首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B Galanti  M Russo  S Nardiello  G Giusti 《Enzyme》1976,21(4):342-348
The activation energy and the optimum pH of guanine deaminase in man, the rat, guinea pig and mouse were studied using 8-azaguanine as a substrate. The serum guanase in man and in all the animal species studied differs in activation energy from the guanase of the liver. In man, moreover, the serum guanase is also different from the brain and kidney enzyme. In the rat and guinea pig the brain enzyme has thermic activation energy different from the liver and kidney enzyme. The guanase of the serum and tissues of the guinea pig differs from the enzyme of the serum and tissues of man, rat and mouse for optimum pH.  相似文献   

2.
The pattern of estrone sulfate sulfohydrolase (estrogen sulfatase) development in the brain of rat, mouse and guinea pig has been established by assaying whole homogenates. Activity was measurable in each species from the fetal state to adulthood. Maximum brain content was reached at about 20 days of age in rat, 14 days in mouse and 15 days in guinea pig. A considerable decrease occurred between 14 days and adulthood in mouse and lesser decreases were seen in rat and guinea pig. The subcellular distribution of enzyme in rat and mouse brain appeared to change from the immature to the adult state. No major differences in enzyme activity occurred between the sexes at any age. Tissue concentration of enzyme in the hypothalamic-preoptic area of rat and mouse was similar to that in the remainder of the brain. In guinea pig the brain concentration was slightly lower than that of the hypothalamic-preoptic region. Sulfatase content of the pituitary was low in all 3 species but the tissue concentration was considerably higher than that of brain, particularly in rat and mouse. Apparent Km values for brain sulfatase were in the range 6-17 microM, with no striking sex difference. Apparent Km's for pituitary sulfatase of immature rat and guinea pig were similar to those for brain in the same animals but that for mouse pituitary (0.9 microM) was much lower. It is unlikely that brain or pituitary sulfatase is by itself, a major factor in making available potentially active estrogen for use during differential sex development in these species.  相似文献   

3.
1. Rat Gal beta 1-4GlcNAc alpha 2-6sialyltransferase (E.C. 2.4.99.1) is released from Golgi membranes by cleavage of a portion of the enzyme containing the active site from a membrane anchor; this effect was most dramatic during the acute phase response. The enzyme that cleaved sialyltransferase had the properties of cathepsin D was most active at pH 5.6 and was likely of lysosomal origin (Lammers and Jamieson, 1988). 2. The acute phase response of sialyltransferase in mouse and guinea pig was previously found to differ from that in the rat. Release of sialyltransferase from mouse and guinea pig Golgi membranes has now been studied in order to make a comparison with the rat system. 3. Maximum release of sialyltransferase from mouse and guinea pig Golgi occurred at pH 4.6 and 5.2, respectively; like the rat a cathepsin D-like proteinase was responsible for release of both enzymes. 4. Immunoblot analysis showed that membrane-bound rat and mouse sialyltransferase had Mr 49,000, whereas the guinea pig enzyme had Mr 42,000. The released form of the rat enzyme had Mr 42,000, but released forms of mouse and guinea pig enzymes had Mr 38,000 suggesting a different cleavage site for these two enzymes compared to the rat enzyme.  相似文献   

4.
Rat, Mouse, and Guinea Pig Brain Development and Microtubule Assembly   总被引:4,自引:3,他引:1  
The development of in vitro microtubule assembly and of tubulin concentration have been studied during brain maturation in the mouse and the rat, two species which have postnatal brain development, and in one species which is mature at birth, the guinea pig. (a) The rate of tubulin assembly is very slow soon after birth in both the mouse and rat; it increases progressively with age until adulthood. In contrast, in the guinea pig this rate is maximal at birth and slower rates are seen only at foetal stages. (b) Postnatal changes in the lag period of assembly and in the minimal concentration of tubulin (Cc) required to obtain in vitro assembly are seen in the mouse and the rat; in contrast these parameters are constant at all postnatal stages in the guinea pig with longer lag periods and lower Cc values being seen only at foetal stages. (c) Maximal rates of assembly, minimal lag periods, and minimal Cc values are restored after addition of microtubule-associated proteins to foetal guinea pig or young mouse and rat preparations, suggesting that the difference in the kinetic parameters of assembly between these species depends on differences in the concentration or activity of these proteins. (d) Maximal tubulin concentrations are observed before birth in the guinea pig and approximately at day 10 in the rat and mouse. Lennon A. M. et al. Rat, mouse, and guinea pig brain development and microtubule assembly. J. Neurochem. 35, 804–813 (1980).  相似文献   

5.
We examined myocardial 5'-adenosine monophosphate (5'-AMP) catabolism, adenosine salvage and adenosine responses in perfused guinea pig, rat and mouse heart. MVO(2) increased from 71+/-8 microl O(2)/min per g in guinea pig to 138+/-17 and 221+/-15 microl O(2)/min per g in rat and mouse. VO(2)/beat was 0.42+/-0.03, 0.50+/-0.03 and 0.55+/-0.04 microl O(2)/g in guinea pig, rat and mouse, respectively. Resting and peak coronary flows were highest in mouse vs. rat and guinea pig, and peak ventricular pressures and Ca(2+) sensitivity declined as heart mass increased. Net myocardial 5'-AMP dephosphorylation increased significantly as mass declined (3.8+/-0.5, 9.0+/-1.4 and 11.0+/-1.6 nmol/min per g in guinea pig, rat and mouse, respectively). Despite increased 5'-AMP catabolism, coronary venous [adenosine] was similar in guinea pig, rat and mouse (45+/-8, 69+/-10 and 57+/-14 nM, respectively). Comparable venous [adenosine] was achieved by increased salvage vs. deamination: 64%, 41% and 39% of adenosine formed was rephosphorylated while 23%, 46%, and 50% was deaminated in mouse, rat and guinea pig, respectively. Moreover, only 35-45% of inosine and its catabolites derive from 5'-AMP (vs. IMP) dephosphorylation in all species. Although post-ischemic purine loss was low in mouse (due to these adaptations), functional tolerance to ischemia decreased with heart mass. Cardiovascular sensitivity to adenosine also differed between species, with A(1) receptor sensitivity being greatest in mouse while A(2) sensitivity was greatest in guinea pig. In summary: (i) cardiac 5'-AMP dephosphorylation, VO(2), contractility and Ca(2+) sensitivity all increase as heart mass falls; (ii) adaptations in adenosine salvage vs. deamination limit purine loss and yield similar adenosine levels across species; (iii) ischemic tolerance declines with heart mass; and (iv) cardiovascular sensitivity to adenosine varies, with increasing A(2) sensitivity relative to A(1) sensitivity in larger hearts.  相似文献   

6.
Six species (CD-1 mouse, Fischer 344 rat, Syrian golden hamster, Duncan-Hartley guinea pig, half-lop rabbit and marmoset monkey) were treated orally with ciprofibrate, a potent oxyisobutyrate hypolipidaemic drug for 14 days. A dosedependent liver enlargement was observed in the mouse and rat and at the high dose level in the hamster. A marked dose-dependent increase in the 12-hydroxylation of lauric acid was observed in the treated mouse, hamster, rat, and rabbit, associated with a concomitant elevation in the specific content of cytochrome P-450 4A1 apoprotein, determined by an ELISA technique. Similarly, in these responsive species, an increase in mRNA levels coding for cytochrome P450 4A1 was observed. Lauric acid 12-hydroxylation was unchanged in the guinea pig and marmoset after ciprofibrate pre-treatment, and cytochrome P-450 4A1 was not detected immunochemically in liver microsomes from these latter species. In the untreated mouse, hamster, rat, and rabbit, the 12-hydroxylation of lauric acid was more extensive than the 11-hydroxylation, whereas in the guinea pig and marmoset the activity ratios were reversed, with 11-hydroxylation predominating. Peroxisomal fatty acid β-oxidation was markedly induced in the mouse, hamster, rat, and rabbit on treatment at the higher dose level (39-, 3-, 13- and 5-fold, respectively) and was slightly increased in the marmoset (2-fold), yet was unchanged in the guinea pig following treatment. In the marmoset the increase in peroxisomal β-oxidation was 3- to 4-fold at the high dose level; however, the dose levels used in the marmoset were 20 and 100 mg/kg as opposed to 2 and 20 mg/kg in the other species. The differences in the foregoing hepatic enzyme responses to ciprofibrate between the species examined in our studies indicate a specific pattern of enzyme changes in responsive species. In the responsive species (rat, mouse, hamster, and rabbit), cytochrome P-450 4A1 specific content and related enzyme activity were increased concomitant with elevated peroxisomal β-oxidation. By contrast, the marmoset and guinea pig lack the coordinate hepatic induction of peroxisomal and microsomal parameters and may be categorized as less responsive species. Accordingly, the rat hepatic responses to peroxisome proliferators cannot confidently be used to predict biological responses in primates, with obvious implications for the extrapolation of animal data to man.  相似文献   

7.
trans-Stilbene oxide (400 mg/kg) produced a 500% increase in the microsomal in the microsomal epoxide hydratase activity in rat and mouse with little change in the soluble enzyme activity. However, in guinea pig, the soluble epoxide hydratase activity increased by about 33% with only a small increase (47.6%) in the microsomal enzyme activity. The soluble glutathione S-transferase activities were also induced in both rat and mouse, with little change in that of the guinea pig. Increasing dosage of trans-stilbene oxide from 400 mg/kg to 1000 mg/kg had little effect on the above enzyme activities. That the guinea pig was not relatively refractory to all inducing agents was shown by the fact phenobarbital (100 mg/kg) and 3-methylcholanthrene (25 mg/kg) produced relatively similar increases in the activities of aniline hydroxylase and P-aminopyrineP-demethylase in rat, mouse and guinea pig. However, these inducers produced only a 15–20% stimulation in the soluble glutathione S-transferase and microsomal epoxide hydratase activities in guinea pig, when compared to a 50–80% increase in rat and mouse, suggesting a general resistance to induction by the phase II enzymes in guinea liver. In all animal models, the inducer markedly increased th emicrosomal total phospholipid content, although the sphingomyelin content itself was decreased. In both rat and mouse, the microsomal cholesterol content was significantly decreased while that in guinea pig was unaffected. Possible factors responsible for the observed species differences are discussed.  相似文献   

8.
The presence of receptors, recognized by vasoactive intestinal peptide (VIP) as well as by PHI (a peptide with N-terminal histidine and C-terminal isoleucine amide), was documented in lung membranes from rat, mouse, guinea pig and man by the ability of these receptors, once occupied, to stimulate adenylate cyclase. In lung membranes from rat, mouse and guinea pig, the capacity of VIP, PHI and secretin to stimulate the enzyme and the potency of the same peptides to compete with 125I-VIP for binding to VIP receptors were similar, the affinity decreasing in the order: VIP greater than PHI greater than secretin. In addition, dose-effect curves were compatible with the coexistence of high-affinity and low-affinity VIP receptors, in the four animal species considered. If PHI was able to recognize all VIP receptors it could not, however, discriminate the subclasses of VIP receptors.  相似文献   

9.
C Monder  A Marandici 《Steroids》1991,56(1):12-16
Corticosteroid side-chain (CSC) isomerase catalyzes ketol-aldol interconversion of the corticosteroid side chain. The enzyme was present in the blood of mouse, rat, guinea pig, chicken, pig, horse, sheep, cow, and human. The patterns of substrate specificity, measuring 3H-1H exchange of 21-tritiated forms of 11-deoxycorticosterone, corticosterone, and cortisol, were species specific. Based on enzyme activity and immunostaining of mouse blood fractions, red blood cells had the most isomerase activity, plasma had less, and white blood cells had low but highly variable levels of enzyme. Purified mouse liver CSC isomerase was found to be adsorbed by red blood cells. The results suggest that circulating CSC isomerase is derived in part from tissue sources and is in part an intrinsic blood enzyme.  相似文献   

10.
Lipoprotein lipase (LPL) and hepatic lipase (HL) enzyme activities were previously reported to be regulated during development, but the underlying molecular events are unknown. In addition, little is known about LPL evolution. We cloned and sequenced a complete mouse LPL cDNA. Comparison of sequences from mouse, human, bovine, and guinea pig cDNAs indicated that the rates of evolution of mouse, human, and bovine LPL are quite low, but guinea pig LPL has evolved several times faster than the others. 32P-Labeled mouse LPL and rat HL cDNAs were used to study lipase mRNA tissue distribution and developmental regulation in the rat. Northern gel analysis revealed the presence of a single 1.87 kb HL mRNA species in liver, but not in other tissues including adrenal and ovary. A single 4.0 kb LPL mRNA species was detected in epididymal fat, heart, psoas muscle, lactating mammary gland, adrenal, lung, and ovary, but not in adult kidney, liver, intestine, or brain. Quantitative slot-blot hybridization analysis demonstrated the following relative amounts of LPL mRNA in rat tissues: adipose, 100%; heart, 94%; adrenal, 6.6%; muscle, 3.8%; lung, 3.0%; kidney, 0%; adult liver, 0%. The same quantitative analysis was used to study lipase mRNA levels during development. There was little postnatal variation in LPL mRNA in adipose tissue; maximal levels were detected at the earliest time points studied for both inguinal and epididymal fat. In heart, however, LPL mRNA was detected at low levels 6 days before birth and increased 278-fold as the animals grew to adulthood.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
    
Summary The distribution of -glutamyl transpeptidase in different vascular compartments of the central nervous system was evaluated in several common laboratory Animals, i.e., hamster, gerbil, guinea pig, rat and mouse, by enzyme-histochemistry. Microvascular endothelium of the periventricular brain tissue stained positively in all five species. In contrast, the vascular endothelium of the choroid plexus stained positively only in the gerbil, and was negative in the other four species. Positive reactions for the transpeptidase was also found in choroid plexus epithelial cells in guinea pig, rat, and mouse; however no activity could be demonstrated in these cells of hamster and gerbil.The results demonstrate clear species differences in localization of the enzyme and suggest that -glutamyl transpeptidase-promoted amino acid transport in choroid plexus is different in various animal species. It is also suggested that in gerbil, transpeptidase-aided amino acid transport takes place in endothelial cells of choroid plexus, whereas in guinea pig, rat and mouse this occurs in epithelial cells of choroid plexus. In the case of hamster, such aided transport is absent in endothelial as well as in epithelial cells of the choroid plexus. Thus, the hamster and the gerbil showed differences in -glutamyl transpeptidase distribution, whereas the guinea pig, rat, and mouse showed similar enzyme distributions.  相似文献   

12.
The large and varied multigene families of tissue kallikreins of rat and mouse are considered to selectively release as many bioactive peptides. In order to determine whether a similar family of enzymes is expressed in the organs of the guinea pig purification studies were performed. Tissue kallikreins from the submandibular gland, coagulating gland/prostate complex and the pancreas were separated by affinity chromatography on benzamidine-Sepharose. Amino-terminal sequences, the patterns of hydrolysis rates of a number of peptide p-nitroanilides, inactivation rates by active site-directed irreversible inhibitors, specific kininogenase activities and types of kinin released were used to probe the identity of the isolated enzymes. Guinea pig tissue kallikreins 1 and 2 have been reported previously. In the present study we have identified a third type, designated tissue kallikrein 1a because of its sequence similarity to kallikrein 1, which differs from the latter in the catalytic properties. The inferred occurrence of not more than two or three independent tissue kallikrein genes in the guinea pig contrasts with the varied family of enzymes expressed by the large number of such genes present in rats and mice. Expression in the guinea pig (and also in humans) of only a small number of tissue kallikreins makes specific processing of a multitude of biologically active peptides by such enzymes unlikely.  相似文献   

13.
1. The ability to hydrolyse various phosphodiesterase substrates was examined in subcellular fractions of rat kidney and in serial slices of the kidneys of mouse, rat, guinea pig and ox cut from the cortex perimeter inwards. 2. d-Inositol 1:2-cyclic phosphate 2-phosphohydrolase could be clearly distinguished from phosphodiesterases which hydrolyse 2':3'- and 3':5'-cyclic AMP and p-nitrophenyl thymidine 5'-phosphate (phosphodiesterase I). The hydrolysis of sn-glycero-3-phosphorylcholine showed a distribution identical with that of particle-bound d-inositol 1:2-cyclic phosphate 2-phosphodiesterase, but there was a 30-fold difference in the ratio of enzyme activities between the rat and guinea pig. 3. In rat and mouse kidney, d-inositol 1:2-cyclic phosphate 2-phosphohydrolase is virtually all membrane bound and in the outer cortex, whereas in guinea-pig kidney the enzyme is almost entirely soluble and located throughout the kidney tissue. Some properties of the soluble enzyme are described. 4. Distribution and histochemical studies indicated that in the rat and mouse, phosphodiesterase I is associated with the brush borders of the straight portion (pars recta) of the proximal tubule, whereas inositol 1:2-cyclic phosphate 2-phosphohydrolase and probably glycerylphosphorylcholine diesterase are associated with the brush borders of the convoluted part of the tubule (pars convoluta).  相似文献   

14.
Various species have been used as models to study the effects of adenosine (ADO) on atrial and ventricular myocardium, but few direct tissue comparisons between species have been made. This study further characterizes adenosine A(1) receptor binding, adenylate cyclase activity and direct and indirect A(1) receptor-mediated functional activity in atrial and ventricular tissue from Sprague-Dawley rats and Hartley guinea pigs. Rat right atria (RA) were found to be significantly more sensitive to cyclopentyladenosine (CPA), while guinea pig left atria (LA) were more sensitive to CPA. After the addition of isoproterenol (ISO), the reduction of CPA response in rat RA was significantly greater than in guinea pig; however, after ISO treatment, the guinea pig LA was more sensitive to CPA than the rat. Adenylate cyclase inhibition by CPA was significantly greater in atria and ventricles obtained from guinea pig than rat. In competition binding experiments, guinea pig RA had significantly more high affinity sites than rat, but the K(i)s were not significantly different. There were no significant differences between guinea pig LA and rat LA. Guinea pig ventricular tissue had fewer high affinity sites than rat without any differences in their K(i) values. In antagonist saturation experiments, the density and affinity of A(1) receptors in guinea pig cardiac membranes were significantly greater than in rat. Our results indicate definite species differences as well as tissue differences between rat and guinea pig. These differences must be considered when interpreting studies using rat and guinea pig tissue as models for cardiac function.  相似文献   

15.
Estrone sulfate sulfohydrolase (estrogen sulfatase) activity was solubilized by treatment with Triton X-100 from 105,000 g pellets of guinea pig uterus, testis and brain, as well as from rat liver and human placenta. The solubilized forms were subjected to chromatofocusing in the fast protein liquid chromatography (FPLC) system and on conventional columns packed in our laboratory. The guinea pig tissue pattern was complex. Uterus showed peaks of activity with apparent pI's of 9.11 and 7.6; testis contained 3 peaks with pI's of 9.18, 8.7 and 7.5; brain possessed peaks with pI's of 9.28 and 8.6. In each case the major activity peak was that with pI greater than 9. Rat liver activity chromatofocused as a single peak of apparent pI = 6.87 and the human placental enzyme also showed a single, though broad, peak, of pI = 6.57. This suggests not only that the guinea pig enzyme(s) differs markedly from those of rat liver and human placenta, but that there may be qualitative differences between the forms in the three guinea pig tissues. Chromatofocusing behaviour was not independent of the specific exchange resins and ampholytes utilized. The recovered enzyme activity was fairly stable and it seems that chromatofocusing could be a useful step in purification of the guinea pig enzyme(s), particularly the main form possessing a pI greater than 9.  相似文献   

16.
Trappins are found in human, bovine, hippopotamus, and members of the pig family, but not in rat and mouse. To clarify the evolution of the trappin genes and the functional significance of their products, we isolated the trappin gene in guinea pig, a species belonging to a rodent family distinct from rat and mouse. Guinea pig trappin was confirmed to encode the same domain structure as trappin, consisting of a signal sequence, an extra large transglutaminase substrate domain, and a whey acidic protein motif. Northern blot analysis and in situ hybridization histochemistry as well as immunohistochemistry demonstrated that guinea pig trappin is expressed solely in the secretory epithelium of the seminal vesicle and that its expression is androgen-dependent. We confirmed that guinea pig trappin is cross-linked by prostate transglutaminase and that the whey acidic protein motif derived from guinea pig trappin has an inhibitory activity against leukocyte elastase. Genome sequence analysis showed that guinea pig trappin belongs to the family of REST (rapidly evolving seminal vesicle transcribed) genes.  相似文献   

17.
Platelet-activating factor (PAF), one of vasoconstrictive lipid mediators, is involved in systemic anaphylaxis. On the other hand, nitric oxide (NO) is known to attenuate anaphylactic venoconstriction of the pre-sinusoids in isolated guinea pig and rat livers. However, it is not known whether NO attenuates PAF-induced hepatic venoconstriction. We therefore determined the effects of L-NAME, a NO synthase inhibitor, on PAF-induced venoconstriction in blood- and constant flow-perfused isolated livers of mice, rats and guinea pigs. The sinusoidal pressure was measured by the double occlusion pressure (Pdo), and was used to determine the pre- (Rpre) and post-sinusoidal (Rpost) resistances. PAF (0.01-1 microM) concentration-dependently caused predominant pre-sinusoidal constriction in all livers of three species studied. The guinea pig livers were the most sensitive to PAF, while the mouse livers were the weakest in responsiveness. L-NAME pretreatment selectively increased the basal Rpre in all of three species. L-NAME also significantly augmented the PAF-induced increases in Rpre, but not in Rpost, in rat and guinea pig livers. This augmentation was stronger in rat livers than in guinea pig livers at the high concentration of 0.1 microM PAF. However, L-NAME did not augment PAF-induced venoconstriction in mouse livers. In conclusion, in rat and guinea pig livers, NO may be released selectively from the pre-sinusoids in response to PAF, and then attenuate the PAF-induced pre-sinusoidal constriction. In mouse liver, PAF-induced venoconstriction is weak and not modulated by NO.  相似文献   

18.
Characterization of pulmonary carbonyl reductase of mouse and guinea pig   总被引:2,自引:0,他引:2  
Carbonyl reductases were purified from mouse and guinea pig lung. The mouse enzyme exhibited structural and catalytic similarity to the guinea pig enzyme: tetrameric structure consisting of an identical 23 kDa subunit; basicity (pI of 8.8); low substrate specificity for aliphatic and aromatic carbonyl compounds; dual cofactor specificity for NADPH and NADH; stereospecific transfer of the 4-pro S hydrogen of NADPH; and sensitivity to pyrazole, 2-mercaptoethanol and ferrous ion. Although 3-ketosteroids were extensively reduced by the mouse enzyme but not by the guinea pig enzyme in the forward reaction, the two enzymes similarly oxidized some alicyclic alcohols such as acenaphthenol, cyclohex-2-en-1-ol and benzenedihydrodiol in the presence of NADP+ and NAD+. A partial similarity between the two enzymes was observed immunologically, using antibodies against the purified guinea pig enzyme. The lung enzymes differ in several aspects from other oxidoreductases from extrapulmonary tissues. The immunoreactive protein was detected only in lung of the tissues of the two species.  相似文献   

19.
l-asparaginase, an enzyme used in the treatment of acute lymphocytic leukemia, is found in the serum of only a few mammalian groups, including the guinea pig and its close relatives in the superfamily Cavioidea. This report describes the purification and characterization of l-asparaginase from guinea pig serum. Antiserum against the purified enzyme cross-reacted with sera from other Cavioidean species but not with mouse serum. Relatively weak cross-reaction with unpurified l-asparaginase in guinea pig liver indicates a significant degree of evolutionary divergence.  相似文献   

20.
Guinea pig VIP differs from VIP of several mammals by its amino acids in positions 5, 9, 19 and 26. We tested a) its ability to occupy VIP receptors in liver and lung membranes of rat and guinea pig and in the human lymphoblastic SUP-T1 cell line and b) the ensuing adenylate cyclase stimulation. In liver and lung membranes from rat, guinea pig VIP was less potent than common VIP to occupy high and low affinity VIP receptors. In rat liver both VIP activated adenylate cyclase mostly through high affinity receptors. In rat lung, guinea pig VIP activated the enzyme mostly through high affinity receptors and was less efficient than common VIP acting through both classes of receptors. In guinea pig liver and lung membranes, binding inhibition curves were steeper than with rat preparations and adenylate cyclase appeared to be mostly activated through high affinity VIP receptors in liver and through both classes of receptors in lung. On human lymphoblastic SUP-T1 membranes both VIP were equally potent and efficient to inhibit tracer binding and activate adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号