首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A highly sensitive and selective method for the determination of cholesterol is required to evaluate trace amounts of cholesterol in test samples. In this work, selected gold nanoparticles (AuNPs) and 5‐amino‐2‐mercapto‐1,3,4‐thiadiazole (AMT) were used and a thin film of three‐dimensional gold–AMT core–shell nanoparticles (p‐AMT–AuNPs) was prepared using an electrochemical method. Cholesterol oxidase was then bonded to the film surface to give a functional electrode. Based on catalysis by the electrode functionalized for cholesterol and a luminol–H2O2 electrochemiluminescence (ECL) system, a highly sensitive and selective ECL method was developed for the determination of cholesterol. Under optimized conditions, ECL intensity showed a good linear relationship with cholesterol over the concentration range 0.05–11.0 µg/ml, with a correlation coefficient of 0.999 and a limit of detection of 0.02 µg/ml. The proposed method was used to determine cholesterol in dairy products with a relative standard deviation of < 1.8% and recovery rates of 98.1–104%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
We present a new hyperspectral darkfield imaging system with a scanned broadband supercontinuum light source. We observed the specific attachment of the functionalized gold plasmonic nanoparticles (AuNPs) targeting CD44+ human breast cancer cells by conventional and by proposed hyperspectral darkfield microscopy. This wide‐field and low phototoxic hyperspectral imaging system has been successful for performing spectral three‐dimensional (3D) localization and spectroscopic identification of CD44‐targeted PEGylated AuNPs in fixed cell preparations. Such spatial and spectral information is essential for the improvement of nanoplasmonic‐based imaging, disease detection and treatment in complex biological environment. Presented system capability for 3D NP tracking will also enable investigation of specific sub‐cellular activity with the use of NPs as spectral sensors. (© 2013 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

3.
A novel probe based on colloidal gold nanoparticles (AuNPs) modified with goat anti-mouse IgG and horseradish peroxidase (HRP) was synthesized and an enhanced enzyme-linked immunosorbent assay (ELISA) based on the probe was developed. In the assay, the synthesized probe is bound with a monoclonal antibody (McAb) which is competitively bound by coated BSA-ITCBE-Pb(II) on plate and Pb(II) in samples. The HRP, used here for signal amplification catalytically oxidize the substrate and generate optical signals that is related to the concentration of Pb(II) and can be measured spectrophotometrically. For the monodisperse AuNPs having high surface areas, it can be conjugated with more amount of HRP than that of IgG. Therefore, compared with traditional ELISA, the signal amplification of catalytically oxidized substrate was enhanced. The detection limit for this novel modified AuNPs probe-based assay was 9 pg mL(-1). The recoveries obtained by standard Pb(II) addition to real samples, including a commercial mineral water, tap water, and lake water were all from 94.9% to 102.9%. And the coefficient of variation (CV) value of all samples was less than 10%. The results indicated that the enhanced assay gave higher sensitivity and reliable reproducibility. It could provide a general detection format for low-molecular weight contaminants.  相似文献   

4.
This study utilized the radio frequency (RF) technology to develop a multilayered polymeric DNA sensor with the help of gold and magnetic nanoparticles. The flexible polymeric materials, poly (p-xylylene) (Parylene) and polyethylene naphtholate (PEN), were used as substrates to replace the conventional rigid substrates such as glass and silicon wafers. The multilayered polymeric RF biosensor, including the two polymer layers and two copper transmission structure layers, was developed to reduce the total sensor size and further enhance the sensitivity of the biochip in the RF DNA detection. Thioglycolic acid (TGA) was used on the surface of the proposed biochip to form a thiolate-modified sensing surface for DNA hybridization. Gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs) were used to immobilize on the surface of the biosensor to enhance overall detection sensitivity. In addition to gold nanoparticles, the magnetic nanoparticles has been demonstrated the applicability for RF DNA detection. The performance of the proposed biosensor was evaluated by the shift of the center frequency of the RF biosensor because the electromagnetic characteristic of the biosensors can be altered by the immobilized multilayer nanoparticles on the biosensor. The experimental results show that the detection limit of the DNA concentration can reach as low as 10 pM, and the largest shift of the center frequency with triple-layer AuNPs and MNPs can approach 0.9 and 0.7 GHz, respectively. Such the achievement implies that the developed biosensor can offer an alternative inexpensive, disposable, and highly sensitive option for application in biomedicine diagnostic systems because the price and size of each biochip can be effectively reduced by using fully polymeric materials and multilayer-detecting structures.  相似文献   

5.
We here in report the synthesis of gold nanoparticles (AuNPs) using a Crinum macowanii bulb water extract. The as‐synthesized AuNPs were characterized using ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, and a zeta potential‐sizer. The results showed that the as‐synthesized AuNPs were crystalline and mostly spherical in shape with a small mixture of triangular, tetrahedral, hexagonal, octagonal, and diamond shapes. The as‐synthesized AuNPs together with those synthesized by conventional methods were subsequently used as enhancers for the luminol signal in blood detection. It was noted that the AuNPs synthesized from the Crinum macowanii bulb water extract could enhance the chemiluminescence signal for blood detection by luminol to the same extent as AuNPs prepared by conventional methods. Furthermore, both types of AuNPs served as fluorescence enhancers for blood detection when luminol was replaced with the bulb water extract.  相似文献   

6.
We demonstrate that protein kinase can be assayed with high sensitivity on peptide-conjugated gold nanoparticles (AuNPs). Phosphorylation of peptides on the AuNP-monolayers was detected by using an anti-phosphotyrosine antibody (alpha-pY) and Cy3-labeled secondary antibody (Cy3-alpha-mIgG) as a probing molecule. When compared to conventional self-assembled monolayers (SAMs), spherical and three-dimensional geometry of AuNPs led to high surface density of peptide substrate and easy accessibility to enzyme, and consequently the resulting AuNP monolayers gave rise to improved detection sensitivity. Blocking of peptide-conjugated AuNPs with a poly(ethylene glycol) (PEG) also contributed to a higher signal-to-background ratio in kinase and its inhibition assays. The use of AuNPs as the platform surface will enable highly sensitive detection of protein kinases in a high-throughput manner.  相似文献   

7.

Colloidal gold nanoparticles (AuNPs) have been extensively investigated as amplification tags to improve the sensitivity of surface plasmon resonance (SPR) biosensors. When using the so-called AuNP-enhanced SPR technique for DNA detection, the density of single-stranded DNA (ssDNA) on both the AuNPs and planar gold substrates is of crucial importance. Thus, in this work, we carried out a systematical study about the influence of surface ssDNA density onto the hybridization behavior of various DNA-modified AuNPs (DNA-AuNPs) with surface-attached DNA probes by using surface plasmon resonance spectroscopy. The lateral densities of the ssDNA on both the AuNPs and planar gold substrates were controlled by using different lengths of oligo-adenine sequence (OAS) as anchoring group. Besides SPR measurements, the amount of the captured DNA-AuNPs after the hybridization was further identified via atomic force microscope (AFM). SPR and AFM results clearly indicated that a higher ssDNA density on either the AuNPs or the gold substrates would give rise to better hybridization efficiency. Moreover, SPR data showed that the captured DNA-AuNPs could not be removed from SPR sensor surfaces using various dehybridization solutions regardless of surface ssDNA density. Consequently, it is apparent that the hybridization behavior of DNA-AuNPs was different from that of solution-phase ssDNA. Based on these data, we hypothesized that both multiple recognitions and limited accessibility might account for the hybridization of DNA-AuNPs with surface-attached ssDNA probes.

  相似文献   

8.
A fluorescence resonance energy transfer (FRET) method was developed for double-stranded deoxyribonucleic acid (dsDNA) detection in living cells using the RecA-GFP (green fluorescent protein) fusion protein filament. In brief, the thiol-modified single-stranded DNA (ssDNA) was attached to gold nanoparticles (AuNPs); on the contrary, the prepared RecA-GFP fusion protein interacted with ssDNA. Due to the FRET between AuNPs and RecA-GFP, fluorescence of RecA-GFP fusion protein was quenched. In the presence of homologous dsDNA, homologous recombination occurred to release RecA-GFP fusion protein. Thus, the fluorescence of RecA-GFP was recovered. The dsDNA concentration was detected using fluorescence intensity of RecA-GFP. Under optimal conditions, this method could detect dsDNA activity as low as 0.015 optical density (OD) Escherichia coli cells, with a wide linear range from 0.05 to 0.9 OD cells, and the regression equation was ΔF = 342.7c + 78.9, with a linear relationship coefficient of 0.9920. Therefore, it provided a promising approach for the selective detection of dsDNA in living cells for early clinical diagnosis of genetic diseases.  相似文献   

9.
A novel nanoparticle-based electrochemiluminescence (ECL) immunosensor was designed for highly sensitive and selective detection of human cardiac troponin I (cTnI), an important Acute Myocardial Infarction (AMI)-related biomarker, by using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles (ABEI-AuNPs) as labels. ABEI-AuNPs were successfully synthesized via a simple seed growth method. A great number of luminescence molecules ABEI as stabilizers were coated on the surface of the AuNPs, which exhibited better ECL activities than previously reported luminol functionalized gold nanoparticles. ABEI-AuNPs were used as new ECL labels to build bio-probes by conjugation with secondary antibodies, which showed good ECL activity, immunological activity, and stability. Another kind of AuNPs functionalized with streptavidin was modified on the electrode surface for biotinylated antibodies capture through the specific interaction of biotin/streptavidin and enhancing the electrical connectivity. By combining with the novel ECL labels and amplification of AuNPs and biotin-streptavidin system, a high sensitive sandwich-type electrochemiluminescence immunoassay was developed for detecting human cTnI with a low detection limit of 2 pg/mL. The immunosensor showed good precision, acceptable stability and reproducibility and could be used for the detection of cTnI in real samples, which was of great potential application in clinical analysis. Importantly, the sensitive detection would have far more diagnostic value than would absolute measurements during the early stage of AMI.  相似文献   

10.
A novel cholesterol biosensor was prepared based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence (ECL). Firstly, l-cysteine-reduced graphene oxide composites were modified on the surface of a glassy carbon electrode. Then, gold nanoparticles (AuNPs) were self-assembled on it. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the surface of AuNPs to construct a cholesterol biosensor. The stepwise fabrication processes were characterized with cyclic voltammetry and atomic force microscopy. The ECL behaviors of the biosensor were also investigated. It was found that AuNPs not only provided larger surface area for higher ChOx loading but also formed the nano-structured interface on the electrode surface to improve the analytical performance of the ECL biosensor for cholesterol. Besides, based on the efficient catalytic ability of AuNPs to luminol ECL, the response of the biosensor to cholesterol was linear range from 3.3 μM to 1.0 mM with a detection limit of 1.1 μM (S/N=3). In addition, the prepared ECL biosensor exhibited satisfying reproducibility, stability and selectivity. Taking into account the advantages of ECL, we confidently expect that ECL would have potential applications in biotechnology and clinical diagnosis.  相似文献   

11.
A novel glucose biosensor was developed, based on the immobilization of glucose oxidase (GOD) with cross-linking in the matrix of bovine serum albumin (BSA) on a Pt electrode, which was modified with gold nanoparticles decorated Pb nanowires (GNPs-Pb NWs). Pb nanowires (Pb NWs) were synthesized by an l-cysteine-assisted self-assembly route, and then gold nanoparticles (GNPs) were attached onto the nanowire surface through –SH–Au specific interaction. The morphological characterization of GNPs-Pb NWs was examined by transmission electron microscopy (TEM). Cyclic voltammetry and chronoamperometry were used to study and to optimize the electrochemical performance of the resulting biosensor. The synergistic effect of Pb NWs and GNPs made the biosensor exhibit excellent electrocatalytic activity and good response performance to glucose. The effects of pH and applied potential on the amperometric response of the biosensor have been systemically studied. In pH 7.0, the biosensor showed the sensitivity of 135.5 μA mM−1 cm−2, the detection limit of 2 μM (S/N = 3), and the response time <5 s with a linear range of 5–2200 μM. Furthermore, the biosensor exhibits good reproducibility, long-term stability and relative good anti-interference.  相似文献   

12.
Present work demonstrates the simple, chemical free, fast, and energy efficient method to produce reduced graphene oxide (r-GO) solution at RT using visible light irradiation with plasmonic nanoparticles. The plasmonic nanoparticle is used to improve the reduction efficiency of GO. It only takes 30 min at RT by illuminating the solutions with Xe-lamp, the r-GO solutions can be obtained by completely removing gold nanoparticles through simple centrifugation step. The spherical gold nanoparticles (AuNPs) as compared to the other nanostructures is the most suitable plasmonic nanostructure for r-GO preparation. The reduced graphene oxide prepared using visible light and AuNPs was equally qualitative as chemically reduced graphene oxide, which was supported by various analytical techniques such as UV-Vis spectroscopy, Raman spectroscopy, powder XRD and XPS. The reduced graphene oxide prepared with visible light shows excellent quenching properties over the fluorescent molecules modified on ssDNA and excellent fluorescence recovery for target DNA detection. The r-GO prepared by recycled AuNPs is found to be of same quality with that of chemically reduced r-GO. The use of visible light with plasmonic nanoparticle demonstrates the good alternative method for r-GO synthesis.  相似文献   

13.
The use of nanoparticles for various purposes, including pest control, has become increasingly popular because of their cost and environmental safety. In the present study, gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were synthesized in an extract of Senna alexandrina Miller leaves with the aim of use against vectors of disease such as Culex pipiens L. (the filarial vector in Saudi Arabia). The nanoparticles were characterized by scanning electron microscopy and spectroscopic techniques. The larvicidal activity of the nanoparticles against Cx. pipiens was evaluated according to the protocol of the World Health Organization. According to the lethal concentration LC50, the result shows differentiation in the sensitivity on mosquitoes. The AuNPs (51.383 ppm) the best one followed by AgNPs (52.525 ppm) while S. alexandrina leaf extract alone (355.25 ppm), the lowest effectiveness. Generally, the Cx. pipiens mosquito larvae proved to be more susceptible to AuNPs and AgNPs than leaf extract alone by about 6.91 and 6.76 times, respectively.  相似文献   

14.
Surface-modified gold nanoparticles (AuNPs) are nanomaterials that hold promise in drug delivery applications. In this study, the cytotoxicity, uptake, intracellular localization, and the exocytosis of citrate-stabilized (Cit-AuNP) and polyethylene glycol (PEG)-modified gold nanoparticles with the carboxyl (COOH) terminal functional group were assessed in human embryonic kidney (HEK 293) and the human caucasian hepatocytes carcinoma (Hep G2) cell systems, representing two major accumulation sites for AuNPs. The zeta (ζ)-potential measurements confirmed the negative surface charge of the AuNPs in water and in cell growth medium. The transmission electron microscopy confirmed the size and morphology of the AuNPs. Both types of AuNPs were shown to induce cytotoxic effects in cells. The Hep G2 cells were more sensitive cell type, with the COOH-PEG-AuNPs inducing the highest toxicity at higher concentrations. Dark field microscopy and TEM images revealed that the AuNPs were internalized in cells, mostly as agglomerates. TEM micrographs further revealed that the AuNPs were confined as agglomerates inside vesicle-like compartments, likely to be endosomal and lysosomal structures as well as in the cytosol, mostly as individual particles. The AuNPs were shown to remain in cellular compartments for up to 3 weeks, but thereafter, clearance of the gold nanoparticles from the cells by exocytosis was evident. The results presented in this study may therefore give an indication on the fate of AuNPs on long-term exposure to cells and may also assist in safety evaluation of AuNPs.  相似文献   

15.
A simple colorimetric biosensing technique based on the interaction of gold nanoparticles (AuNPs) with the aptamer was developed for detection of p53, a tumor suppressor protein, in the current study. Aggregation of AuNPs was induced by desorption of the p53 binding RNA aptamer from the surface of AuNPs as a result of the aptamer target interaction leading to the color change of AuNPs from red to purple. The detection limit of p53 protein by the colorimetric approach was 0.1 ng/ml after successful optimization of the amount of aptamer, AuNPs, salts, and incubation time. Furthermore, the catalytic activity of the aggregated AuNPs was greatly enhanced by chemiluminescence (CL) reaction, where the detection limit was enhanced to 10 pg/ml with a regression coefficient of R2 = 0.9907. Here the sensitivity was increased by 10-fold compared with the AuNP-based colorimetric method. Hence, the sensitivity of detection was increased by employing CL, by using the catalytic activity of aggregated AuNPs, on the luminol–hydrogen peroxide reaction. Thus, the combination of colorimetric and CL-based aptasensor can be of great advantage in increasing the sensitivity of detection for any target analyte.  相似文献   

16.
In the present work, a kind of peptide functionalized gold nanoparticle (AuNP) has been synthesized and employed for colorimetric detection of Pb(2+) in both aqueous solution and living cell. The AuNPs are capped by two peptide ligands: glutathione (GSH) and pentapeptide (CALNN). The GSH is used as a functional group for selectively sensing Pb(2+) by coordination reaction, and CALNN is employed as a stabilize ligand for improving the stability of AuNPs under physiological condition, respectively. The AuNP enables to strongly interact with Pb(2+) that leads to distinct color change of solution. Under the optimized molar ratio of GSH to CALNN on the AuNP surface, the colorimetric assay for detecting Pb(2+) in living cell downs to 2.9 fmol Pb(2+)per cell (3 times of standard deviation, 3σ) with linear relationship from 2.9 to 37.7 fmol Pb(2+) per cell. In addition, the method also shows highly selective detection toward Pb(2+) against other common metal ions in both aqueous solution and living cell.  相似文献   

17.
Carcinoembryonic antigen (CEA) was used as a separator to prevent the Rhodamine 6G (R6G)-induced aggregation of colloidal gold nanoparticles. The destroyed aggregation has been monitored by measuring the absorption and resonance light scattering peaks corresponding to the longitudinal surface plasmon resonance (SPR) of the chain-like aggregated gold nanoparticles (AuNPs). It was found that the pre-adding of CEA with different concentrations to the gold colloids before mixing them with R6G could lead to the longitudinal SPR peak decrease and blue shift. By analysing the intensity changing and wavelength shifting of the absorption spectra, CEA could be detected in a linear range from 0.2 to 4 ng/mL, and the limit of detection reaches to 0.1 ng/mL. The sensitivity of the CEA concentration dependent shifting and quenching of the plasmonic absorption and scattering corresponding to the AuNPs aggregation presents a well potential application of biologic spectral sensing.  相似文献   

18.
A library-orientated approach is used to gain understanding of the interactions of well-defined nanoparticles with primary human endothelial cells, which are a key component of the vasculature. Fifteen sequentially modified gold nanoparticles (AuNPs) based on three different core sizes (18, 35, 65 nm) and five polymeric coatings were prepared. The synthetic methodology ensured homogeneity across each series of particles to allow sequential investigation of the chemical features on cellular interactions. The toxicity of these nanoparticles, their uptake behavior in primary human dermal microvascular endothelial cells (HDMECs), and quantification of uptake were all investigated. The results of our studies indicated that high concentrations of gold nanoparticles (250 μg/mL) were nontoxic and that the number of internalized nanoparticles was related to nanoparticle size and surface chemistry. In summary, the positive-charged ethanediamine-coated AuNPs were internalized to a greater extent than the negative- or neutral-charged AuNPs. Moreover, differences in the amounts of internalized AuNPs could be shown for the three neutral-charged AuNPs, whereas the uptake of hydroxypropylamine-coated particles was preferred compared with glucosamine-coated or PEGylated AuNPs. Hydroxypropylamine-coated AuNPs were found to be the most efficient neutral-charged particles in overcoming the endothelial cell barrier and entering the cell.  相似文献   

19.
AimThis work is focused on the Monte Carlo microdosimetric calculations taking into account the influence of the AuNPs’ shape, size and mass concentration on the radiation dose enhancement for the high-energy 6 MV and 18 MV X-ray therapeutic beams from a medical linac.BackgroundDue to a high atomic number and the photoelectric effect, gold nanoparticles can significantly enhance doses of ionizing radiation. However, this enhancement depends upon several parameters, such as, inter alia, nanoparticles’ shape etc.MethodThe simulated system was composed of the therapeutic beam, a water phantom with the target volume (with and without AuNPs) located at the depth of the maximum dose, i.e. at 1.5 cm for the 6 MV beam and at 3.5 cm for the 18 MV one. In the study the GEANT4 code was used because it makes it possible to get a very short step of simulation which is required in case of simulating the radiation interactions with nanostructures.ResultsThe dependence between the dose increase and the mass concentration of gold was determined and described by a simple mathematical formula for three different shapes of gold nanoparticles — two nanorods of different sizes and a flat 2D structure. The dose increase with the saturation occurring with the increasing mass concentration of gold was observed.ConclusionsIt was found that relatively large cylindrical gold nanoparticles can limit the increase of the dose absorbed in the target volume much more than the large 2D gold nanostructure.  相似文献   

20.
A novel label-free fluorescence nanosensor was developed for ultrasensitive detection of protamine and heparin based on fluorescence resonance energy transfer (FRET) between NaYF4:Yb,Er upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs). The FRET system was formed by the electrostatic adsorption of AuNPs on UCNPs, and the fluorescence of UCNPs was significantly quenched. When protamine was added to the mixture of UCNPs–AuNPs, the AuNPs interacted with protamine and then desorbed from the surface of UCNPs and aggregated, resulting in the recovery of the fluorescence of UCNPs. On the addition of both protamine and heparin, the FRET system formed owing to the stronger interaction between heparin and protamine than that with AuNPs, leading to a marked fluorescence quenching of UCNPs. The concentrations of protamine and heparin were proportional to the changes of the fluorescence of UCNPs. The linear response range was obtained over the concentration ranges of 0.02 to 1.2 μg/ml and 0.002 to 2.0 μg/ml with low detection limits of 6.7 and 0.7 ng/ml for protamine and heparin, respectively. Simultaneous measurement of protamine and heparin in human serum can be achieved, suggesting that the nanosensor can be used in a complex biological sample matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号