首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary Homology maps between bacteriophages 81, 80 and were constructed on the basis of electron microscope observation of DNA heteroduplexes. In 81/80 heteroduplex, the left half and the right terminal region of 13% the total molecular length were highly homologous, while the remaining region covering the early gene cluster was entirely nonhomologous. In 81/ heteroduplex, high-degree homologies were detected at the left 14% terminal region covering the head gene cluster, the central 3.8% region covering the att-int-xis region and the 1.3% Q homology region. Low-degree homologies of shorter length were scattered at the tail gene cluster, b2 region, cIII region, PQ region and SR region. Comparing our results with the homology maps of other lambdoid phages reported by Simon et al. (1971) and Fiandt et al. (1971), a phylogenic relation of 81 to other lambdoid phages and the role of recombination in the course of divergence of lambdoid phages are discussed.  相似文献   

3.
4.
5.
Evolution of ribosomal proteins   总被引:1,自引:0,他引:1  
  相似文献   

6.
Evolution of ribosomal proteins   总被引:2,自引:0,他引:2  
  相似文献   

7.
8.
The acidic proteins, A-proteins, from the large ribosomal subunit of Saccharomyces cerevisiae grown under different conditions have been quantitatively estimated by ELISA tests using rabbit sera specific for these polypeptides. It has been found that the amount of A-protein present in the ribosome is not constant and depends on the metabolic state of the cell. Ribosomes from exponentially growing cultures have about 40% more of these proteins than those from stationary phase. Similarly, the particles forming part of the polysomes are enriched in A-proteins as compared with the free 80 S ribosomes. The cytoplasmic pool of A-protein is considerably high, containing as a whole as much protein as the total ribosome population. These results are compatible with an exchanging process of the acidic proteins during protein synthesis that can regulate the activity of the ribosome. On the other hand, cells inhibited with different metabolic inhibitors produce a very low yield of ribosomes that contain, however, a surprisingly high amount of acidic proteins while the cytoplasmic pool is considerably reduced, suggesting that under stress conditions the ribosome and the A-protein may aggregate, forming complex structures that are not recovered by the standard preparation methods.  相似文献   

9.
The cytoplasmic ribosomal proteins from a fission yeast Schizosaccharomyces pombe were analysed by two-dimensional polyacrylamide gel electrophoresis. Seventy-three protein species were identified in the 80S ribosome, and named SP-S1 to SP-S33 and SP-L1 to SP-L40 in the small and large subunits, respectively. Many of these proteins could be correlated to those of Saccharomyces cerevisiae on the basis of their electrophoretic mobilities. Eleven proteins were isolated from the 80S ribosome, and their amino acid compositions were determined. Of these, SP-S6, SP-L1, SP-L12, SP-L15, SP-L17, SP-L27, SP-L36 and SP-L40c and d were sequenced from their amino-termini. SP-S28 and SP-L2 appear to have their amino-termini blocked. These results were compared with the data available for the S. cerevisiae and rat liver ribosomal proteins. The S. cerevisiae counterparts of the eight proteins mentioned above were found to be YS4, YL1, YL10, YL14, YL35, YL40 and YL44c and d, respectively. The rat liver counterparts of SP-S6, SP-L1, SP-L27 and SP-L40c and d were the rat S6, L4, L37 and P2, respectively. Comparison of the partial sequences of these ribosomal proteins suggests that these two yeasts are relatively far apart, phylogenetically.  相似文献   

10.
11.
Silver staining of ribosomal proteins   总被引:1,自引:0,他引:1  
  相似文献   

12.
Phylogenomics of prokaryotic ribosomal proteins   总被引:1,自引:0,他引:1  
Yutin N  Puigbò P  Koonin EV  Wolf YI 《PloS one》2012,7(5):e36972
Archaeal and bacterial ribosomes contain more than 50 proteins, including 34 that are universally conserved in the three domains of cellular life (bacteria, archaea, and eukaryotes). Despite the high sequence conservation, annotation of ribosomal (r-) protein genes is often difficult because of their short lengths and biased sequence composition. We developed an automated computational pipeline for identification of r-protein genes and applied it to 995 completely sequenced bacterial and 87 archaeal genomes available in the RefSeq database. The pipeline employs curated seed alignments of r-proteins to run position-specific scoring matrix (PSSM)-based BLAST searches against six-frame genome translations, mitigating possible gene annotation errors. As a result of this analysis, we performed a census of prokaryotic r-protein complements, enumerated missing and paralogous r-proteins, and analyzed the distributions of ribosomal protein genes among chromosomal partitions. Phyletic patterns of bacterial and archaeal r-protein genes were mapped to phylogenetic trees reconstructed from concatenated alignments of r-proteins to reveal the history of likely multiple independent gains and losses. These alignments, available for download, can be used as search profiles to improve genome annotation of r-proteins and for further comparative genomics studies.  相似文献   

13.
14.
Balanced production of ribosomal proteins   总被引:2,自引:0,他引:2  
Perry RP 《Gene》2007,401(1-2):1-3
  相似文献   

15.
Plastid translation occurs on bacterial-type 70S ribosomes consisting of a large (50S) subunit and a small (30S) subunit. The vast majority of plastid ribosomal proteins have orthologs in bacteria. In addition, plastids also possess a small set of unique ribosomal proteins, so-called plastid-specific ribosomal proteins (PSRPs). The functions of these PSRPs are unknown, but, based on structural studies, it has been proposed that they may represent accessory proteins involved in translational regulation. Here we have investigated the functions of five PSRPs using reverse genetics in the model plant Arabidopsis thaliana. By analyzing T-DNA insertion mutants and RNAi lines, we show that three PSRPs display characteristics of genuine ribosomal proteins, in that down-regulation of their expression led to decreased accumulation of the 30S or 50S subunit of the plastid ribosomes, resulting in plastid translational deficiency. In contrast, two other PSRPs can be knocked out without visible or measurable phenotypic consequences. Our data suggest that PSRPs fall into two types: (i) PSRPs that have a structural role in the ribosome and are bona fide ribosomal proteins, and (ii) non-essential PSRPs that are not required for stable ribosome accumulation and translation under standard greenhouse conditions.  相似文献   

16.
17.
Murine L5178Y cell ribosomes were dissociated into subunits either with potassium chloride in the presence of puromycin or with the chelating agent EDTA. The proteins of ribosomal subunits obtained by these different methods were compared by means of bidimensional polyacrylamide gel electrophoresis. KCl-derived 60S and 40S subunits were shown to contain 38 and 31 proteins respectively, 3 of them having identical electrophoretic mobilities. Preparations of EDTA-dissociated ribosomal subparticles contained different proportions of these proteins, and 11 major spots were shared between the EDTA-derived large and small ribosomal subunits. Furthermore, 10 proteins absent from subunits treated by high concentrations of KCl were reproducibly found in EDTA-treated ribosomal subparticles.  相似文献   

18.
19.
20.
The peptidyl transferase center of the domain V of large ribosomal RNA in the prokaryotic and eukaryotic cytosolic ribosomes acts as general protein folding modulator. We showed earlier that one part of the domain V (RNA1 containing the peptidyl transferase loop) binds unfolded protein and directs it to a folding competent state (FCS) that is released by the other part (RNA2) to attain the folded native state by itself. Here we show that the peptidyl transferase loop of the mitochondrial ribosome releases unfolded proteins in FCS extremely slowly despite its lack of the rRNA segment analogous to RNA2. The release of FCS can be hastened by the equivalent activity of RNA2 or the large subunit proteins of the mitochondrial ribosome. The RNA2 or large subunit proteins probably introduce some allosteric change in the peptidyl transferase loop to enable it to release proteins in FCS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号