共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock protein 70 (Hsp70) is considered not only as a cytosolic stress protein, but also as an extracellular molecule with immunomodulatory and signaling functions that play a role in adaptation to stress on cellular and systemic levels. The active involvement of mast cells in adaptation to stress may be associated with the presence of Hsp70 in secretory granules. Using immunoelectron microscopy, we showed that Hsp70 localized in secretory granules of rat pericardial and peritoneal mast cells. Localization of Hsp70 in rat perinoneal mast cells isolated by centrifugation on Percoll was confirmed by immunoblotting. The proposed involvement of mast cells in production of extracellular Hsp70 and possible functions of Hsp70 inside the mast cells granules are discussed. 相似文献
2.
3.
4.
5.
A 70 kDa microtubule-associated protein in NIL8 cells comigrates with the 70 kDa heat shock protein 总被引:1,自引:0,他引:1
N K Weller 《Biology of the cell / under the auspices of the European Cell Biology Organization》1988,63(3):307-317
When eukaryotic cells are exposed to environmental stress such as elevated temperature, the synthesis of heat shock proteins (HSP) is stimulated. We have raised a monoclonal antibody to a 70 kDa cytoskeleton-associated protein; this antibody also appears to recognize HSPs 68, 70 and 90, as well as an additional 40 kDa non-heat shock protein. We have used this monoclonal antibody to study the localization of the 70 kDa protein in the cytoskeletons of NIL8 hamster fibroblasts. By selective sequential solubilization of the components of NIL8 cells and analysis of the resulting cytoskeletal preparations by Western blot technique and indirect immunofluorescence, we have shown that the 70 kDa protein is associated with microtubules in mitotic and interphase cells and comigrates with HSP70 on 2-dimensional gel electrophoretigrams. 相似文献
6.
Kang SS Song JH Lee MY Kang YH Lim SS Ryu SY Jung JY 《Histology and histopathology》2011,26(11):1363-1373
During renal development the cells in the medulla are exposed to elevated and variable interstitial osmolality. Heat shock protein 70 (HSP70) is a major molecular chaperone and plays an important role in the protection of cells in the renal medulla from high osmolality. The purpose of this study was to establish the time of immunolocalization and distribution of HSP70 in developing and adult rat kidney. In addition, changes in HSP70 immunolocalization following the infusion of furosemide were investigated. In adult animals, the HSP70 was expressed in the medullary thin ascending limb of Henle's loop (ATL) and inner medullary collecting duct (IMCD). In developing kidney, HSP70 immunoreactivity was first detected in the IMCD of the papillary tip on postnatal day 1. From four to 14 days of age, HSP70 was detected in the ATL after transformation from thick ascending limb, beginning at the papillary tip and ascending to the border between the outer and inner medulla. The immunolocalization of HSP70 in both the ATL and IMCD gradually increased during two weeks. The gradual increase in HSP70 was associated with an increase in its mRNA abundance. However, furosemide infusion resulted in significantly reduced HSP70 immunolocalization in the IMCD and ATL. These data demonstrated that the expression of HSP70 was closely correlated with changes in interstitial osmolality during the development of the kidney. We suggest that HSP70 protects ATL and IMCD cells in the inner medulla from the stress of high osmolality and may be involved in the transformation of the ATL of the long loop of Henle during renal development. 相似文献
7.
8.
Sibile Pardue Anton L. Zimmerman Marcelle Morrison-Bogorad 《Cellular and molecular neurobiology》1994,14(4):341-357
Summary 1. Altered mRNA levels in postmortem brain tissue from persons with Alzheimer's disease (AD) or other neurological diseases are usually presumed to be characteristic of the disease state, even though both agonal state (the physiological state immediately premortem) and postmortem interval (PMI) (the time between death and harvesting the tissue) have the potential to affect levels of mRNAs measured in postmortem tissue. Although the possible effect of postmortem interval on mRNA levels has been more carefully evaluated than that of agonal state, many studies assume that all mRNAs have similar rates of degradation postmortem.2. To determine the postmortem stability of inducible heat shock protein 70 (hsp70) mRNAs, themselves unstablein vivo at normal body temperature, rats were heat shocked in order to induce synthesis of the hsp70 mRNAs. hsp70 mRNA levels in cerebellum and cortex were then compared to those of their heat shock cognate 70 (hsc70) mRNAs, as well as to levels of 18S rRNAs, at 0 and at 24 hr postmortem.3. Quantiation of northern blots after hybridization with an hsp70 mRNA-specific oligo probe indicated a massive loss of hsp70 mRNA signal in RNAs isolated from 24-hr postmortem brains; quantitation by slot-blot hybridization was 5- to 15-fold more efficient. Even using the latter technique, hsp70 mRNA levels were reduced by 59% in 24-hr-postmortem cerebellum and by 78% in cortex compared to mRNA levels in the same region of 0-hr-postmortem brain. There was little reduction postmortem in levels of the hsp70 mRNAs or of 18S rRNAs in either brain region.4.In situ hybridization analysis indicated that hsp70 mRNAs were less abundant in all major classes of cerebellar cells after 24 hr postmortem and mRNAs had degraded severalfold more rapidly in neurons than in glia. There was no corresponding loss of intracellular 18S rRNA in any cell type.5. We conclude from these results that the effect of postmortem interval on mRNA degradation must be carefully evaluated when analyzing levels of inducible hsp70 mRNAs, and perhaps other short-lived mRNAs, in human brain. 相似文献
9.
Sun XQ Li JS Wu XY 《Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology》2002,9(1):P23-P24
To investigate the effect of +Gz exposure on the expression and distribution of heat shock protein 70 (HSP70) in rat brain. Methods: One hundred rats were randomly divided into control group, +2 Gz, +6 Gz and +10 Gz exposures groups. The +Gz group rats were exposed to +2 Gz, +4 Gz, +6 Gz and +10 Gz for 3 minute respectively. The expression of HSP70 in rat brain was measured by immunohistochemistry and West blot methods after +Gz exposure. Results: There was no HSP70 expression in the brains of control rats. In +2, +4. and +6 Gz groups, HSP70 was obviously expressed in cortex, hippocampus and pyriform cortex 6 h after exposures, and strongly expressed 1 d after exposure, and then had a tendency to decrease 2 d after exposure, and returned to control level 6 d after exposure. The expression of HSP70 after +6 Gz exposure was the strongest in all +Gz groups. In +10 GZ group, HSP70 protein was only weakly expressed in pyriform cortex after exposure. Conclusions: +Gz exposures may cause time-dependent HSP70 expression in rat brain. 相似文献
10.
Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells 总被引:8,自引:0,他引:8 下载免费PDF全文
Dengue virus requires the presence of an unidentified cellular receptor on the surface of the host cell. By using a recently published affinity chromatography approach, an 84-kDa molecule, identified as heat shock protein 90 (HSP90) by matrix-assisted laser desorption ionization-time of flight mass spectrometry, was isolated from neuroblastoma and U937 cells. Based on the ability of HSP90 (84 kDa) to interact with HSP70 (74 kDa) on the surface of monocytes during lipopolysaccharide (LPS) signaling and evidence that LPS inhibits dengue virus infection, the presence of HSP70 was demonstrated in affinity chromatography eluates and by pull-down experiments. Infection inhibition assays support the conclusion that HSP90 and HSP70 participate in dengue virus entry as a receptor complex in human cell lines as well as in monocytes/macrophages. Additionally, our results indicate that both HSPs are associated with membrane microdomains (lipid rafts) in response to dengue virus infection. Moreover, methyl-beta-cyclodextrin, a raft-disrupting drug, inhibits dengue virus infection, supporting the idea that cholesterol-rich membrane fractions are important in dengue virus entry. 相似文献
11.
A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein 总被引:30,自引:0,他引:30
Small heat shock proteins (sHsps) are a diverse group of heat-induced proteins that are conserved in prokaryotes and eukaryotes and are especially abundant in plants. Recent in vitro data indicate that sHsps act as molecular chaperones to prevent thermal aggregation of proteins by binding non-native intermediates, which can then be refolded in an ATP-dependent fashion by other chaperones. We used heat-denatured firefly luciferase (Luc) bound to pea (Pisum sativum) Hsp18.1 as a model to define the minimum chaperone system required for refolding of a sHsp-bound substrate. Heat-denatured Luc bound to Hsp18.1 was effectively refolded either with Hsc/Hsp70 from diverse eukaryotes plus the DnaJ homologs Hdj1 and Ydj1 (maximum = 97% Luc reactivation with k(ob) = 1.0 x 10(-2)/min), or with prokaryotic Escherichia coli DnaK plus DnaJ and GrpE (100% Luc reactivation, k(ob) = 11.3 x 10(-2)/min). Furthermore, we show that Hsp18.1 is more effective in preventing Luc thermal aggregation than the Hsc70 or DnaK systems, and that Hsp18.1 enhances the yields of refolded Luc even when other chaperones are present during heat inactivation. These findings integrate the aggregation-preventive activity of sHsps with the protein-folding activity of the Hsp70 system and define an in vitro system for further investigation of the mechanism of sHsp action. 相似文献
12.
Induced thermotolerance in murine embryos occurs at the 8-cell stage when embryos are maintained in vitro but not until the blastocyst stage if development proceeds in vivo. Present results indicate that ability of embryos to undergo induced thermotolerance is not limited by heat shock protein 70 (HSP70) synthesis. Exposure of 8-cell embryos to 40 degrees C enhanced synthesis of 2 constitutive HSP70 proteins (HSC70 and HSC72) and induced another protein, HSP68; exposure of 43 degrees C was required to induce similar responses in expanded blastocysts. Unlike induced thermotolerance, increased synthesis of HSP70 molecules did not depend on whether embryos were cultured or developed in vivo. Thus, other biochemical mechanisms in addition to HSP70 confer thermotolerance in the preimplantation-stage murine embryo. The observation that the temperature threshold for induction of HSP70 synthesis increased from the 8-cell to the blastocyst stage is indicative of these other biochemical processes. 相似文献
13.
Intracellular localization of constitutive and inducible heat shock protein 70 in rat liver after in vivo heat stress 总被引:2,自引:0,他引:2
The level and intracellular redistribution of the two nucleo-cytoplasmic members of 70 kDa heat shock protein family (constitutive, Hsc70 or Hsp73, and inducible, Hsp72) were studied in rat liver during a 24-h period after exposure of the animals to 41 degrees C whole body hyperthermic stress. The examined proteins were detected in the liver cytosol and nuclei by Western blotting and immunohistochemical staining of paraffin sections, as well as by immnocytochemical staining of isolated nuclear smears. All three techniques applied were based on the use of monoclonal antibodies recognizing both constitutive and inducible Hsp70 isoforms or only the inducible isoform, and gave consistent results. The exposure of the animals to in vivo heat stress was shown to induce the synthesis of otherwise non-existing Hsp72, rendering Hsc70 level unchanged in comparison to unstressed controls. However, immediately after the stress the intracellular redistribution of Hsc70, i.e. its nuclear accumulation, was observed. The maximal level of Hsp70 both in the cytoplasm and in the nuclei was registered 5 h after the stress, which coincided with the maximal level of Hsp72 induction. The alterations in the level and intracellular distribution of examined proteins were still noticeable 24 h after the stress. The results of this study could shed some more light on, as yet uncertain, differences between cellular functions of these two proteins, as well as on the role of the constitutive form under normal and stress conditions. 相似文献
14.
Endothelial cells downregulate expression of the 70 kDa heat shock protein during hypoxia 总被引:1,自引:0,他引:1
Oehler R Schmierer B Zellner M Prohaska R Roth E 《Biochemical and biophysical research communications》2000,274(2):542-547
Hsp70 is induced by hypoxia in most mammalian cell types and contributes to their ability to survive hypoxic episodes. However, little is known about Hsp70 expression in the hypoxia-tolerant endothelial cells (ECs). We investigated the effect of hypoxia on Hsp70 in human microvascular endothelial HMEC-1 cells. Reduction of pO(2) to 2.5% of normal for 20 h stimulated lactate production and the activity of glycolytic enzymes. This metabolic adaptation to hypoxia was accompanied by a remarkable reduction of Hsp70 on the protein level and on the mRNA level. Approximately 12 h after the hypoxic period Hsp70 expression reached pre-hypoxia levels again. Since ECs are adapted to the low oxygen tension of the vasculature they are confronted with a supraphysiological oxygen level during in vitro culture. We suppose that the high Hsp70 under these conditions reflects a stress response which disappears at the more physiological reduced oxygen tension during hypoxia. 相似文献
15.
The heat shock protein HSP70 and heat shock cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite leishmania 总被引:2,自引:0,他引:2 下载免费PDF全文
Antimony-containing drugs are still the drugs of choice in the treatment of infections caused by the parasite Leishmania. Resistance to antimony is now common in some parts of the world, and several mechanisms of resistance have been described. By transfecting cosmid banks and selecting with potassium antimonyl tartrate (SbIII), we have isolated a cosmid associated with resistance. This cosmid contains 2 copies of the heat shock protein 70 (HSP70) and 1 copy of the heat shock cognate protein 70 (HSC70). Several data linked HSP70 to antimony response and resistance. First, several Leishmania species, both as promastigotes and amastigotes, increased the expression of their HSP70 proteins when grown in the presence of 1 or 2 times the Effect Concentration 50% of SbIII. In several mutants selected for resistance to either SbIII or to the related metal arsenite, the HSP70 proteins were found to be overexpressed. This increase was also observed in revertant cells grown for several passages in the absence of SbIII, suggesting that this increased production of HSP70 is stable. Transfection of HSP70 or HSC70 in Leishmania cells does not confer resistance directly, though these transfectants were better able to tolerate a shock with SbIII. Our results are consistent with HSP70 and HSC70 being a first line of defense against SbIII until more specific and efficient resistance mechanisms take over. 相似文献
16.
17.
Background
The gene expression pattern in tumor cells differs from that in corresponding normal cells. In order to identify differentially expressed genes in colorectal tumors and normal colorectal epithelium, a differential display experiment was used to compare RNA expression in normal and tumor tissue samples. 相似文献18.
R. Sreedharan M. Riordan G. ThullinS. Van Why N.J. SiegelM. Kashgarian 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2011,1813(1):129-135
Endogenous heat shock proteins (HSPs) 70 and 25/27 are induced in renal cells by injury from energy depletion. Transfected over-expression of HSPs 70 or 27 (human analogue of HSP25), provide protection against renal cell injury from ATP deprivation. This study examines whether over-expressed HSP27 depends on induction of endogenous HSPs, in particular HSP70, to afford protection against cell injury. LLC-PK1 cells transfected with HSP27 (27OE cells) were injured by ATP depletion for 2 h and recovered for 4 h in the presence of HSF decoy, HSP70 specific siRNA (siRNA-70) and their respective controls. Injury in the presence of HSF decoy, a synthetic oligonucleotide identical to the heat shock element, the nuclear binding site of HSF, decreased HSP70 induction by 80% without affecting the over-expression of transfected HSP27. The HSP70 stress response was completely ablated in the presence of siRNA-70. Protection against injury, provided by over-expression of HSP27, was reduced by treatment with HSF decoy and abolished by treatment with siRNA-70. Immunoprecipitation studies demonstrated association of HSP27 with actin that was not affected by either treatment with HSF decoy or siRNA. Therefore, HSP27 is dependent on HSP70 to provide its maximal cytoprotective effect, but not for its interaction with actin. This study suggests that, while it has specific action on the cytoskeleton, HSP 25/27 must have coordinated activity with other HSP classes, especially HSP70, to provide the full extent of resistance to injury from energy depletion. 相似文献
19.
The purpose of this study was to determine the kinetics of HSP70 expression in response to mild thermal stress. The rationale is to produce a basis for design of optimal heating methods to induce HSP70 expression for preconditioning in cardiac surgery. Bovine aortic endothelial cells were heated at 42 degrees C for 0.5 to 5 hours followed by 37 degrees C recovery for 1 to 48 hours. Quantitative analysis of western blot results showed HSP70 expression kinetics is a coupled function of heating temperature and time and of post-heating duration. Bimodal HSP70 expression kinetics were identified which may be an important cause of the "second window of protection" observed by other researchers. 相似文献
20.
Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells 总被引:13,自引:0,他引:13
Noessner E Gastpar R Milani V Brandl A Hutzler PJ Kuppner MC Roos M Kremmer E Asea A Calderwood SK Issels RD 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(10):5424-5432
Our study demonstrates that tumor-derived heat shock protein (HSP)70 chaperones a tyrosinase peptide and mediates its transfer to human immature dendritic cells (DCs) by receptor-dependent uptake. Human tumor-derived HSP70 peptide complexes (HSP70-PC) thus have the immunogenic potential to instruct DCs to cross-present endogenously expressed, nonmutated, and tumor antigenic peptides that are shared among tumors of the melanocytic lineage for T cell recognition. T cell stimulation by HSP70-instructed DCs is dependent on the Ag bound to HSP70 in that only DCs incubated with HSP70-PC purified from tyrosinase-positive (HSP70-PC/tyr(+)) but not from tyrosinase-negative (HSP70-PC/tyr(-)) melanoma cells resulted in the specific activation of the HLA-A*0201-restricted tyrosinase peptide-specific cytotoxic T cell clone. HSP70-PC-mediated T cell stimulation is very efficient, delivering the tyrosinase peptide at concentrations as low as 30 ng/ml of HSP70-PC for T cell recognition. Receptor-dependent binding of HSP70-PC and active cell metabolism are prerequisites for MHC class I-restricted cross-presentation and T cell stimulation. T cell stimulation does not require external DC maturation signals (e.g., exogenously added TNF-alpha), suggesting that signaling DC maturation is an intrinsic property of the HSP70-PC itself and related to receptor-mediated binding. The cross-presentation of a shared human tumor Ag together with the exquisite efficacy are important new aspects for HSP70-based immunotherapy in clinical anti-cancer vaccination strategies, and suggest a potential extension of HSP70-based vaccination protocols from a patient-individual treatment modality to its use in an allogeneic setting. 相似文献