首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to select actions appropriate to current needs, a subject must identify relationships between actions and events. Control over the environment is determined by the degree to which action consequences can be predicted, as described by action-outcome contingencies--i.e. performing an action should affect the probability of the outcome. We evaluated in a first experiment adaptation to contingency changes in rats with neurotoxic lesions of the medial prefrontal cortex. Results indicate that this brain region is not critical to adjust instrumental responding to a negative contingency where the rats must refrain from pressing a lever, as this action prevents reward delivery. By contrast, this brain region is required to reduce responding in a non-contingent situation where the same number of rewards is freely delivered and actions do not affect the outcome any more. In a second experiment, we determined that this effect does not result from a different perception of temporal relationships between actions and outcomes since lesioned rats adapted normally to gradually increasing delays in reward delivery. These data indicate that the medial prefrontal cortex is not directly involved in evaluating the correlation between action--and reward--rates or in the perception of reward delays. The deficit in lesioned rats appears to consist of an abnormal response to the balance between contingent and non-contingent rewards. By highlighting the role of prefrontal regions in adapting to the causal status of actions, these data contribute to our understanding of the neural basis of choice tasks.  相似文献   

2.
Achieving goals in changing environments requires the course of action to be selected on the basis of goal expectation and memory of action-outcome contingency. It is often also essential to evaluate action on the basis of immediate outcomes and the discrimination of early action steps from the final step towards the goal. Recently, in single-cell recordings in monkeys, the neuronal activity that appears to underlie these processes has been noted in the medial part of the prefrontal cortex. Medial prefrontal cells were also active when the subjects extracted the rules of a task in a novel environment. The processes described above might play important roles in rule learning.  相似文献   

3.
Without oxygen, all mammals suffer neuronal injury and excitotoxic cell death mediated by overactivation of the glutamatergic N-methyl-D-aspartate receptor (NMDAR). The western painted turtle can survive anoxia for months, and downregulation of NMDAR activity is thought to be neuroprotective during anoxia. NMDAR activity is related to the activity of another glutamate receptor, the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR). AMPAR blockade is neuroprotective against anoxic insult in mammals, but the role of AMPARs in the turtle's anoxia tolerance has not been investigated. To determine whether AMPAR activity changes during hypoxia or anoxia in the turtle cortex, whole cell AMPAR currents, AMPAR-mediated excitatory postsynaptic potentials (EPSPs), and excitatory postsynaptic currents (EPSCs) were measured. The effect of AMPAR blockade on normoxic and anoxic NMDAR currents was also examined. During 60 min of normoxia, evoked peak AMPAR currents and the frequencies and amplitudes of EPSPs and EPSCs did not change. During anoxic perfusion, evoked AMPAR peak currents decreased 59.2 +/- 5.5 and 60.2 +/- 3.5% at 20 and 40 min, respectively. EPSP frequency (EPSP(f)) and amplitude decreased 28.7 +/- 6.4% and 13.2 +/- 1.7%, respectively, and EPSC(f) and amplitude decreased 50.7 +/- 5.1% and 51.3 +/- 4.7%, respectively. In contrast, hypoxic (Po(2) = 5%) AMPAR peak currents were potentiated 56.6 +/- 20.5 and 54.6 +/- 15.8% at 20 and 40 min, respectively. All changes were reversed by reoxygenation. AMPAR currents and EPSPs were abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In neurons pretreated with CNQX, anoxic NMDAR currents were reversibly depressed by 49.8 +/- 7.9%. These data suggest that AMPARs may undergo channel arrest in the anoxic turtle cortex.  相似文献   

4.
The prefrontal cortex (PFC) is involved in the pathophysiology of schizophrenia. PFC neuronal activity is modulated by monoaminergic receptors for which antipsychotic drugs display moderate-high affinity, such as 5-HT(2A) and alpha(1)-adrenoceptors. Conversely, PFC pyramidal neurons project to and modulate the activity of raphe serotonergic neurons and serotonin (5-HT) release. Under the working hypothesis that atypical antipsychotic drugs may partly exert their action in PFC, we assessed their action on the in vivo 5-HT release evoked by increasing glutamatergic transmission in rat medial PFC (mPFC). This was achieved by applying S-AMPA in mPFC (reverse dialysis) or by disinhibiting thalamic excitatory afferents to mPFC with bicuculline. The application of haloperidol, chlorpromazine, clozapine and olanzapine in mPFC by reverse dialysis (but not reboxetine or diazepam) reversed the S-AMPA-evoked local 5-HT release. Likewise, the local (in mPFC) or systemic administration of these antipsychotic drugs reversed the increased prefrontal 5-HT release produced by thalamic disinhibition. These effects were shared by the 5-HT(2A) receptor antagonist M100907 and the alpha(1)-adrenoceptor antagonist prazosin. However, raclopride (DA D2 antagonist) had very modest effects. These results suggest that, besides their action in limbic striatum, antipsychotic drugs may attenuate glutamatergic transmission in PFC, possibly by interacting with 5-HT(2A) and/or alpha(1)-adrenoceptors.  相似文献   

5.
Intracerebral microinjection of the cholinergic agonist, carbachol, into the medial prefrontal cortex of the rat, induced a profound behavioral syndrome consisting of repetitive, stereotyped forepaw treading in an upright posture. Electroencephalographic analysis revealed multiple bursts of sharp waves, 200-300 microV, accompanying the carbachol-elicited motor behavior. Pretreatment with intraperitoneal doses of three anticonvulsant drugs, clonazepam, diazepam, and pentobarbital, blocked the manifestation of the motor behavior. These observations suggest that activation of cholinergically innervated regions of the rat medial prefrontal cortex induces an atypical form of seizures.  相似文献   

6.
Atypical antipsychotics show preferential 5-HT 2A versus dopamine (DA) D2 receptor affinity. At clinical doses, they fully occupy cortical 5-HT2 receptors, which suggests a strong relationship with their therapeutic action. Half of the pyramidal neurones in the medial prefrontal cortex (mPFC) express 5-HT 2A receptors. Also, neurones excited through 5-HT 2A receptors project to the ventral tegmental area (VTA). We therefore hypothesized that prefrontal 5-HT 2A receptors can modulate DA transmission through excitatory mPFC-VTA inputs. In this study we used single unit recordings to examine the responses of DA neurones to local (in the mPFC) and systemic administration of the 5-HT 2A/2C agonist 1-[2,5-dimethoxy-4-iodophenyl-2-aminopropane] (DOI). Likewise, using microdialysis, we examined DA release in the mPFC and VTA (single/dual probe) in response to prefrontal and systemic drug administration. The local (in the mPFC) and systemic administration of DOI increased the firing rate and burst firing of DA neurones and DA release in the VTA and mPFC. The increase in VTA DA release was mimicked by the electrical stimulation of the mPFC. The effects of DOI were reversed by M100907 and ritanserin. These results indicate that the activity of VTA DA neurones is under the excitatory control of 5-HT 2A receptors in the mPFC. These observations may help in the understanding of the therapeutic action of atypical antipsychotics.  相似文献   

7.
To make deliberate decisions, we have to utilize detailed information about the environment and our internal states. The ventral visual pathway provides detailed information on object identity, including color and shape, to the ventrolateral prefrontal cortex (VLPFC). The VLPFC also receives motivational and emotional information from the orbitofrontal cortex and subcortical areas, and computes the behavioral significance of external events; this information can be used for elaborate decision making or design of goal-directed behavior. In this review, we discuss recent advances that are revealing the neural mechanisms that underlie the coding of behavioral significance in the VLPFC, and the functional roles of these mechanisms in decision making and action programming in the brain.  相似文献   

8.
9.
Removal of the 7th field of parietal cortex and sulcus principalis of prefrontal cortex did not affect learning processes for images with such properties as spatial frequency, orientation, geometrical form, but worsen learning characteristics in visual differentiation of spatial information making the learning processes unstable, longer and below the 85% level. Removal of sulcus principalis also affects learning of differentiation among various colour stimuli. The short-term memory in these monkeys are also much worse than in intact animals. A scheme of learning involving interacting sensory and cognitive processes controlled by motivation system, is proposed.  相似文献   

10.
Group I mGlu receptors have been implicated in the control of brain dopamine release. However, the receptor subtype involved and the precise site of action have not been determined. In this study we show that (R,S)3,5-dihydroxyphenylglycine (DHPG; 6 and 60 nmol ICV), a selective group I mGlu receptor agonist, raised extracellular dopamine respectively by 176% and 243% of basal values in the medial prefrontal cortex as assessed by in vivo microdialysis in conscious rats. (R,S)2-chloro-5-hydroxyphenylglycine (60 nmol ICV), a selective mGlu5 receptor agonist, raised extracellular dopamine by 396% of basal values. Intra-VTA DHPG (0.6–6 nmol) mimicked ICV injection whereas intracortical infusion (1–1000 µmol/L) had no effect. DHPG-induced rise of extracellular dopamine was reversed by tetrodotoxin and by the selective mGlu1 and mGlu5 receptor antagonists 7(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate (CPCCOEt) and 2-methyl-6-(phenylethynyl)pyridine (MPEP) either ICV or into the ventrotegmental area (VTA), suggesting that neuronal release and both mGlu1 and mGlu5 receptors were involved. These results support the existence of functional mGlu1 and mGlu5 receptors in the VTA regulating the release of dopamine in the medial prefrontal cortex.  相似文献   

11.
The participation of noradrenaline (NE) and serotonine (5-HT) in self-stimulation (SS) of the medial prefrontal cortex (MPC) in the rat has been studied. Three groups of rats with bilateral electrodes implanted into the MPC were used in these experiments. In one of the groups, electrodes were also implanted into the locus coeruleus. In the first group, the rats received systemic injections of the following drugs: clonidine (alpha-agonist), phenoxybenzamine (alpha-antagonist), isoproterenol (beta-agonist) and propranolol (beta-antagonist). In the second group, p-chlorophenylalanine (a 5-HT synthesis inhibitor) was administered intragastrically and SS measured during the following 16 days. In these two groups of rats and previous to every SS session, spontaneous motor activity (SM) was measured as control for non specific effects of the drugs. In a third group of rats, lesions of the locus coeruleus were performed unilaterally and SS measured in both prefrontal cortex during the following 16 days post-lesion. SS contralateral to the lesioned side served as control for non-specific effects of the lesions. After all these treatments, SS of the MPC was not specifically affected. Our results suggest the non participation of NE and 5-HT terminals in the neural substrates underlying SS of the MPC.  相似文献   

12.
This work was undertaken in order to assess the organization of the prelimbic area of the medial prefrontal cortex of rats exposed prenatally to cocaine. Pregnant Wistar rats were assigned to the following groups:
  1. Cocaine—60 mg/kg body wt/d sc, from gestational days 8–22; 0131
  2. Saline;
  3. Pair-fed; and
  4. Nonmanipulated.
Male offspring were perfused on postnatal days 14 and 30. Six brains per group and per age were embedded in celloidin to calculate the volumes of the prelimbic area; sections from the other six brains were embedded in resin and processed for electron microscopy. Using semithin sections (2 μm) of layers II–III and V–VI, the following parameters were calculated:
  1. The fraction of the neuropil occupied by neurons (VV);
  2. The packing (NA) density; and
  3. The numerical (NV) density.
Qualitative alterations consisted of dispersed profiles of degenerated neurons and dendrites in the medial prefrontal cortex. No significant differences were found in the gross morphometric parameters when the cocaine group was compared with the other groups. A high interanimal variation was shown in the prelimbic volumes of postnatal day (PND) 14 cocaine-treated rats, and a decrease in volumes was detected at PND30. Although there are some alterations in the main afferent cortical target area for dopaminergic input, its gross morphometric parameters do not seem to be sufficiently affected to account for the behavioral alterations referred to as being dependent on this brain region.  相似文献   

13.
Interactions between dopamine (DA) and glutamate systems in the prefrontal cortex (PFC) are important in addiction and other psychiatric disorders. Here, we examined DA receptor regulation of NMDA receptor surface expression in postnatal rat PFC neuronal cultures. Immunocytochemical analysis demonstrated that surface expression (synaptic and non-synaptic) of NR1 and NR2B on PFC pyramidal neurons was increased by the D1 receptor agonist SKF 81297 (1 microM, 5 min). Activation of protein kinase A (PKA) did not alter NR1 distribution, indicating that PKA does not mediate the effect of D1 receptor stimulation. However, the tyrosine kinase inhibitor genistein (50 microM, 30 min) completely blocked the effect of SKF 81297 on NR1 and NR2B surface expression. Protein cross-linking studies confirmed that SKF 81297 (1 microM, 5 min) increased NR1 and NR2B surface expression, and further showed that NR2A surface expression was not affected. Genistein blocked the effect of SKF 81297 on NR1 and NR2B. Surface-expressed immunoreactivity detected with a phospho-specific antibody to tyrosine 1472 of NR2B also increased after D1 agonist treatment. Our results show that tyrosine phosphorylation plays an important role in the trafficking of NR2B-containing NMDA receptors in PFC neurons and the regulation of their trafficking by DA receptors.  相似文献   

14.
ObjectiveThis study aims to investigate the effects of TRPV4 on acute hypoxic exercise-induced central fatigue, in order to explore the mechanism in central for exercise capacity decline of athletes in the early stage of altitude training.Methods120 male Wistar rats were randomly divided into 12 groups: 4 normoxia groups (quiet group, 5-level group, 8-level group, exhausted group), 4 groups at simulated 2500 m altitude (grouping as before), 4 groups at simulated 4500 m altitude (grouping as before), 10 in each group. With incremental load movement, materials were drawn corresponding to the load. Intracellular calcium ion concentration was measured by HE staining, enzyme-linked immunosorbent assay, immunohistochemistry, RT-qPCR, Fluo-4/AM and Fura-2/AM fluorescence staining.Results(1) Hypoxic 2–5 groups showed obvious venous congestion, with symptoms similar to normoxia-8 group; Hypoxic 2–8 groups showed meningeal loosening edema, infra-meningeal venous congestion, with symptoms similar to normoxia-exhausted group and hypoxic 1-exhaused group. (2) For 5,6-EET, regardless of normoxic or hypoxic environment, significant or very significant differences existed between each exercise load group (normoxic ? 5 level 20.58 ± 0.66 pg/mL, normoxic ? 8 level 23.15 ± 0.46 pg/mL, normoxic - exhausted 26.66 ± 0.71 pg/mL; hypoxic1-5 level 21.72 ± 0.43 pg/mL, hypoxic1-8 level 24.73 ± 0.69 pg/mL, hypoxic 1-exhausted 28.68 ± 0.48 pg/mL; hypoxic2-5 level 22.75 ± 0.20 pg/mL, hypoxic2-8 level 25.62 ± 0.39 pg/mL, hypoxic 2-exhausted 31.03 ± 0.41 pg/mL) and quiet group in the same environment(normoxic-quiet 18.12 ± 0.65 pg/mL, hypoxic 1-quiet 19.94 ± 0.43 pg/mL, hypoxic 2-quiet 21.72 ± 0.50 pg/mL). The 5,6-EET level was significantly or extremely significantly increased in hypoxic 1 environment and hypoxic 2 environment compared with normoxic environment under the same load. (3) With the increase of exercise load, expression of TRPV4 in the rat prefrontal cortex was significantly increased; hypoxic exercise groups showed significantly higher TRPV4 expression than the normoxic group. (4) Calcium ion concentration results showed that in the three environments, 8 level group (normoxic-8 190.93 ± 6.11 nmol/L, hypoxic1-8 208.92 ± 6.20 nmol/L, hypoxic2-8 219.13 ± 4.57 nmol/L) showed very significant higher concentration compared to quiet state in the same environment (normoxic-quiet 107.11 ± 0.49 nmol/L, hypoxic 1-quiet 128.48 ± 1.51 nmol/L, hypoxic 2-quiet 171.71 ± 0.84 nmol/L), and the exhausted group in the same environment (normoxic-exhausted 172.51 ± 3.30 nmol/L, hypoxic 1-exhausted 164.54 ± 6.01 nmol/L, hypoxic 2-exhausted 154.52 ± 1.80 nmol/L) had significant lower concentration than 8-level group; hypoxic2-8 had significant higher concentration than normoxic-8.ConclusionAcute hypoxic exercise increases the expression of TRPV4 channel in the prefrontal cortex of the brain. For a lower ambient oxygen concentration, expression of TRPV4 channel is higher, suggesting that TRPV4 channel may be one important mechanism involved in calcium overload in acute hypoxic exercise.  相似文献   

15.
The way that we interpret and interact with the world entails making decisions on the basis of available sensory evidence. Recent primate neurophysiology [1-6], human neuroimaging [7-13], and modeling experiments [14-19] have demonstrated that perceptual decisions are based on an integrative process in which sensory evidence accumulates over time until an internal decision bound is reached. Here we used repetitive transcranial magnetic stimulation (rTMS) to provide causal support for the role of the dorsolateral prefrontal cortex (DLPFC) in this integrative process. Specifically, we used a speeded perceptual categorization task designed to induce a time-dependent accumulation of sensory evidence through rapidly updating dynamic stimuli and found that disruption of the left DLPFC with low-frequency rTMS reduced accuracy and increased response times relative to a sham condition. Importantly, using the drift-diffusion model, we show that these behavioral effects correspond to a decrease in drift rate, a parameter describing the rate and thereby the efficiency of the sensory evidence integration in the decision process. These results provide causal evidence linking the DLPFC to the mechanism of evidence accumulation during perceptual decision making.  相似文献   

16.
Puig MV  Miller EK 《Neuron》2012,74(5):874-886
Dopamine is thought to play a major role in learning. However, while dopamine D1 receptors (D1Rs) in the prefrontal cortex (PFC) have been shown to modulate working memory-related neural activity, their role in the cellular basis of learning is unknown. We recorded activity from multiple electrodes while injecting the D1R antagonist SCH23390 in the lateral PFC as monkeys learned visuomotor associations. Blocking D1Rs impaired learning of novel associations and decreased cognitive flexibility but spared performance of already familiar associations. This suggests a greater role for prefrontal D1Rs in learning new, rather than performing familiar, associations. There was a corresponding greater decrease in neural selectivity and increase in alpha and beta oscillations in local field potentials for novel than for familiar associations. Our results suggest that weak stimulation of D1Rs observed in aging and psychiatric disorders may impair learning and PFC function by reducing neural selectivity and exacerbating neural oscillations associated with inattention and cognitive deficits.  相似文献   

17.
Perseveration, inhibition and the prefrontal cortex: a new look.   总被引:5,自引:0,他引:5  
Perseverative actions are often the result of inhibitory problems; however, inhibitory problems do not always lead to perseverative actions. Some problems of inhibition have been attributed to immaturity of, or severe damage to, the prefrontal cortex. Research in this area has generally failed both to take into account species differences in prefrontal function that lead to different perseverative errors and to distinguish between perseverative errors that arise from a failure to inhibit salient emotions or motivational drives and errors that arise from an inability to engage in conceptual change. Recent studies on humans, chimpanzees, rhesus macaques, Japanese macaques, cotton-top tamarins and marmosets support this notion.  相似文献   

18.
Chronic stress produces deficits in cognition accompanied by alterations in neural chemistry and morphology. Medial prefrontal cortex is a target for glucocorticoids involved in the stress response. We have previously demonstrated that 3 weeks of daily corticosterone injections result in dendritic reorganization in pyramidal neurons in layer II-III of medial prefrontal cortex. To determine if similar morphological changes occur in response to chronic stress, we assessed the effects of daily restraint stress on dendritic morphology in medial prefrontal cortex. Male rats were exposed to either 3 h of restraint stress daily for 3 weeks or left unhandled except for weighing during this period. On the last day of restraint, animals were overdosed and brains were stained using a Golgi-Cox procedure. Pyramidal neurons in lamina II-III of medial prefrontal cortex were drawn in three dimensions, and the morphology of apical and basilar arbors was quantified. Sholl analyses demonstrated a significant alteration of apical dendrites in stressed animals: overall, the number and length of apical dendritic branches was reduced by 18 and 32%, respectively. The reduction in apical dendritic arbor was restricted to distal and higher-order branches, and may reflect atrophy of terminal branches: terminal branch number and length were reduced by 19 and 35%. On the other hand, basilar dendrites were not affected. This pattern of dendritic reorganization is similar to that seen after daily corticosterone injections. This reorganization likely reflects functional changes in prefrontal cortex and may contribute to stress-induced changes in cognition.  相似文献   

19.
It has been proposed that interaction of catecholamines and indoleamines with free radicals may result in the formation of endogenous neurotoxins. In order to better understand the mechanisms involved in neurodegenerative disorders showing evidence of oxidative stress, we have studied the basal concentrations and the turnover rates of dopamine, noradrenaline, serotonin and their metabolites in the prefrontal cortex of rats that were fed on control or low selenium diets. Nutritional deficit of selenium decreases the brain antioxidant protection in experimental conditions by the decrease in glutathione peroxidase activity.

The dopamine and serotonin turnover increased and noradrenaline and 5-hydroxy-3-indoleacetic acid turnover decreased compared to experimental control animals. The increase of dopamine turnover in experimental rats was accompanied by an increase in tyrosine hydroxylase activity. These results suggest that the decrease of brain protection against oxidative damage could induce brain damage by disturbing the turnover rate of some monoamines.  相似文献   


20.
Exposure to stress causes differential neural modifications in various limbic regions, namely the prefrontal cortex, hippocampus and amygdala. We investigated whether α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) phosphorylation is involved with these stress effects. Using an acute inescapable stress protocol with rats, we found opposite effects on AMPA receptor phosphorylation in the medial prefrontal cortex (mPFC) and dorsal hippocampus (DH) compared to the amygdala and ventral hippocampus (VH). After stress, the phosphorylation of Ser831-GluA1 was markedly decreased in the mPFC and DH, whereas the phosphorylation of Ser845-GluA1 was increased in the amygdala and VH. Stress also modulated the GluA2 subunit with a decrease in the phosphorylation of both Tyr876-GluA2 and Ser880-GluA2 residues in the amygdala, and an increase in the phosphorylation of Ser880-GluA2 in the mPFC. These results demonstrate that exposure to acute stress causes subunit-specific and region-specific changes in glutamatergic transmission, which likely lead to the reduced synaptic efficacy in the mPFC and DH and augmented activity in the amygdala and VH. In addition, these findings suggest that modifications of glutamate receptor phosphorylation could mediate the disruptive effects of stress on cognition. They also provide a means to reconcile the contrasting effects that stress has on synaptic plasticity in these regions. Taken together, the results provide support for a brain region-oriented approach to therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号