chains. Using a large manually curated benchmark of 1007 protein domains, we show that CE-Symm performs significantly better than previous approaches. We use CE-Symm to build a census of symmetry among domain superfamilies in SCOP and note that 18% of all superfamilies are pseudo-symmetric. Our results indicate that more domains are pseudo-symmetric than previously estimated. We establish a number of recurring types of symmetry–function relationships and describe several characteristic cases in detail. With the use of the Enzyme Commission classification, symmetry was found to be enriched in some enzyme classes but depleted in others. CE-Symm thus provides a methodology for a more complete and detailed study of the role of symmetry in tertiary protein structure [availability: CE-Symm can be run from the Web at http://source.rcsb.org/jfatcatserver/symmetry.jsp. Source code and software binaries are also available under the GNU Lesser General Public License (version 2.1) at https://github.com/rcsb/symmetry. An interactive census of domains identified as symmetric by CE-Symm is available from http://source.rcsb.org/jfatcatserver/scopResults.jsp].  相似文献   

19.
Symmetric protein architectures have a compelling aesthetic that suggests a plausible evolutionary process (i.e., gene duplication/fusion) yielding complex architecture from a simpler structural motif. Furthermore, symmetry inspires a practical approach to computational protein design that substantially reduces the combinatorial explosion problem, and may provide practical solutions for structure optimization. Despite such broad relevance, the role of structural symmetry in the key area of hydrophobic core‐packing cooperativity has not been adequately studied. In the present report, the threefold rotational symmetry intrinsic to the β‐trefoil architecture is shown to form a geometric basis for highly‐cooperative core‐packing interactions that both stabilize the local repeating motif and promote oligomerization/long‐range contacts in the folding process. Symmetry in the β‐trefoil structure also permits tolerance towards mutational drift that involves a structural quasi‐equivalence at several key core positions.  相似文献   

20.
Single-molecule fluorescence methods for the study of nucleic acids.   总被引:9,自引:0,他引:9  
Single-molecule fluorescence methods and biomechanical tools provide exciting new opportunities to probe biochemical processes in unprecedented detail. The detection and spectroscopy of single fluorophores have recently been used to observe conformational changes and biochemical events involving nucleic acids. A number of fluorescence observables, including localization, quenching, polarization response and fluorescence resonance energy transfer, have been utilized. An exciting new opportunity of combining fluorescence methods and biomechanical tools to study the structural changes and functions of enzymes that participate in nucleic acid metabolism has also arisen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号