首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the second-highest dilution in a most-probable-number dilution series with lactate and sulfate as substrates and rice paddy soil as the inoculum, a strain of Desulfovibrio desulfuricans was isolated. In addition to reducing sulfate, sulfite, and thiosulfate, the strain also reduced nitrate to ammonia. The latter process was studied in detail, since the ability to reduce nitrate was strongly influenced by the presence of sulfide. Sulfide inhibited both growth on nitrate and nitrate reduction. A 70% inhibition of the nitrate reduction rate was obtained at 127 μM sulfide, and growth was inhibited by 50% at approximately 320 μM sulfide and was not detectable above 700 μM sulfide. In contrast, sulfate reduction was not affected at concentrations of up to 5 mM. After growth with sulfate, an induction period of 2 to 4 days was needed before nitrate reduction started. When nitrate and sulfate were present simultaneously, only sulfate was reduced, except when sulfate was present at very low concentrations (4 μM). At higher sulfate concentrations (500 μM), nitrate reduction was temporarily halted. The affinity for nitrate uptake was extremely high (Km = 0.05 μM) compared with that for sulfate uptake (Km = 5 μM). Thus, at low nitrate concentrations this bacterium is favored relative to denitrifiers (Km = 1.8 to 13.7 μM) or other nitrate ammonifiers (e.g., Clostridium spp. [Km = 500 μM]).  相似文献   

2.
It is thought that monensin increases the efficiency of feed utilization by cattle by altering the rumen fermentation. We studied the effect of monensin and the related ionophore antibiotic lasalocid-sodium (Hoffman-LaRoche) on the growth of methanogenic and rumen saccharolytic bacteria in a complex medium containing rumen fluid. Ruminococcus albus, Ruminococcus flavefaciens, and Butyrivibrio fibrisolvens were inhibited by 2.5 μg of monensin or lasalocid per ml. Growth of Bacteroides succinogenes and Bacteroides ruminicola was delayed by 2.5 μg of monensin or lasalocid per ml. Populations of B. succinogenes and B. ruminicola that were resistant to 20 μg of either drug per ml were rapidly selected by growth in the presence of each drug at 5.0 μg/ml. Selenomonas ruminantium was insensitive to 40 μg of monensin or lasalocid per ml. Either antibiotic (10 μg/ml) inhibited Methanobacterium MOH, Methanobacterium formicicum, and Methanosarcina barkeri MS. Methanobacterium ruminantium PS was insensitive to 40 μg of monensin or 20 μg of lasalocid per ml. The methanogenic strain 442 was insensitive to 40 μg of monensin but sensitive to 10 μg of lasalocid per ml. The results suggest that monensin or lasalocid acts in the rumen by selecting for succinate-forming Bacteroides and for S. ruminantium, a propionate producer that decarboxylates succinate to propionate. The selection could lead to an increase in rumen propionate formation. Selection against H2 and formate producers, e.g. R. albus, R. flavefaciens, and B. fibrisolvens, could lead to a depression of methane production in the rumen.  相似文献   

3.
Ten strains of fungi were tested for tolerance to the fungicide benomyl. Verticillium chlamydosporium strain 2 did not grow in the presence of benomyl; Drechraeria coniospora strains 1 and 2 and Chaetomium sp. tolerated only 0.1 μg benomyl/ml medium; Acremonium bacillisporum, an unidentified fungus, and Phoma chrysanthemicola uniformly grew at 1 μg/ml, but some hyphae grew at higher benomyl concentrations; Fusarium sp. tolerated 475 μg/ml, but some hyphae grew on medium amended with 1,000 μg/ml; Verticillium lecanii and V. chlamydosporium strain 1 routinely tolerated 1,000 μg/ml. Fungi generally grew more slowly at higher than at lower benomyl concentrations. Strains with elevated tolerance to benomyl were selected from Acremonium bacillisporum, Drechmeria coniospora, Fusarium sp., and an unidentified fungus. These strains retained the increased tolerance after repeated transfers on unamended medium.  相似文献   

4.
The drought-resistant cyanobacteria Phormidium autumnale, strain LPP4, and a Chroococcidiopsis sp. accumulated trehalose, sucrose, and both trehalose and sucrose, respectively, in response to matric water stress. Accumulated sugar concentrations reached values of up to 6.2 μg of trehalose per μg of chlorophyll in P. autumnale, 6.9 μg of sucrose per μg of chlorophyll in LPP4, and 4.1 μg of sucrose and 3.2 μg of trehalose per μg of chlorophyll in the Chroococcidiopsis sp. The same sugars were accumulated by these cyanobacteria in similar concentrations under osmotic water stress. Cyanobacteria that did not show drought resistance (Plectonema boryanum and Synechococcus strain PCC 7942) did not accumulate significant amounts of sugars when matric water stress was applied.  相似文献   

5.
Soil isolates of Aspergillus flavus from a transect extending from eastern New Mexico through Georgia to eastern Virginia were examined for production of aflatoxin B1 and cyclopiazonic acid in a liquid medium. Peanut fields from major peanut-growing regions (western Texas; central Texas; Georgia and Alabama; and Virginia and North Carolina) were sampled, and fields with other crops were sampled in regions where peanuts are not commonly grown. The A. flavus isolates were identified as members of either the L strain (n = 774), which produces sclerotia that are >400 μm in diameter, or the S strain (n = 309), which produces numerous small sclerotia that are <400 μm in diameter. The S-strain isolates generally produced high levels of aflatoxin B1, whereas the L-strain isolates were more variable in aflatoxin production; variation in cyclopiazonic acid production also was greater in the L strain than in the S strain. There was a positive correlation between aflatoxin B1 production and cyclopiazonic acid production in both strains, although 12% of the L-strain isolates produced only cyclopiazonic acid. Significant differences in production of aflatoxin B1 and cyclopiazonic acid by the L-strain isolates were detected among regions. In the western half of Texas and the peanut-growing region of Georgia and Alabama, 62 to 94% of the isolates produced >10 μg of aflatoxin B1 per ml. The percentages of isolates producing >10 μg of aflatoxin B1 per ml ranged from 0 to 52% in the remaining regions of the transect; other isolates were often nonaflatoxigenic. A total of 53 of the 126 L-strain isolates that did not produce aflatoxin B1 or cyclopiazonic acid were placed in 17 vegetative compatibility groups. Several of these groups contained isolates from widely separated regions of the transect.  相似文献   

6.
Mode of Action of Lomofungin   总被引:7,自引:0,他引:7       下载免费PDF全文
Lomofungin inhibited the growth of some yeasts and mycelial fungi at concentrations between 5 and 10 μg/ml. At such concentrations, there was no decrease in endogenous and exogenous oxygen consumption, and even 50 μg of antibiotic per ml caused only slight decreases. The permeation of the cell membrane was changed so that leakage of ninhydrin-positive substances was reduced, and the uptake of 14C-labeled glucose, amino acids, uracil, and thymidine was decreased at concentrations as low as 4 μg/ml. Protein synthesis in whole cells of Saccharomyces cerevisiae was reduced 35% at 10 μg/ml. However, the antibiotic did not reduce the incorporation of phenylalanine-U-14C into polypeptides with cell-free systems of Rhizoctonia solani and S. cerevisiae. The synthesis of ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) was inhibited even at concentrations of lomofungin of 4 μg/ml. Since RNA synthesis was inhibited at lower concentrations and earlier than DNA synthesis, the primary site of action of the antibiotic appears to be the synthesis of RNA.  相似文献   

7.
Lomofungin inhibited the growth of some yeasts and mycelial fungi at concentrations between 5 and 10 μg/ml. At such concentrations, there was no decrease in endogenous and exogenous oxygen consumption, and even 50 μg of antibiotic per ml caused only slight decreases. The permeation of the cell membrane was changed so that leakage of ninhydrin-positive substances was reduced, and the uptake of 14C-labeled glucose, amino acids, uracil, and thymidine was decreased at concentrations as low as 4 μg/ml. Protein synthesis in whole cells of Saccharomyces cerevisiae was reduced 35% at 10 μg/ml. However, the antibiotic did not reduce the incorporation of phenylalanine-U-14C into polypeptides with cell-free systems of Rhizoctonia solani and S. cerevisiae. The synthesis of ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) was inhibited even at concentrations of lomofungin of 4 μg/ml. Since RNA synthesis was inhibited at lower concentrations and earlier than DNA synthesis, the primary site of action of the antibiotic appears to be the synthesis of RNA.  相似文献   

8.
Hydrogen sulfide-producing strains of salmonellae, Escherichia coli, Citrobacter freundii, and Proteus mirabilis were isolated from fresh pork sausage. All the strains produced black-centered colonies on Hektoen enteric agar (HE). On xylose lysine deoxycholate agar (XLD), C. freundii produced yellow colonies, and the strains of the other three genera formed black-centered colonies. The selectivity of HE and XLD for salmonellae was improved by the addition of novobiocin to both media. With increasing concentrations of novobiocin, the degree of growth inhibition for the four genera was less on HE than on XLD. Novobiocin concentrations of 80 μg/ml in HE and 5 μg/ml in XLD did not affect the growth or colonial morphology of salmonellae. When 80 μg of novobiocin per ml was incorporated into HE, P. mirabilis strains were not recovered, 40% of C. freundii strains failed to form black-centered colonies, and growth of E. coli strains was not affected but colonies were altered without eliminating the black centers. When novobiocin at 5 μg/ml was incorporated into XLD, colonies of P. mirabilis strains were not recovered, C. freundii formed yellow colonies, and the colonies of the H2S-producing E. coli strains were unaffected.  相似文献   

9.
Antiviral activity against H1N1 influenza was studied using ethnic medicinal plants of South India. Results revealed that Wrightia tinctoria (2.25 μg/ml) was one of the best antidotes against H1N1 virus in terms of inhibitory concentration of 50% (IC50) whereas the control drug Oseltamivir showed 6.44 μg/ml. Strychnos minor, Diotacanthus albiflorus and Cayratia pedata showed low cytotoxicity (>100) to the MDCK (Malin darby canine kidney) cells by cytotoxicity concentration of 50% (CC50) and possessed antiviral activity suggesting that these plants can be used as herbal capsules for H1N1 virus. W. tinctoria and S. minor showed high therapeutic indexes (TI) such as 12.67 and 21.97 suggesting that those plants can be used for anti-viral drug development. The CC50 values of Eugenia singampattiana (0.3 μg/ml), Vitex altissima (42 μg/ml), Salacia oblonga (7.32 μg/ml) and Salacia reticulata (7.36 μg/ml) resulted in cytotoxicity of the MDCK cells, due to their high phenolic content. Findings from this study state that the plant W. tinctoria can be a potent source for third generation anti-viral drug development against H1N1.  相似文献   

10.
Parental strains and asporogenous mutants of Bacillus thuringiensis subspp. kurstaki and aizawai produced high yields of δ-endotoxin on M medium, which contained 330 μg of potassium per ml, but not on ST and ST-a media, each of which contained only 11 μg of potassium per ml. On ST and ST-a media, refractile granules were formed instead. These granules had no insecticidal activity against silkworms and were isolated and identified as poly-β-hydroxybutyric acid. Supplementation of the potassium-deficient ST-a medium with 0.1% KH2PO4 (3.7 mM) led to the formation of crystalline δ-endotoxin. The replacement of KH2PO4 with equimolar amounts of KCl, KNO3, and potassium acetate or an equivalent amount of K2SO4 had a similar effect, whereas the addition of an equimolar amount of NaH2PO4 or NH4H2PO4 did not cause the endotoxin to form. An asporogenous mutant, B. thuringiensis subsp. kurstaki strain 290-1, produced δ-endotoxin on ST-a medium supplemented with 3 mM or more potassium but formed only poly-β-hydroxybutyric acid granules on the media containing ≤1 mM potassium. These results clearly indicate that a certain concentration of potassium is essential for the fermentative production of δ-endotoxin by these isolates of B. thuringiensis. Manganese could not be substituted for potassium. Phosphate ions stimulated poly-β-hydroxybutyric acid formation by strain 290-1. The sporulation of B. thuringiensis and several other Bacillus strains was suppressed on the potassium-deficient ST medium. This suggests that potassium plays an essential role not only in Bacillus cell growth and δ-endotoxin formation but also in sporulation.  相似文献   

11.
A Fusarium metabolite, T-2 toxin, inhibits the growth of Saccharomyces carlsbergensis and Saccharomyces cerevisiae. The growth inhibitory concentrations of T-2 toxin were 40 and 100 μg/ml, respectively, for exponentially growing cultures of the two yeasts. S. carlsbergensis was more sensitive to the toxin and exhibited a biphasic dose-response curve. Addition of the toxin at 10 μg/ml of S. carlsbergensis culture resulted in a retardation of growth as measured turbidimetrically, after only 30 to 40 min. This action was reversible upon washing the cells free of the toxin. The sensitivity of the yeasts to the toxin was dependent upon the types and concentrations of carbohydrates used in the growth media. The sensitivity of the cells to the toxin decreased in glucose-repressed cultures. These results suggest that T-2 toxin interferes with mitochondrial functions of these yeasts.  相似文献   

12.
Bromelain is a proteolytic mixture obtained from pineapple (Ananas comosus (L. Merr)). It has diversified clinical properties and is used in alleviation of cancer, inflammation and oxidative stress. The current study focuses on extraction of bromelain from different parts of pineapple such as core, crown, fruit, peel and stem. The extracted enzyme was precipitated using ammonium sulphate at 40% saturation followed by dialysis. The fold of purification obtained for peel, crown, core, fruit and stem were found to be 1.948, 1.536, 1,027, 1.989, and 1.232 respectively. Bromelain activity was estimated using Azocasein assay, the highest activity was seen in peel at 3.417 U/μg. Antimicrobial activity and MIC of the bromelain purified and crude fractions was studied against the test organisms. Peel crude and purified extract exhibited highest inhibitory effect towards S. aureus followed by P. acne. The antioxidant activity was evaluated using DPPH antioxidant assay. IC50 values peel, fruit, stem and crown are found to be 13.158 μg/ml, 24.13 μg/ml and 23.33 μg/ml and 113.79 μg/ml respectively. The purified bromelain from peel, stem and crown was used to create a facewash formulation towards pathogens frequently associated with skin infections. Common skin pathogens like S. aureus and P. acne were found highly sensitive to its action. The aim of this study was to evaluate the potential of bromelain isolated from waste parts of pineapple in alleviation of acne due to its diverse antimicrobial properties.  相似文献   

13.
A Janthinobacterium sp. and an actinomycete, both capable of mineralizing 2,4-dinitrophenol (DNP), were used to construct a consortium to mineralize DNP in nonaxenic bench-scale sequencing batch reactors (SBRs). Average Km values for DNP mineralization by pure cultures of the Janthinobacterium sp. and the actinomycete were 0.01 and 0.13 μg/ml, respectively, and the average maximum specific growth rate (μmax) values for them were 0.06 and 0.23/h, respectively. In the presence of NH4Cl, nitrite accumulation in pure culture experiments and in the SBRs was stoichiometric to initial DNP concentration and the addition of nitrogen enhanced DNP mineralization in the SBRs. Mineralization of 10 μg of DNP per ml was further enhanced in SBRs by the addition of glucose at concentrations of 100 and 500 μg/ml but not at 10 μg/ml. Possible mechanisms for this enhanced DNP mineralization in SBRs were suggested by kinetic analyses and biomass measurements. Average μmax values for DNP mineralization in the presence of 0, 10, 100, and 500 μg of glucose per ml were 0.33, 0.13, 0.42, and 0.59/h, respectively. In addition, there was greater standing biomass in reactors amended with glucose. At steady-state operation, all SBRs contained heterogeneous microbial communities but only one organism, an actinomycete, that was capable of mineralizing DNP. This research demonstrates the usefulness of supplemental substrates for enhancing the degradation of toxic chemicals in bioreactors that contain heterogeneous microbial communities.  相似文献   

14.
Pseudomonas syringae pv. syringae B301D produces a yellow-green, fluorescent siderophore, pyoverdinpss, in large quantities under iron-limited growth conditions. Maximum yields of pyoverdinpss of approximately 50 μg/ml occurred after 24 h of incubation in a deferrated synthetic medium. Increasing increments of Fe(III) coordinately repressed siderophore production until repression was complete at concentrations of ≥ 10 μM. Pyoverdinpss was isolated, chemically characterized, and found to resemble previously characterized pyoverdins in spectral traits (absorbance maxima of 365 and 410 nm for pyoverdinpss and its ferric chelate, respectively), size (1,175 molecular weight), and amino acid composition. Nevertheless, pyoverdinpss was structurally unique since amino acid analysis of reductive hydrolysates yielded β-hydroxyaspartic acid, serine, threonine, and lysine in a 2:2:2:1 ratio. Pyoverdinpss exhibited a relatively high affinity constant for Fe(III), with values of 1025 at pH 7.0 and 1032 at pH 10.0. Iron uptake assays with [55Fe]pyoverdinpss demonstrated rapid active uptake of 55Fe(III) by P. syringae pv. syringae B301D, while no uptake was observed for a mutant strain unable to acquire Fe(III) from ferric pyoverdinpss. The chemical and biological properties of pyoverdinpss are discussed in relation to virulence and iron uptake during plant pathogenesis.  相似文献   

15.
α-Chaconine, a steroid-glycoalkaloid from Solanum tuberosum L., was increasingly more toxic to a free-living nematode, Panagrellus redivivus, with decreasing acidity from about pH 5 to 7. A study of the toxicity to adult nematodes at three concentrations of α-chaconine in buffer from pH 4 to 7.5 indicated that the free base is the nematicidal form of the compound. The median effective doses (ED₅₀) of α-chaconine to inhibit the motility of P. redivivus were estimated as 85 μg/ml at pH 6.7, 170 μg/ml at pH 6.5, and 340 μg/ml at pH 6.2.  相似文献   

16.

Background

The current era is facing challenges in the management of neoplasia and weeds control. The currently available anti-cancer and herbicidal drugs are associated with some serious side effects. Therefore numerous researchers are trying to discover and develop plant based alternative particularly for the rational management of cancer and weed control. Teucrium stocksianum possess antioxidant and analgesic activities. The current study was designed to evaluate crude saponins (CS), methanolic extract and sub-fractions of T. stocksianum for cytotoxic and phytotoxic potentials. CS, methanolic extract and sub-fractions were extracted from powdered plant material using different solvents. Cytotoxic potential of the extracts at a dose of 10, 100 and 1000 μg/ml were evaluated against Brine shrimp’s nauplii. Phytotoxic assay also performed at the same concentration against Lemna minor. Etoposide and Paraquat were used as positive controls in cytotoxic and phytotoxic assays respectively.

Results

The percent yield of crude saponins was (5%). CS demonstrated tremendous brine shrimp lethality showing < 10 μg/ml LC50. The n-hexane (HF) and chloroform fractions (CF) demonstrated excellent cytotoxicity with 80 and 55 μg/ml LC50 respectively. Whereas the methanolic extract (TSME), ethyl acetate (EAF) and aqueous fractions (AF) revealed moderate cytotoxicity showing 620, 860 and 1000 μg/ml LC50 values respectively. In phytotoxic assay profound inhibition was displayed by HF (96.67%) and TSME (95.56%, 30 μg/ml LC50) against the growth of Lemna minor at 1000 μg/ml respectively. Both CF and EAF demonstrated profound phytoxicity (93.33%) respectively at highest concentration (1000 μg/ml), while AF and CS demonstrated weak phytotoxicity with 1350 and 710 μg/ml LC50 values respectively.

Conclusion

Cytotoxicity and phytotoxicity assays indicated that the crude saponins, n-hexane and chloroform fractions of T. stocksianum could play a vital role in the treatment of neoplasia and as potential natural herbicides. Therefore these sub-fractions are recommended for further investigation with the aim to isolate novel anti-cancer and herbicidal compounds.  相似文献   

17.
The effect of aqueous extracts of carob (Ceratonia siliqua) pods, gallotannic acid, gallic acid, and catechol on several microorganisms was studied. Carob pod extract and tannic acid showed a strong antimicrobial activity toward some cellulolytic bacteria. On the basis of tannin content, to which antimicrobial effect was related, carob pod extracts inhibited Cellvibrio fulvus and Clostridium cellulosolvens at 15 μg/ml, Sporocytophaga myxococcoides at 45 μg/ml, and Bacillus subtilis at 75 μg/ml. The inhibiting concentrations for tannic acid were found to be 12, 10, 45, and 30 μg/ml, respectively. Gallic acid and catechol were much less effective. Tannic acid and the tannin fraction of carob extract exerted both bacteriostatic and bactericidal effects on C. fulvus. Respiration of C. fulvus in the presence of bactericidal concentrations of tannic acid or tannin fraction of carob extract was inhibited less than 30%. A partial formation of “protoplasts” by C. fulvus was obtained after 2 hr of incubation in a growth medium to which 20% sucrose, 0.15% MgSO4·7H2O, and 10 to 50 μg/ml of tannic acid or 500μg/ml of penicillin, or both, had been added. Tannic acid and the tannin fraction of carob extract protected C. fulvus from metabolic lysis in sucrose solution. Although the growth of other microorganisms tested was only slightly affected, the morphology of some of them was drastically changed in the presence of subinhibitory concentrations of carob pod extracts of tannic acid. It is suggested that the site of action of tannins on sensitive microorganisms is primarily the cell envelope.  相似文献   

18.
Nitrogen fixation (C2H2 reduction) in a sediment-water system was studied under anaerobic incubation conditions. Sodium sulfide at low concentrations stimulated activity, with a twofold increase in C2H4 production occurring in the presence of 8 μmol of S2− per ml of stream water. Sodium sulfide at concentrations of 16 μmol of S2− per ml or greater inhibited nitrogen fixation, with 64 μmol of S2− per ml being completely inhibitory. Sulfide at levels of 16 μmol/ml or above inhibited CO2 production, and the degree of inhibition increased with increasing concentration of sulfide. Titanium (III) citrate (used to modify Eh levels) stimulated both nitrogen fixation and CO2 production, but could not duplicate, at any concentration tested, the twofold increase in nitrogen fixation caused by 8 μmol of S2− per ml. Sulfide additions caused pH changes in the sediment, and when the sediment was adjusted and maintained at pH 7.0 all concentrations of sulfide inhibited nitrogen fixation activity. From considerations of the redox equilibria of H2, H2S, and other sulfur species at various pH values, it appeared that H2S was the toxic entity and that HS was less toxic. The observed stimulation of activity was apparently due to a pH change coupled with the concurrent production of HS from H2S.  相似文献   

19.
20.
Hydrogen sulfide (H2S) inhibits the last step of the denitrification process, i.e. the reduction of nitrous oxide (N2O) to dinitrogen gas (N2), both in natural environments (marine sediments) and industrial processes (activated sludge, methanogenic sludge, BioDeNOx process). In a previously published study, we showed that the inhibitory effect of sulfide to N2O reduction in mixed microbial communities is reversible and can be counteracted by dosing trace amounts of copper. It remained, however, unclear if this was due to copper sulfide precipitation or a retrofitting of the copper containing N2O-reductase (N2OR). The present study aimed to elucidate the mechanism of the restoration of sulfide-inhibited N2O reducing activity by metal addition to a pure Pseudomonas aeruginosa culture. This was done by using other metals (zinc, cobalt and iron) in comparison with copper. Zinc and cobalt clearly alleviated the sulfide inhibition of N2OR to the same extent as copper and the activity restoration was extremely fast (within 15 min, Fig. 3) for zinc, cobalt and copper. This suggests that the alleviation of the inhibitory effect of sulfide is due to metal sulfide precipitation and thus not exclusively limited to Cu. This work also underlines the importance of metal speciation: supply of iron did not restore the N2OR activity because it was precipitated by the phosphates present in the medium and thus could not precipitate the sulfide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号