首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae   总被引:1,自引:0,他引:1  
The seeds of most members of the Brassicaceae accumulate high amounts of sinapine (sinapoylcholine) that is rapidly hydrolyzed during early stages of seed germination. One of three isoforms of sinapine esterase activity (BnSCE3) has been isolated from Brassica napus seedlings and subjected to trypsin digestion and spectrometric sequencing. The peptide sequences were used to isolate BnSCE3 cDNA, which was shown to contain an open reading frame of 1170 bp encoding a protein of 389 amino acids, including a leader peptide of 25 amino acids. Sequence comparison identified the protein as the recently cloned BnLIP2, i.e. a GDSL lipase-like protein, which displays high sequence identity to a large number of corresponding plant proteins, including four related Arabidopsis lipases. The enzymes belong to the SGNH protein family, which use a catalytic triad of Ser-Asp-His, with serine as the nucleophile of the GDSL motif. The corresponding B. napus and Arabidopsis genes were heterologously expressed in Nicotiana benthamiana leaves and proved to confer sinapine esterase activity. In addition to sinapine esterase activity, the native B. napus protein (BnSCE3/BnLIP2) showed broad substrate specificity towards various other choline esters, including phosphatidylcholine. This exceptionally broad substrate specificity, which is common to a large number of other GDSL lipases in plants, hampers their functional analysis. However, the data presented here indicate a role for the GDSL lipase-like BnSCE3/BnLIP2 as a sinapine esterase in members of the Brassicaceae, catalyzing hydrolysis of sinapine during seed germination, leading, via 1- O -sinapoyl-β-glucose, to sinapoyl- l -malate in the seedlings.  相似文献   

3.
4.
Arabidopsis thaliana and other members of the Brassicaceae accumulate the hydroxycinnamic acid esters sinapoylmalate in leaves and sinapoylcholine in seeds. Our recent understanding of the phenylpropanoid pathway although complex has enabled us to perturb the sinapine biosynthesis pathway in plants. Sinapine (sinapoylcholine) is the most abundant antinutritional phenolic compound in seeds of cruciferous species and therefore is a target for elimination in canola (Brassica napus) meal. We analysed A. thaliana mutants with specific blocks in the phenylpropanoid pathway and identified mutant lines with significantly altered sinapine content. Knowledge gained from A. thaliana was extended to B. napus and the corresponding phenylpropanoid pathway genes were manipulated to disrupt sinapine biosynthesis in B. napus. Based on our understanding of the A. thaliana genetics, we have successfully developed transgenic B. napus lines with ferulic acid 5-hydroxylase (FAH) and sinapoylglucose:choline sinapoyltransferase (SCT)-antisense. These lines with concomitant downregulation of FAH and SCT showed up to 90% reduction in sinapine. In addition to reduced sinapine content, we detected higher levels of free choline accumulation in the seeds. These results indicate that it is possible to develop plants with low sinapine and higher choline by manipulating specific steps in the biosynthetic pathway. These improvements are important to add value to canola meal for livestock feed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
6.
Active aspartic proteinase is isolated from Brassica napus seeds and the peptide sequence is used to generate primers for PCR. We present here cDNA and genomic clones for aspartic proteinases from the closely related Brassicaceae Arabidopsis thaliana and Brassica napus. The Arabidopsis cDNA represents a single gene, while Brassica has at least 4 genes. Like other plant aspartic proteases, the two Brassicaceae enzymes contain an extra protein domain of about 100 amino acids relative to the mammalian forms. The intron/exon arrangement in the Brassica genomic clone is significantly different from that in mammalian genes. As the proteinase is isolated from seeds, the same tissue where 2S albumins are processed, this implies expression of one of the aspartic proteinase genes there.  相似文献   

7.
Tan H  Yang X  Zhang F  Zheng X  Qu C  Mu J  Fu F  Li J  Guan R  Zhang H  Wang G  Zuo J 《Plant physiology》2011,156(3):1577-1588
The seed oil content in oilseed crops is a major selection trait to breeders. In Arabidopsis (Arabidopsis thaliana), LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) are key regulators of fatty acid biosynthesis. Overexpression of AtLEC1 and its orthologs in canola (Brassica napus), BnLEC1 and BnL1L, causes an increased fatty acid level in transgenic Arabidopsis plants, which, however, also show severe developmental abnormalities. Here, we use truncated napin A promoters, which retain the seed-specific expression pattern but with a reduced expression level, to drive the expression of BnLEC1 and BnL1L in transgenic canola. Conditional expression of BnLEC1 and BnL1L increases the seed oil content by 2% to 20% and has no detrimental effects on major agronomic traits. In the transgenic canola, expression of a subset of genes involved in fatty acid biosynthesis and glycolysis is up-regulated in developing seeds. Moreover, the BnLEC1 transgene enhances the expression of several genes involved in Suc synthesis and transport in developing seeds and the silique wall. Consistently, the accumulation of Suc and Fru is increased in developing seeds of the transgenic rapeseed, suggesting the increased carbon flux to fatty acid biosynthesis. These results demonstrate that BnLEC1 and BnL1L are reliable targets for genetic improvement of rapeseed in seed oil production.  相似文献   

8.
9.
A novel subclass of dehydrin genes, homologous to the Raphanus sativus late embryogenesis-abundant (LEA) protein (RsLEA2) and the Arabidopsis thaliana dehydrin, was isolated from Brassica juncea and Brassica napus, here designated BjDHN1 and BnDHN1, respectively. The cDNA of BjDHN1 and BnDHN1 genes share 100% nucleotide identity. The encoded protein is predicted to consist of 183 amino acid residues (molecular mass of 19.2 kDa and pI of 7.0). It shares 85.3% and 65.4% amino acid sequence identity with the RsLEA2 and Arabidopsis dehydrin, respectively. This Brassica dehydrin also features a "Y(3)SK(2)" plant dehydrin structure. Expression analysis indicated that the Brassica dehydrin gene is expressed at the late stages of developing siliques, suggesting that the gene expression may be inducible by water-deficit. Analysis of gene expression also indicated that in germinating seeds the gene expression was inducible by low temperature. Seed germination under low temperature was compared between B. juncea and B. napus. The results showed that B. juncea seeds germinated faster than B. napus seeds. Expression of Brassica dehydrin gene was also examined as a function of seed germination under low temperature.  相似文献   

10.
11.
Mature seeds of Arabidopsis thaliana and Brassica napus contain a complex mixture of aliphatic monomers derived from the non-extractable lipid polyesters deposited by various seed tissues. Methods of polyester depolymerization of solvent-extracted seeds and analysis of aliphatic monomers were compared. Sodium methoxide-catalyzed depolymerization, followed by GC analysis of the acetylated monomers, was developed for routine quantitative analysis suitable for 0.5g seed samples. In Arabidopsis seeds, the major C16 and C18 monomers identified included omega-hydroxy fatty acids and alpha,omega-dicarboxylic acids derived from palmitate, oleate and linoleate, and 9,10,18-trihydroxyoctadecenoic acid. Among monomers which can collectively be considered likely to be derived from suberin, docosan-1-ol, docosane-1,22-diol, 22-hydroxydocosanoic acid, 24-hydroxytetracosanoic acid, tetracosane-1,24-dioic acid and ferulic acid were the major species. Compared to Arabidopsis, Brassica seeds showed a roughly similar proportion of monomer classes, with the exception that alkan-1ols were 3-fold higher. Also, there were much less C24 aliphatic species and significant amounts of C14-C16 alkan-1ols, including iso- and anteiso-methyl branched compounds. Dissection and analysis of mature Brassica seeds showed that the trihydroxy C18:1 fatty acid was found mainly in the embryo, while ferulate, fatty alcohols and C22 and C24 species were specific to the seed coat plus endosperm.  相似文献   

12.
In arabidopsis (Arabidopsis thaliana), the CLAVATA1 (CLV1) gene is involved in maintaining the balance between the stem cells in the central zone of the stem apical meristem and the determined cells at its periphery. However, CLV1 has not been previously characterized in other Brassicaceae. Using the direct amplification of genomic DNA, we obtained a full-length CLV1 ortholog from canola plants (Brassica napus), and also three CLV1 fragments from rape (B. rapa), canola (B. napus), and false flax (Camelina sativa), which corresponded to the transmembrane domain and a part of the kinase domain of the CLAVATA1 protein. The nucleotide and deduced amino acid sequences of the full-size CLV1 ortholog from B. napus were similar by 81 and 87% to the prototype gene from arabidopsis; in the case of shorter gene fragments, the similarity was as high as 91-93 and 98%, respectively. By their primary structure, the CLV1 genes in the Brassicaceae considerably differ from its putative structural homologs beyond this family.  相似文献   

13.
The major difference between annual and biennial cultivars of oilseed Brassica napus and B. rapa is conferred by genes controlling vernalization-responsive flowering time. These genes were compared between the species by aligning the map positions of flowering time quantitative trait loci (QTLs) detected in a segregating population of each species. The results suggest that two major QTLs identified in B. rapa correspond to two major QTLs identified in B. napus. Since B. rapa is one of the hypothesized diploid parents of the amphidiploid B. napus, the vernalization requirement of B. napus probably originated from B. rapa. Brassica genes also were compared to flowering time genes in Arabidopsis thaliana by mapping RFLP loci with the same probes in both B. napus and Arabidopsis. The region containing one pair of Brassica QTLs was collinear with the top of chromosome 5 in A. thaliana where flowering time genes FLC, FY and CO are located. The region containing the second pair of QTLs showed fractured collinearity with several regions of the Arabidopsis genome, including the top of chromosome 4 where FRI is located. Thus, these Brassica genes may correspond to two genes (FLC and FRI) that regulate flowering time in the latest flowering ecotypes of Arabidopsis.  相似文献   

14.
PHA production, from bacteria to plants.   总被引:5,自引:0,他引:5  
The genes encoding the polyhydroxyalkanoate (PHA) biosynthetic pathway in Ralstonia eutropha (3-ketothiolase, phaA or bktB; acetoacetyl-CoA reductase, phaB; and PHA synthase, phaC) were engineered for plant plastid targeting and expressed using leaf (e35S) or seed-specific (7s or lesquerella hydroxylase) promoters in Arabidopsis and Brassica. PHA yields in homozygous transformants were 12-13% of the dry mass in homozygous Arabidopsis plants and approximately 7% of the seed weight in seeds from heterozygous canola plants. When a threonine deaminase was expressed in addition to bktB, phaB and phaC, a copolyester of 3-hydroxybutyrate and 3-hydroxyvalerate was produced in both Arabidopsis and Brassica.  相似文献   

15.
The spectrum of resistance to isolates of Leptosphaeria maculans and the map location of a new blackleg resistance gene found in the canola cultivar Brassica napus 'Surpass 400' are described. Two blackleg resistance genes, LepR1 and LepR2, from B. rapa subsp. sylvestris and introgressed in B. napus were identified previously. 'Surpass 400' also has blackleg resistance introgressed from B. rapa subsp. sylvestris. Using 31 diverse isolates of L. maculans, the disease reaction of 'Surpass 400' was compared with those of the resistant breeding lines AD9 (which contains LepR1), AD49 (which contains LepR2), and MC1-8 (which contains both LepR1 and LepR2). The disease reaction on 'Surpass 400' was different from those observed on AD9 and MC1-8, indicating that 'Surpass 400' carries neither LepR1 nor both LepR1 and LepR2 in combination. Disease reactions of 'Surpass 400' to most of the isolates tested were indistinguishable from those of AD49, which suggested 'Surpass 400' might contain LepR2 or a similar resistance gene. Classical genetic analysis of F1 and BC1 plants showed that a dominant allele conferred resistance to isolates of L. maculans in 'Surpass 400'. The resistance gene, which mapped to B. napus linkage group N10 in an interval of 2.9 cM flanked by microsatellite markers sR12281a and sN2428Rb and 11.7 cM below LepR2, was designated LepR3. A 9 cM region of the B. napus genome containing LepR3 was found to be syntenic with a segment of Arabidopsis chromosome 5.  相似文献   

16.
17.
The Arabidopsis thaliana CONSTANS (CO) gene which promotes flowering in long days was recently isolated by chromosome walking. The mapping of QTLs controlling flowering time in Brassica species has identified genomic regions that contain homologues of the CO gene. Four genes homologous to the Arabidopsis CO gene were isolated from a pair of homoeologous loci in each of two doubled-haploid Brassica napus lines displaying different flowering times, N-o-1 and N-o-9. The four genes, BnCOa1, BnCOa9, BnCOb1 and BnCOb9, are located on linkage groups N10 and N19, and are highly similar to each other and to the Arabidopsis CO gene. Two regions of the proteins are particularly well conserved, a N-terminal region with two putative zinc fingers and a C-terminal region which may contain a nuclear localization signal. All four genes appear to be expressed in B. napus. The BnCOa1 allele was shown to complement the co-2 mutation in Arabidopsis in a dosage-dependent manner causing earlier flowering than in wild type under both long- and short-day conditions.  相似文献   

18.
19.
20.
Acetyl-coenzyme A carboxylase (ACCase) occurs in at least two forms in rapeseed (Brassica napus): a homomeric (HO) and presumably cytosolic isozyme and a heteromeric, plastidial isozyme. We investigated whether the HO-ACCase of Arabidopsis can be targeted to plastids of B. napus seeds. A chloroplast transit peptide and the napin promoter were fused to the Arabidopsis ACC1 gene and transformed into B. napus, with the following results. (a) The small subunit transit peptide was sufficient to provide import of this very large protein into developing seed plastids. (b) HO-ACCase in isolated plastids was found to be biotinylated at a level comparable to extraplastidial HO-ACCase. (c) In vitro assays of HO-ACCase in isolated plastids from developing seeds indicate that it occurs as an enzymatically active form in the plastidial compartment. (d) ACCase activity in mature B. napus seeds is normally very low; however, plants expressing the SSU/ACC1 gene had 10- to 20-fold higher ACCase activity in mature seeds, suggesting that plastid localization prevents the turnover of HO-ACCase. (e) ACCase over-expression altered seed fatty acid composition, with the largest effect being an increase approximately 5% by the expression of HO-ACCase in plastids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号