首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intrauterine growth restriction (IUGR) is one of the most common concerns in human obstetrics and domestic animal production. It is usually caused by placental insufficiency, which decreases fetal uptake of nutrients (especially amino acids) from the placenta. Amino acids are not only building blocks for protein but also key regulators of metabolic pathways in fetoplacental development. The enhanced demands of amino acids by the developing conceptus must be met via active transport systems across the placenta as normal pregnancy advances. Growing evidence indicates that IUGR is associated with a reduction in placental amino acid transport capacity and metabolic pathways within the embryonic/fetal development. The positive relationships between amino acid concentrations in circulating maternal blood and placental amino acid transport into fetus encourage designing new therapies to prevent or treat IUGR by enhancing amino acid availability in maternal diets or maternal circulation. Despite the positive effects of available dietary interventions, nutritional therapy for IUGR is still in its infancy. Based on understanding of the underlying mechanisms whereby amino acids promote fetal growth and of their dietary requirements by IUGR, supplementation with functional amino acids (e.g., arginine and glutamine) hold great promise for preventing fetal growth restriction and improving health and growth of IUGR offspring.  相似文献   

2.

Background

Exposure of pregnant mothers to elevated concentrations of circulating testosterone levels is associated with fetal growth restriction and delivery of small-for-gestational-age babies. We examined whether maternal testosterone crosses the placenta to directly suppress fetal growth or if it modifies placental function to reduce the capacity for transport of nutrients to the fetus.

Methods

Pregnant rats were exposed to testosterone propionate (TP; 0.5 mg/kg) by daily subcutaneous injection from gestational days (GD) 15-19. Maternal and fetal testosterone levels, placental nutrient transport activity and expression of transporters and birth weight of pups and their anogenital distances were determined.

Results

This dose of TP doubled maternal testosterone levels but had no effect on fetal testosterone levels. Maternal daily weight gain was significantly lower only on GD 19 in TP treated dams compared to controls. Placental weight and birth weight of pups were significantly reduced, but the anogenital distance of pups were unaffected by TP treatment. Maternal plasma amino acids concentrations were altered following testosterone exposure, with decreases in glutamine, glycine, tyrosine, serine, proline, and hydroxyproline and increases in asparagine, isoleucine, leucine, lysine, histidine and arginine. In the TP dams, placental system A amino acid transport activity was significantly reduced while placental glucose transport capacity was unaffected. Decreased expression of mRNA and protein levels of slc38a2/Snat2, an amino acid transporter, suggests that reduced transporter proteins may be responsible for the decrease in amino acid transport activity.

Conclusions

Taken together, these data suggest that increased maternal testosterone concentrations do not cross the placenta to directly suppress fetal growth but affects amino acid nutrient delivery to the fetus by downregulating specific amino acid transporter activity.  相似文献   

3.
Cigarette smoking throughout pregnancy is associated with several negative outcomes, of which an increased incidence of intra-uterine growth restriction (IUGR) is most pronounced. Gestationally age-matched infants born to smoking mothers are, on average, 200 g lighter at birth, per pack smoked per day. The mechanisms and specific tobacco compounds responsible for the increased risk of IUGR among smokers have yet to be identified; however, it is widely accepted that smoking women have compromised placental perfusion throughout gestation due to the vasoconstricting effect of nicotine on uterine and placental blood vessels. Despite the universal acceptance of this theory, very little work has been completed to date examining the vasoactive properties of nicotine within the human placenta. The objective of this study was to determine the effect of nicotine on placental vascular function. Normal-term human placentae were obtained after elective cesarean sections. An in vitro placental perfusion system was used; increasing doses of nicotine (20-240 ng/mL) were added to either the maternal (n = 5) or fetal (n = 3) circulation. The basal feto-placental perfusion pressure was 39.87 +/- 4.3 mmHg and was not affected by nicotine. This finding supports the hypotheses that nicotine does not directly affect placental microvascular function and that any contribution to fetal growth restriction is likely at the level of placental function (i.e., amino acid transport) and (or) uterine vascular function.  相似文献   

4.
5.
Reductions in fetal plasma concentrations of certain amino acids and reduced amino acid transport in vesicle studies suggest impaired placental amino acid transport in human fetal growth restriction (FGR). In the present study, we tested the hypothesis of an impairment in amino acid transport in the ovine model of hyperthermia-induced FGR by determining transplacental and placental retention and total placental clearance of a branched-chain amino acid (BCAA) analog, the nonmetabolizable neutral amino acid aminocyclopentane-1-carboxylic acid (ACP), in singleton control (C) and FGR pregnancies at 135 days gestation age (dGA; term 147 dGA). At study, based on the severity of the placental dysfunction, FGR fetuses were allocated to severe (sFGR, n = 6) and moderate FGR (mFGR, n = 4) groups. Fetal (C, 3,801.91 +/- 156.83; mFGR, 2,911.33 +/- 181.35; sFGR, 1,795.99 +/- 238.85 g; P < 0.05) and placental weights (C, 414.38 +/- 38.35; mFGR, 306.23 +/- 32.41; sFGR, 165.64 +/- 28.25 g; P < 0.05) were reduced. Transplacental and total placental clearances of ACP per 100 g placenta were significantly reduced in the sFGR but not in the mFGR group, whereas placental retention clearances were unaltered. These data indicate that both entry of ACP into the placenta and movement from the placenta into fetal circulation are impaired in severe ovine FGR and support the hypothesis of impaired placental BCAA transport in severe human FGR.  相似文献   

6.
Under normal physiological conditions, essential amino acids (EA) are transported from mother to fetus at different rates. The mechanisms underlying these differences include the expression of several amino acid transport systems in the placenta and the regulation of EA concentrations in maternal and fetal plasma. To study the relation of EA transplacental flux to maternal plasma concentration, isotopes of EA were injected into the circulation of pregnant ewes. Measurements of concentration and molar enrichment in maternal and fetal plasma and of umbilical plasma flow were used to calculate the ratio of transplacental pulse flux to maternal concentration (clearance) for each EA. Five EA (Met, Phe, Leu, Ile, and Val) had relatively high and similar clearances and were followed, in order of decreasing clearance, by Trp, Thr, His, and Lys. The five high-clearance EA showed strong correlation (r(2) = 0.98) between the pulse flux and maternal concentration. The study suggests that five of the nine EA have similar affinity for a rate-limiting placental transport system that mediates rapid flux from mother to fetus, and that differences in transport rates within this group of EA are determined primarily by differences in maternal plasma concentration.  相似文献   

7.
The aim of the present study was to examine the effect of lipopolysaccharide (LPS) on the levels of prostaglandin E(2) (PGE(2)) in the perfusates of the fetal and the maternal compartments of perfused human term placental tissue. Term placentas were perfused for 10h in the absence [control, (n=4)] and presence of LPS [LPS=1 microg/kg perfused placental tissue, (n=4)] in the maternal reservoir. Perfusate samples from the fetal and the maternal circulations were collected every 30 min and examined for PGE(2) levels by radio-immunoassay. PGE(2) levels in the fetal circulation were gradually increased reaching significant peak value of 479+/-159 pg/ml, as compared to PGE(2) levels in the maternal circulation (140+/-146 pg/ml) (p<0.05). After 10 hours of perfusion with control medium, PGE(2) levels in the maternal circulation (347+/-144 pg/ml) were significantly higher as compared to the fetal circulation (150+/-57 pg/ml) (p<0.05). In presence of LPS, PGE(2) levels in the fetal circulation increased reaching a peak value of 1028+/-663 pg/ml after 240 min of perfusion. The levels of PGE(2) in the control group after 240 min of perfusion were significantly lower (156+/-77 pg/ml) (p<0.05). No significant differences were detected in the levels of PGE(2) in the perfusate of the maternal compartment in presence of LPS, as compared to control. Our results suggest that the placenta may play an important role in maintaining high levels of PGE(2) in the fetal circulation and low PGE(2) levels in the maternal circulation during normal pregnancy. Moreover, placental PGE(2) release into the fetal and the maternal circulations may be differently affected in presence of intra-uterine infection/inflammation.  相似文献   

8.
Placental essential fatty acid transport and prostaglandin synthesis   总被引:3,自引:0,他引:3  
The studies reported here demonstrate two important aspects of placenta EFA transport and metabolism. (1) A mechanism exists within the placenta for the selective incorporation of 20:4 omega 6 into phosphoglycerides and the export of those phosphoglycerides to the fetal circulation. This mechanism allows the selective sequestering of 20:4 omega 6 in the fetoplacental unit and may provide the fetus with important performed structural membrane components. (2) Placental PG synthesis is directed mostly to the maternal circulation and stimulated placental PG synthesis is directed totally to the maternal circulation. This mechanism may protect the fetus from fluctuations in maternal and placental PG synthesis and may direct stimulated placental PG synthesis to a target organ, the myometrium. The perfused human placental model provides a valuable method for the study of a variety of biochemical phenomena in a whole human organ and its use may further elucidate the role of this tissue in the maintenance of pregnancy, the transport of EFA to the developing fetus and the involvement of placental PG synthesis in fetal development and parturition.  相似文献   

9.
Uptake of 125I-labelled epidermal growth factor into trophoblast, and its subsequent fate, was studied in an isolated dually-perfused lobule of term human placenta. 125I-EGF added into the maternal circulation was rapidly taken up into the placental tissue where a portion was degraded and most of the breakdown products released back into the maternal circuit. At the end of the 2 h perfusion, radioactivity in the tissue accounted for 52% of the initial dose. 12.9% of the radioactivity remaining in the maternal circuit at the end of the perfusion, amounting to only 5.2% of the initial activity, could be identified as intact EGF by immunoaffinity chromatography. About 45 min after the start of the perfusion there was a sustained rise in the 125I activity in the fetal circulation accounting for 4.6% of the initial activity, and a small proportion of this (0.22% of the dose) could be immunologically characterised as EGF. In the presence of the acidotrophic agent chloroquine, there was a similar rapid clearance from the maternal circulation, which was not associated with breakdown. The tissue retention was slightly enhanced and there was very little transfer of activity into the fetal circulation.  相似文献   

10.
Glutamine plays a vital role in fetal carbon and nitrogen metabolism and exhibits the highest fetal:maternal plasma ratio among all amino acids in pigs. Such disparate glutamine levels between mother and fetus suggest that glutamine may be actively synthesized and released into the fetal circulation by the porcine placenta. We hypothesized that branched-chain amino acid (BCAA) metabolism in the placenta plays an important role in placental glutamine synthesis. This hypothesis was tested by studying conceptuses from gilts on Days 20, 30, 35, 40, 45, 50, 60, 90, or 110 of gestation (n = 6 per day). Placental tissue was analyzed for amino acid concentrations, BCAA transport, BCAA degradation, and glutamine synthesis as well as the activities of related enzymes (including BCAA transaminase, branched-chain alpha-ketoacid dehydrogenase, glutamine synthetase, glutamate-pyruvate transaminase, and glutaminase). On all days of gestation, rates of BCAA transamination were much greater than rates of branched-chain alpha-ketoacid decarboxylation. The glutamate generated from BCAA transamination was primarily directed to glutamine synthesis and, to a much lesser extent, alanine production. Placental BCAA transport, BCAA transamination, glutamine synthesis, and activities of related enzymes increased markedly between Days 20 and 40 of gestation, as did glutamine in fetal allantoic fluid. Accordingly, placental BCAA levels decreased after Day 20 of gestation in association with a marked increase in BCAA catabolism and concentrations of glutamine. There was no detectable catabolism of glutamine in pig placenta throughout pregnancy, which would ensure maximum output of glutamine by this tissue. These novel results demonstrate glutamine synthesis from BCAAs in pig placentae, aid in explaining the abundance of glutamine in the fetus, and provide valuable insight into the dynamic role of the placenta in fetal metabolism and nutrition.  相似文献   

11.
Enkephalin-containing peptides have been followed in the circulation of fetal sheep between 118-143 days gestation. Using a combination of radioimmunoassay and hplc met5-enkephalin was found in the concentration range 60-500 pg/ml and proenkephalins containing met5-enkephalin had a concentration of 150-4000 pg/ml. The concentration of both increased towards term. The sources of the enkephalin peptides was investigated by measurement of differences across the umbilical circulation and by studying the effects of fetal adrenal demedullation and chemical sympathectomy. The placenta showed a continuous net output of enkephalin peptides which increased close to term. This placental output was increased sharply by reduction of uterine blood flow either using compression of the uterine artery or through infusion of adrenaline at 35 micrograms/min into the maternal circulation. Maternal hypoxia caused by breathing 9% O2 plus 3% CO2 also increased fetal plasma enkephalin levels, although not output from the placenta. Adrenal demedullation, particularly if accompanied by chemical sympathectomy depressed fetal plasma enkephalin concentrations and sharply suppressed the fetal peptide responses to maternal hypoxia. It is concluded that the placenta and the fetal adrenal are important sources of met5-enkephalin-containing peptides in the fetal circulation. The placental production appears to be closely tied to changes in uterine perfusion and adrenal output changes in response to fetal oxygenation.  相似文献   

12.
Human placenta differs more than any other organ between species. This is the primary reason to develop models utilizing human tissue to study placental functions. There are no major ethical restrictions using human placenta for scientific studies. Also, the size of human placenta enables a great number of different parameters to be studied in one placenta. The most important cell types considering transplacental transfer, are the trophoblasts differentiating into syncytiotrophoblasts facing maternal circulation, and endothelial cells of fetal vessels. Primary trophoblasts are difficult to culture and do not grow in monolayer thus inhibiting studies on the polarized functions of transport. Several cell lines originating from trophoblasts have been developed, of which BeWo cells seem most useful for transport studies, because they grow in a tight monolayer. Placental tissue can also be retained as explant cultures, although the trophoblast viability is very restricted despite of culture conditions. Cotyledons of human placenta can be retained viable in an isolated organ perfusion. Perfused placental tissue stays viable longer than placental tissue in tissue culture. Although human placental perfusion is the most tedious experimental method to study placental functions, there are several good reasons to develop it further: transplacental transfer and molecular mechanisms of genotoxic compounds can be studied. Placental perfusion is the only experimental method that retains fully the structure of placenta for polarized transport. Furthermore, perfusion of placentas from mothers, who smoke, use illegal drugs or have a disease, allows studies on the impact of such factors on fetal exposure to genotoxic agents.  相似文献   

13.
Appropriate partitioning of nutrients between the mother and conceptus is a major determinant of pregnancy success, with placental transfer playing a key role. Insulin-like growth factors (IGFs) increase in the maternal circulation during early pregnancy and are predictive of fetal and placental growth. We have previously shown in the guinea pig that increasing maternal IGF abundance in early to midpregnancy enhances fetal growth and viability near term. We now show that this treatment promotes placental transport to the fetus, fetal substrate utilization, and nutrient partitioning near term. Pregnant guinea pigs were infused with IGF-I, IGF-II (both 1 mg.kg-1.day-1) or vehicle subcutaneously from days 20-38 of pregnancy (term=69 days). Tissue uptake and placental transfer of the nonmetabolizable radio analogs [3H]methyl-D-glucose (MG) and [14C]aminoisobutyric acid (AIB) in vivo was measured on day 62. Early pregnancy exposure to elevated maternal IGF-I increased placental MG uptake by>70% (P=0.004), whereas each IGF increased fetal plasma MG concentrations by 40-50% (P<0.012). Both IGFs increased fetal tissue MG uptake (P<0.048), whereas IGF-I also increased AIB uptake by visceral organs (P=0.046). In the mother, earlier exposure to either IGF increased AIB uptake by visceral organs (P<0.014), whereas IGF-I also enhanced uptake of AIB by muscle (P=0.044) and MG uptake by visceral organs (P=0.016) and muscle (P=0.046). In conclusion, exogenous maternal IGFs in early pregnancy sustainedly increase maternal substrate utilization, placental transport of MG to the fetus, and fetal utilization of substrates near term. This was consistent with the previously observed increase in fetal growth and survival following IGF treatment.  相似文献   

14.
Transport characteristics of essential trace elements as zinc, copper, selenium and iron have been studied in maternal–fetal direction in normal pregnancies, using in vitro perfusion of human placental lobules. Solutions of trace elements corresponding to twice the physiological concentrations were injected (100 l bolus) into the maternal arterial perfusate. Serial perfusate samples were collected every 30 sec from venous outflows for a study period of 5 min. Concentrations of these trace elements and their transport kinetics were determined. Transport fractions (TF) of zinc, copper, selenium and iron averaged 0.21, 0.49, 0.55 and 0.10% of maternal load respectively. Other parameters such as area under the curve, clearance, elimination constant, absorption and elimination rates showed some significant differences between the various elements. Copper and selenium appear to be transported passively in maternal–fetal direction, while for iron and zinc, role of active transport for transfer across the human placental membrane cannot be discounted. We speculate that alterations in copper: zinc TR50 (transport rate for 50% efflux) and TF ratios could serve as useful indicators for assessing placental transport status of these essential elements in complicated pregnancy states.  相似文献   

15.
Lipopolysaccharide (LPS) has been associated with adverse pregnant outcomes, including fetal demise, intra-uterine growth restriction (IUGR), neural tube defects (NTDs) and preterm delivery in rodent animals. Previous studies demonstrated that melatonin protected against LPS-induced fetal demise, IUGR and preterm delivery. The aim of the present study was to investigate the effects of melatonin on LPS-induced NTDs. All pregnant mice except controls were intraperitoneally injected with LPS (25 µg/kg) daily from gestational day (GD)8 to GD12. Some pregnant mice were orally administered with melatonin (MT, 50 mg/kg) before each LPS injection. A five-day LPS injection resulted in 27.5% of fetuses with anencephaly, exencephaly or encephalomeningocele. Additional experiment showed that maternal LPS exposure significantly down-regulated placental proton-coupled folate transporter (pcft) and disturbed folate transport from maternal circulation through the placentas into the fetus. Interestingly, melatonin significantly attenuated LPS-induced down-regulation of placental pcft. Moreover, melatonin markedly improved the transport of folate from maternal circulation through the placentas into the fetus. Correspondingly, orally administered melatonin reduced the incidence of LPS-induced anencephaly, exencephaly or encephalomeningocele. Taken together, these results suggest that orally administered melatonin prevents LPS-induced NTDs through alleviating LPS-induced disturbance of folate transport from maternal circulation through the placenta into the fetus.  相似文献   

16.
The placental transport of various compounds, such as glucose and fatty acids, has been well studied. However, the transport of cholesterol, a sterol essential for proper fetal development, remains undefined in the placenta. Therefore, the purpose of these studies was to examine the transport of cholesterol across a placental monolayer and its uptake by various cholesterol acceptors. BeWo cells, which originated from a human choriocarcinoma, were grown on transwells for 3 days to form a confluent monolayer. The apical side of the cells was radiolabeled with either free cholesterol or LDL cholesteryl ester. After 24 h, the radiolabel was removed and cholesterol acceptors were added to the basolateral chamber. Cholesterol was found to be taken up by the apical surface of the placental monolayer, transported to the basolateral surface of the cell, and effluxed to fetal human serum, fetal HDL, or phospholipid vesicles, but not to apolipoprotein A-I. In addition, increasing the cellular cholesterol concentration further increased the amount of cholesterol transported to the basolateral acceptors. These are the first studies to demonstrate the movement of cholesterol across a placental cell from the maternal circulation (apical side) to the fetal circulation (basolateral side).  相似文献   

17.
Montoudis A  Simoneau L  Lafond J 《Life sciences》2004,74(14):1751-1762
Fetal development requires an important entry of essential free fatty acids (EFFA) and essential amino acids (EAA) into the fetal circulation. We have reported that a 0.2% enriched-cholesterol diet (ECD) during rabbit gestation significantly reduces fetus weight compared to control diet. It is known that dietary linoleic acid deficiency, an EFFA, during the fetal development induces an important impair to the somatic development. Moreover, intrauterine growth retardation induced a reduction of the flux of leucine, an EAA, from maternal to fetal circulation. Therefore, we hypothesized that the administration of an ECD induces modifications of placental lipid composition concomitant alterations of the transfer of linoleic acid and leucine in fetal circulation. Quantification of placental lipids revealed that in the ECD group a reduction of total-cholesterol (TC) and free-cholesterol (FC) is observed, however an increased in FFA and phospholipids is noticed when compared to the control group. In placenta from the ECD group, the FC/ TC ratio is significantly reduced compared to the control group. In the ECD group, the liver shows an increase of TC, FC and FFA compared to the control group. However, the quantity of triacylglycerol present in the liver from the ECD is significantly reduced compared to the control group. To evaluate the placental transfer of some essential nutrients, intravenous injection of [1-14C]-linoleic acid or L-[4, 5-3H]-leucine to term rabbit (control and ECD group) were done. Two hours later, rabbits were euthanized and we collected placenta, livers and blood from dams and offspring. The concentrations of both radiolabeled molecules (linoleic acid and its esterified form or leucine) were higher in the plasma of ECD offspring than those found in offspring from control diet. Despite such alteration of placental lipid composition, linoleic acid and leucine transfer by the placenta was not compromised but rather increased.  相似文献   

18.
Prenatal exposure to allergens or antigens released by infections during pregnancy can stimulate an immune response or induce immunoregulatory networks in the fetus affecting susceptibility to infection and disease later in life. How antigen crosses from the maternal to fetal environment is poorly understood. One hypothesis is that transplacental antigen transfer occurs as immune complexes, via receptor-mediated transport across the syncytiotrophoblastic membrane and endothelium of vessels in fetal villi. This hypothesis has never been directly tested. Here we studied Plasmodium falciparum merozoite surface protein 1 (MSP1) that is released upon erythrocyte invasion. We found MSP1 in cord blood from a third of newborns of malaria-infected women and in >90% following treatment with acid dissociation demonstrating MSP1 immune complexes. Using an ex vivo human placental model that dually perfuses a placental cotyledon with independent maternal and fetal circuits, immune-complexed MSP1 transferred from maternal to fetal circulation. MSP1 alone or with non-immune plasma did not transfer; pre-incubation with human plasma containing anti-MSP1 was required. MSP1 bound to IgG was detected in the fetal perfusate. Laser scanning confocal microscopy demonstrated MSP1 in the fetal villous stroma, predominantly in fetal endothelial cells. MSP1 co-localized with IgG in endothelial cells, but not with placental macrophages. Thus we show, for the first time, antibody-dependent transplacental transfer of an antigen in the form of immune complexes. These studies imply frequent exposure of the fetus to certain antigens with implications for management of maternal infections during pregnancy and novel approaches to deliver vaccines or drugs to the fetus.  相似文献   

19.
Knowledge of the magnitude of the electric potential differences between the maternal and fetal circulations and the trophoblast is necessary to describe transport of ions into and out of the trophoblast as it occurs in placental transfer of charged molecules. The value of the electric potential difference is also of significance in describing the transport of neutral molecules when their transport is coupled to electrogenic co-transport systems. We developed a method to obtain the values of these potential differences, in the isolated guinea-pig placenta perfused on both sides with an artificial medium. A positively charged ion that carries a radioactive label is allowed to equilibrate between the trophoblast and its circulations. The intracellular equilibrium concentration can be calculated and, because the extracellular concentration is known, the potential difference can be obtained with the Nernst equation. Rapid equilibrium is obtained by charging the trophoblast by means of perfusion of the placenta with the ion at a high concentration, followed by reduction of the concentration in the medium until equilibrium is observed. This is done in both a continuous and discontinuous manner. In addition to measurements of the potential differences, their origin was investigated. It was shown that at least part of the potential difference is generated by the action of transcellular Na--K exchange, because depolarization could always be obtained by decreasing the transmembrane Na and K gradients. Mean values obtained were delta psi F = 71 +/- 21 mV (+/- SD) for the potential difference between the fetal circulation and the trophoblast and delta psi m = 64 +/- 16 mV for the potential difference between the maternal side and the trophoblast with the cell interior negative.  相似文献   

20.
During early pregnancy, long-chain polyunsaturated fatty acids (LC-PUFA) may accumulate in maternal fat depots and become available for placental transfer during late pregnancy, when the fetal growth rate is maximal and fetal requirements for LC-PUFAs are greatly enhanced. During this late part of gestation, enhanced lipolytic activity in adipose tissue contributes to the development of maternal hyperlipidaemia; there is an increase in plasma triacylglycerol concentrations, with smaller rises in phospholipid and cholesterol concentrations. Besides the increase in plasma very-low-density lipoprotein, there is a proportional enrichment of triacylglycerols in both low-density lipoproteins and high-density lipoproteins. These lipoproteins transport LC-PUFA in the maternal circulation. The presence of lipoprotein receptors in the placenta allows their placental uptake, where they are hydrolysed by lipoprotein lipase, phospholipase A(2) and intracellular lipase. The fatty acids that are released can be metabolized and diffuse into the fetal plasma. Although present in smaller proportions, maternal plasma non-esterified fatty acids are also a source of LC-PUFA for the fetus, their placental transfer being facilitated by the presence of a membrane fatty acid-binding protein. There is very little placental transfer of glycerol, whereas the transfer of ketone bodies may become quantitatively important under conditions of maternal hyperketonaemia, such as during fasting, a high-fat diet or diabetes. The demands for cholesterol in the fetus are high, but whereas maternal cholesterol substantially contributes to fetal cholesterol during early pregnancy, fetal cholesterol biosynthesis rather than cholesterol transfer from maternal lipoproteins seems to be the main mechanism for satisfying fetal requirements during late pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号