首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major surface protein 2 (MSP2) is an immunodominant outer membrane protein of Anaplasma marginale and Anaplasma phagocytophilum pathogens that cause bovine anaplasmosis and human granulocytic ehrlichiosis, respectively. MSP2 has a central hypervariable region (HVR) flanked by highly conserved amino and carboxyl termini. During A. marginale infection, dynamic and extensive amino acid sequence variation in MSP2 occurs through recombination of msp2 pseudogenes into the msp2 expression site, followed by sequential segmental gene conversions to generate additional variants. We hypothesized that MSP2 variation leads to significant changes in Th cell recognition of epitopes in the HVR. T cell epitopes were mapped using T cells from native MSP2-immunized cattle and overlapping peptides spanning the most abundant of five different MSP2 HVRs in the immunogen. Several epitopes elicited potent effector/memory Th cell proliferative and IFN-gamma responses, including those in three discreet blocks of sequence that undergo segmental gene conversion. Th cell clones specific for an epitope in the block 1 region of the predominant MSP2 variant type failed to respond to naturally occurring variants. However, some of these variants were recognized by oligoclonal T cell lines from MSP2 vaccinates, indicating that the variant sequences contain immunogenic CD4(+) T cell epitopes. In competition/antagonism assays, the nonstimulatory variants were not inhibitory for CD4(+) T cells specific for the agonist peptide. Dynamic amino acid sequence variation in MSP2 results in escape from recognition by some effector/memory MSP2-specific Th cells. Antigenic variation in MSP2 Th cell and B cell epitopes may contribute to immune evasion that allows long-term persistence of A. marginale in the mammalian reservoir.  相似文献   

2.
Genogroup II ehrlichia, including the agent of human granulocytic ehrlichiosis, Ehrlichia phagocytophila, and the bovine pathogen Anaplasma marginale, express a markedly immunodominant outer membrane protein designated major surface protein 2 (MSP2). MSP2 is encoded by a multigene family, resulting in the expression of variant B cell epitopes. MSP2 variants are sequentially expressed in the repeated cycles of rickettsemia that characterize persistent A. marginale infection and control of each rickettsemic cycle is associated with development of a variant-specific IgG response. Importantly, these persistent rickettsemic cycles are controlled at levels 100-1000 times lower than those responsible for clinical disease during acute infection. Control of rickettsemia during persistence could result from an anamnestic Th lymphocyte response to conserved regions of MSP2 that enhances the primary Ab response against newly emergent variants. Comparison of MSP2 variants reveals conserved N and C termini flanking the central, surface-exposed hypervariable region that represents the variant B lymphocyte epitopes. We demonstrate MSP2-specific CD4(+) T lymphocyte recognition of epitopes common to several strains of A. marginale and the related pathogen A. ovis. Furthermore, T lymphocyte lines from three individuals identified six to nine overlapping peptides representing a minimum of four to seven dominant or subdominant epitopes in these conserved N and C termini. Immunodominant peptides induced high levels of IFN-gamma, a cytokine associated with protection against ehrlichia and needed for rapid generation of variant-specific IgG2. The presented data support the potential importance of a strong Th lymphocyte response to invariant MSP2 epitopes in controlling rickettsemia during persistent infection to subclinical levels.  相似文献   

3.
DNA-based immunization is a contemporary strategy for developing vaccines to prevent infectious diseases in animals and humans. Translating the efficacy of DNA immunization demonstrated in murine models to the animal species that represent the actual populations to be protected remains a significant challenge. We tested two hypotheses directed at enhancing DNA vaccine efficacy in outbred animals. The first hypothesis, that DNA-encoding fetal liver tyrosine kinase 3 ligand (Flt3L) and GM-CSF increases dendritic cell (DC) recruitment to the immunization site, was tested by intradermal inoculation of calves with plasmid DNA encoding Flt3L and GM-CSF followed by quantitation of CD1(+) DC. Peak DC recruitment was detected at 10-15 days postinoculation and was significantly greater (p < 0.05) in calves in the treatment group as compared with control calves inoculated identically, but without Flt3L and GM-CSF. The second hypothesis, that DNA encoding Flt3L and GM-CSF enhances immunity to a DNA vector-expressed Ag, was tested by analyzing the CD4(+) T lymphocyte response to Anaplasma marginale major surface protein 1a (MSP1a). Calves immunized with DNA-expressing MSP1a developed strong CD4(+) T cell responses against A. marginale, MSP1a, and specific MHC class II DR-restricted MSP1a epitopes. Administration of DNA-encoding Flt3L and GM-CSF before MSP1a DNA vaccination significantly increased the population of Ag-specific effector/memory cells in PBMC and significantly enhanced MSP1a-specific CD4(+) T cell proliferation and IFN-gamma secretion as compared with MHC class II DR-matched calves vaccinated identically but without Flt3L and GM-CSF. These results support use of these growth factors in DNA vaccination and specifically indicate their applicability for vaccine testing in outbred animals.  相似文献   

4.
Norimine J  Han S  Brown WC 《Immunogenetics》2006,58(9):726-739
Antigen-specific CD4+ T cells play a critical role in protective immunity to many infectious pathogens. Although the antigen-specific CD4+ T cells can be measured by functional assays such as proliferation or cytokine enzyme-linked immunospot, such assays are limited to a specific function and cannot quantify anergic or suppressed T cells. In contrast, major histocompatiblity complex (MHC) class II tetramers can enumerate epitope-specific CD4+ T cells independent of function. In this paper, we report the construction of bovine leukocyte antigen MHC class II tetramers using a novel mammalian cell system to express soluble class II DRA/DRB3 molecules and defined immunodominant peptide epitopes of Anaplasma marginale major surface proteins (MSPs). Phycoerythrin-labeled tetramers were either loaded with exogenous peptide or constructed with the peptide epitope linked to the N terminus of the DRB3 chain. A DRB3*1101 tetramer loaded with MSP1a peptide F2-5B (ARSVLETLAGHVDALG) and DRB3*1201 tetramers loaded with MSP1a peptide F2-1-1b (GEGYATYLAQAFA) or MSP2 peptide P16-7 (NFAYFGGELGVRFAF) specifically stained antigen-specific CD4+ T cell lines and clones. Tetramers constructed with the T-cell epitope linked to the DRB3 chain were slightly better at labeling CD4+ T cells. In one cell line, the number of tetramer-positive T cells increased to approximately 94% of the CD4+ T cells after culture for 21 weeks with specific antigen. This novel technology should be useful to track the fate of antigen-specific CD4+ T-cell responses in cattle after immunization or infection with persistent pathogens, such as A. marginale, that modulate the host immune response.  相似文献   

5.
The rickettsial pathogen Anaplasma marginale establishes lifelong persistent infection in the mammalian reservoir host, during which time immune escape variants continually arise in part because of variation in the expressed copy of the immunodominant outer membrane protein MSP2. A key question is how the small 1.2 Mb A. marginale genome generates sufficient variants to allow long-term persistence in an immunocompetent reservoir host. The recombination of whole pseudogenes into the single msp2 expression site has been previously identified as one method of generating variants, but is inadequate to generate the number of variants required for persistent infection. In the present study, we demonstrate that recombination of a whole pseudogene is followed by a second level of variation in which small segments of pseudogenes recombine into the expression site by gene conversion. Evidence for four short sequential changes in the hypervariable region of msp2 coupled with the identification of nine pseudogenes from a single strain of A. marginale provides for a combinatorial number of possible expressed MSP2 variants sufficient for lifelong persistence.  相似文献   

6.
MHC class II molecules influence antigen-specific CD4+ T lymphocyte responses primed by immunization and infection. CD4+ T cell responses are important for controlling infection by many bacterial pathogens including Anaplasma marginale and are observed in cattle immunized with the protective A. marginale outer membrane (OM) vaccine. Immunogenic proteins that comprise the protective OM vaccine include type IV secretion system (T4SS) proteins VirB9-1, VirB9-2 and VirB10, candidates for inclusion in a multiepitope vaccine. Our goal was to determine the breadth of the VirB9-1, VirB9-2 and VirB10 T cell response and MHC class II restriction elements in six cattle with different MHC class II haplotypes defined by DRB3, DQA and DQB allele combinations for each animal. Overlapping peptides spanning each T4SS protein were tested in T cell proliferation assays with autologous antigen-presenting cells (APC) and artificial APC expressing combinations of bovine DR and DQ molecules. Twenty immunostimulatory peptides were identified; three representing two or more epitopes in VirB9-1, ten representing eight or more epitopes in VirB9-2 and seven representing seven or more epitopes in VirB10. Of the eight DRA/DRB3 molecules, four presented 15 peptides, which was biased as DRA/DRB3*1201 presented ten and DRA/DRB3*1101 presented four peptides. Four DQA/DQB molecules composed of two intrahaplotype and two interhaplotype pairs presented seven peptides, of which five were uniquely presented by DQ molecules. In addition, three functional mixed isotype (DQA/DRB3) restriction elements were identified. The immunogenicity and broad MHC class II presentation of multiple VirB9-1, VirB9-2 and VirB10 peptide epitopes justify their testing as a multiepitope vaccine against A. marginale.  相似文献   

7.
Indirect enzyme-linked immunosorbent assays (ELISAs) based on recombinant MSP1a and MSP2 from a Brazilian isolate of Anaplasma marginale were developed to detect antibodies against this rickettsia in cattle. The high sensitivities (99% for both tests) and specificities (100% for both tests) were confirmed with sera from cattle positive or negative for A. marginale antibodies, respectively, by immunofluorescent antibody test. By the analysis of 583 sera from cattle of three regions of the state of Pernambuco, Brazil, the agreement between both tests was high, with a kappa index of 0.89. The similar performances of the ELISAs suggest that both tests can be used in epidemiological surveys for detection of antibodies to A. marginale in cattle.  相似文献   

8.
Functional CD8 T cell effector and memory responses are generated and maintained during murine γ-herpesvirus 68 (γHV68) persistent infection despite continuous presentation of viral lytic Ags. However, the identity of the CD8 T cell subpopulations that mediate effective recall responses and that can participate in the generation of protective memory to a γ-herpesvirus infection remains unknown. During γHV68 persistence, ~75% of γHV68-specific CD8 T cells coexpress the NK receptors killer cell lectin-like receptor G1 (KLRG1) and NKG2A. In this study, we take advantage of this unique phenotype to analyze the capacity of CD8 T cells expressing or not expressing KLRG1 and NKG2A to mediate effector and memory responses. Our results show that γHV68-specific KLRG1(+)NKG2A(+) CD8 T cells have an effector memory phenotype as well as characteristics of polyfunctional effector cells such us IFN-γ and TNF-α production, killing capacity, and are more efficient at protecting against a γHV68 challenge than their NKG2A(-)KLRG1(-) counterparts. Nevertheless, γHV68-specific NKG2A(+)KLRG1(+) CD8 T cells express IL-7 and IL-15 receptors, can survive long-term without cognate Ag, and subsequently mount a protective response during antigenic recall. These results highlight the plasticity of the immune system to generate protective effector and proliferative memory responses during virus persistence from a pool of KLRG1(+)NKG2A(+) effector memory CD8 T cells.  相似文献   

9.
Anaplasma marginale (Rickettsiales: Anaplasmataceae), a tick-borne pathogen of cattle, is endemic in tropical and subtropical regions of the world. Although serologic tests have identified American bison, Bison bison, as being infected with A. marginale, the present study was undertaken to confirm A. marginale infection and to characterize isolates obtained from naturally infected bison in the United States and Canada. Major surface protein (MSP1a and MSP4) sequences of bison isolates were characterized in comparison with New World cattle isolates. Blood from one U.S. bison was inoculated into a susceptible, splenectomized calf, which developed acute anaplasmosis, demonstrating infectivity of this A. marginale bison isolate for cattle. The results of this study showed that these A. marginale isolates obtained from bison were similar to ones from naturally infected cattle.  相似文献   

10.
The use of cytokines during vaccination, particularly IL-15, is being considered due to the unique ability of IL-15 to enhance the proliferation of memory CD8(+) T cells. However, as homeostatic mechanisms limit excessive lymphocyte expansion, we addressed the consequences of this enhancement of T cell memory by IL-15. Infection of mice with either recombinant Mycobacterium bovis (BCG) expressing IL-15 (BCG-IL-15) or BCG and purified IL-15 resulted in an increased CD44, IL-2Rbeta expression and increased frequency of IFN-gamma-secreting CD8(+) T cells. Surprisingly, the enhancement of memory to concurrent infection by IL-15 exacerbated the attrition of pre-existing memory. Infection of mice with Listeria monocytogenes expressing OVA resulted in potent OVA(257-264)-specific CD8(+) T cell memory, and a challenge of these mice with either BCG-IL-15 or BCG and purified IL-15 resulted in an increased erosion of OVA(257-264)-specific CD8(+) T cell memory, relative to BCG. Enhancement in the erosion of OVA-specific CD8(+) T cell memory by BCG-IL-15 resulted in a consequently greater impairment in protection against a challenge with OVA-expressing tumor cells. We thus raise important questions regarding vaccinations that are aimed at maximizing T cell memory without considering the impact on pre-existing T cell memory.  相似文献   

11.
12.
CD8(+) T cells respond to IL-2 produced both endogenously and by CD4(+) Th during an antiviral response. However, IL-2R signals can potentially promote CD8(+) T cell death as well as proliferation, making it unclear whether IL-2R signals provide a predominantly positive or negative effect upon CD8(+) T cell responses to viral infection. To more precisely define the direct role of IL-2R signaling on CD8(+) T cells during the response to a virus, we examined the effect of delivering augmented IL-2R signals selectively to CD8(+) T cells responding to lymphocytic choriomeningitis virus infection. Although naive CD8(+) T cells are competent to produce IL-2, CD8(+) T cells lose this capacity upon differentiation into effector CD8(+) T cells. However, effector CD8(+) T cells do retain the capacity to produce GM-CSF upon Ag stimulation. Thus, to deliver enhanced autocrine IL-2R signals to CD8(+) T cells, we established a transgenic mouse strain expressing a chimeric GM-CSF/IL-2R (GMIL2R). As GM-CSF production is Ag dependent, the GMIL2R delivers an augmented IL-2R signal exclusively to CD8(+) T cells responding to Ag. Following lymphocytic choriomeningitis virus infection, GMIL2R transgenic mice exhibited an increase in both the peak CD8(+) T cell response achieved and the size of the resulting memory pool established. Upon secondary viral challenge, the GMIL2R also enhanced the proliferative response of memory CD8(+) T cells. Thus, our findings indicate that IL-2 delivery to responding CD8(+) T cells is a limiting factor in both the acute and memory antiviral responses.  相似文献   

13.
Antigenic variation of major surface proteins is considered an immune-evasive maneuver used by pathogens as divergent as bacteria and protozoa. Likewise, major surface protein 2 (Msp2) of the tick-borne pathogen, Anaplasma marginale, is thought to be involved in antigenic variation to evade the mammalian host immune response. However, this dynamic process also works in the tick vector in the absence of immune selection pressure. We examined Msp2 variants expressed during infection of four tick and two mammalian cell-lines to determine if the presence of certain variants correlated with specific host cell types. Anaplasma marginale colonies differed in their development and appearance in each of the cell lines (P<0.001). Using Western blots probed with two Msp2-monospecific and one Msp2-monoclonal antibodies, we detected expression of variants with differences in molecular weight. Immunofluorescence-assay revealed that specific antibodies bound from 25 to 60% of colonies, depending on the host cell-line (P<0.001). Molecular analysis of cloned variant-encoding genes demonstrated expression of different predominant variants in tick (V1) and mammalian (V2) cell-lines. Analysis of the putative secondary structure of the variants revealed a change in structure when A. marginale was transferred from one cell-type to another, suggesting that the expression of particular Msp2 variants depended on the cell-type (tick or mammalian) in which A. marginale developed. Similarly, analysis of the putative secondary structure of over 200 Msp2 variants from ticks, blood samples, and other mammalian cells available in GenBank showed the predominance of a specific structure during infection of a host type (tick versus blood sample), demonstrating that selection of a possible structure also occurred in vivo. The selection of a specific structure in surface proteins may indicate that Msp2 fulfils an important role in infection and adaptation to diverse host systems. Supplemental Abstract in Spanish (File S1) is provided.  相似文献   

14.
Anaplasmataceae, the causative agents of anaplasmosis and ehrlichiosis, persist in the bloodstream of their mammalian hosts, allowing acquisition and transmission by tick vectors. Anaplasma marginale establishes persistent infection characterized by sequential cycles of rickettsaemia in which new antigenic variants emerge. The two most immunodominant outer membrane proteins, MSP2 and MSP3, are paralogues, each encoded by a distinct family of related genes. This study demonstrates that, although the two gene families have diverged substantially, each has maintained a similar mechanism to generate structurally and antigenically polymorphic surface antigens. Like MSP2, MSP3 is expressed from a single locus in which variation of the expressed msp3 gene is generated by recombination using msp3 pseudogenes. Each of the msp3 pseudogenes encodes a unique central variable region (CVR) flanked by conserved 5' and 3' regions. Changes in the CVR of the expressed msp3, concomitant with invariance of the pseudogenes, indicate that expression site variation is generated using gene conversion. A. marginale thus maintains two large, separate systems within its small genome to generate antigenic variation of its surface proteins, while analogous structural elements indicate a common mechanism.  相似文献   

15.
Anaplasma marginale is a tick-borne ehrlichial pathogen of cattle for which six major surface proteins (MSPs) have been described. The MSP1 complex, a heterodimer composed of MSP1a and MSP1b, was shown to induce a protective immune response in cattle and both proteins have been identified as putative adhesins for bovine erythrocytes. In this study the role of MSP1a and MSP1b as adhesins for bovine erythrocytes and tick cells was defined. msp1alpha and msp1beta1 genes from the Oklahoma isolate of A. marginale were cloned and expressed in Escherichia coli K-12 under the control of endogenous and tac promoters for both low and high level protein expression. Expression of the recombinant polypeptides was confirmed and localised on the surface of transformed E. coli. The adhesion properties of MSP1a and MSP1b were determined by allowing recombinant E. coli expressing these surface polypetides to react with bovine erythrocytes, Dermacentor variabilis gut cells and cultured tick cells derived from embryonic Ixodes scapularis. Adhesion of the recombinant E. coli to the three cell types was determined using recovery adhesion and microtiter haemagglutination assays, and by light and electron microscopy. MSP1a was shown by all methods tested to be an adhesin for bovine erythrocytes and both native and cultured tick cells. In contrast, recombinant E. coli expressing MSP1b adhered only to bovine erythrocytes and not to tick cells. When low expression vectors were used, single E. coli expressing MSP1a was seen adhered to individual tick cells while reaction of tick cells with the E. coli/MSP1a/high expression vector resulted in adhesion of multiple bacteria per cell. With electron microscopy, fusion of E. coli cell membranes expressing MSP1a or MSP1b with erythrocyte membranes was observed, as well as fusion of tick cell membranes with E. coli membranes expressing MSP1a. These studies demonstrated differential adhesion for MSP1a and MSP1b for which MSP1a is an A. marginale adhesin for both bovine erythrocytes and tick cells while MSP1b is an adhesin only for bovine erythrocytes. The role of the MSP1 complex, therefore, appears to vary among vertebrate and invertebrate hosts.  相似文献   

16.
We have previously shown that CD4(+) T cells are required to optimally expand viral-specific memory CD8(+) CTL responses using a human dendritic cell-T cell-based coculture system. OX40 (CD134), a 50-kDa transmembrane protein of the TNFR family, is expressed primarily on activated CD4(+) T cells. In murine models, the OX40/OX40L pathway has been shown to play a critical costimulatory role in dendritic cell/T cell interactions that may be important in promoting long-lived CD4(+) T cells, which subsequently can help CD8(+) T cell responses. The current study examined whether OX40 ligation on ex vivo CD4(+) T cells can enhance their ability to "help" virus-specific CTL responses in HIV-1-infected and -uninfected individuals. OX40 ligation of CD4(+) T cells by human OX40L-IgG1 enhanced the ex vivo expansion of HIV-1-specific and EBV-specific CTL from HIV-1-infected and -uninfected individuals, respectively. The mechanism whereby OX40 ligation enhanced help of CTL was independent of the induction of cytokines such as IL-2 or any inhibitory effect on CD4(+) T regulatory cells, but was associated with a direct effect on proliferation of CD4(+) T cells. Thus, OX40 ligation on CD4(+) T cells represents a potentially novel immunotherapeutic strategy that should be investigated to treat and prevent persistent virus infections, such as HIV-1 infection.  相似文献   

17.
Virus-specific CD4(+) T-cell function is thought to play a central role in induction and maintenance of effective CD8(+) T-cell responses in experimental animals or humans. However, the reasons that diminished proliferation of human immunodeficiency virus (HIV)-specific CD4(+) T cells is observed in the majority of infected patients and the role of these diminished responses in the loss of control of replication during the chronic phase of HIV infection remain incompletely understood. In a cohort of 15 patients that were selected for particularly strong HIV-specific CD4(+) T-cell responses, the effects of viremia on these responses were explored. Restriction of HIV replication was not observed during one to eight interruptions of antiretroviral therapy in the majority of patients (12 of 15). In each case, proliferative responses to HIV antigens were rapidly inhibited during viremia. The frequencies of cells that produce IFN-gamma in response to Gag, Pol, and Nef peptide pools were maintained during an interruption of therapy. In a subset of patients with elevated frequencies of interleukin-2 (IL-2)-producing cells, IL-2 production in response to HIV antigens was diminished during viremia. Addition of exogenous IL-2 was sufficient to rescue in vitro proliferation of DR0101 class II Gag or Pol tetramer(+) or total-Gag-specific CD4(+) T cells. These observations suggest that, during viremia, diminished in vitro proliferation of HIV-specific CD4(+) T cells is likely related to diminished IL-2 production. These results also suggest that relatively high frequencies of HIV-specific CD4(+) T cells persist in the peripheral blood during viremia, are not replicatively senescent, and proliferate when IL-2 is provided exogenously.  相似文献   

18.
The protective major surface protein 1 (MSP1) complex of Anaplasma marginale is a heteromer of MSP1a and MSP1b, encoded by a multigene family. The msp1beta sequences were highly conserved throughout infection. However, liquid chromatography-tandem mass spectrometry analysis identified only a single MSP1b protein, MSP1b1, within the MSP1 complex.  相似文献   

19.
Virus-specific CD4(+) T cell responses have been shown to play a critical role in controlling HIV-1 replication. Candidate HIV-1 vaccines should therefore elicit potent CD4(+) as well as CD8(+) T cell responses. In this report we investigate the ability of plasmid GM-CSF to augment CD4(+) T cell responses elicited by an HIV-1 gp120 DNA vaccine in mice. Coadministration of a plasmid expressing GM-CSF with the gp120 DNA vaccine led to only a marginal increase in gp120-specific splenocyte CD4(+) T cell responses. However, immunization with a bicistronic plasmid that coexpressed gp120 and GM-CSF under control of a single promoter led to a dramatic augmentation of vaccine-elicited CD4(+) T cell responses, as measured by both cellular proliferation and ELISPOT assays. This augmentation of CD4(+) T cell responses was selective, since vaccine-elicited Ab and CD8(+) T cell responses were not significantly changed by the addition of GM-CSF. A 100-fold lower dose of the gp120/GM-CSF bicistronic DNA vaccine was required to elicit detectable gp120-specific splenocyte proliferative responses compared with the monocistronic gp120 DNA vaccine. Consistent with these findings, i.m. injection of the gp120/GM-CSF bicistronic DNA vaccine evoked a more extensive cellular infiltrate at the site of inoculation than the monocistronic gp120 DNA vaccine. These results demonstrate that bicistronic DNA vaccines containing GM-CSF elicit remarkably potent CD4(+) T cell responses and suggest that optimal Th cell priming requires the precise temporal and spatial codelivery of Ag and GM-CSF.  相似文献   

20.
HIV immunity is likely CD4 T cell dependent. HIV-specific CD4 T cell proliferative responses are reported to correlate inversely with virus load and directly with specific CD8 responses. However, the phenotype and cytokine profile of specific CD4 T cells that correlate with disease is unknown. We compared the number/function of Gag p24-specific CD4 T cells in 17 HIV-infected long-term nonprogressors (LTNPs) infected for a median of 14.6 years with those of 16 slow progressors (SPs), also HIV infected for a median of 14 years but whose CD4 count had declined to <500 cells/ micro l. Compared with SPs, LTNPs had higher numbers of specific CD4s that were double positive for IFN-gamma and IL-2 as well as CD28 and IL-2. However, CD4 T cells that produced IL-2 alone (IL-2(+)IFN-gamma(-)) or IFN-gamma alone (IFN-gamma(+)IL-2(-)) did not differ between LTNPs and SPs. The decrease in p24-specific CD28(+)IL-2(+) cells with a concomitant increase of p24-specific CD28(-)IL-2(+) cells occurred before those specific for a non-HIV Ag, CMV. p24-specific CD28(-)IL-2(+) cells were evident in LTNPs and SPs, whereas the CMV-specific CD28(-)IL-2(+) response was confined to SPs. The difference between LTNPs and SPs in the Gag p24 IFN-gamma(+)IL-2(+) response was maintained when responses to total Gag (p17 plus p24) were measured. The percentage and absolute number of Gag-specific IFN-gamma(+)IL-2(+) but not of IFN-gamma(+)IL-2(-) CD4s correlated inversely with virus load. The Gag-specific IFN-gamma(+)IL-2(+) CD4 response also correlated positively with the percentage of Gag-specific IFN-gamma(+) CD8 T cells in these subjects. Accumulation of specific CD28(-)IL-2(+) helpers and loss of IFN-gamma(+)IL-2(+) CD4 T cells may compromise specific CD8 responses and, in turn, immunity to HIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号