首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Twelve distinct phenotypic groups of plants were isolated from nondisjunction progenies of 11 translocation heterozygote stocks. All the plants in these phenotypic groups originated in the light weight seed class. Five of the 12 phenotypic groups of plants have been verified as primary trisomics. They are all phenotypically distinguishable from each other and from disomics. One of the five primary trisomic groups, puckered leaf, was directly recovered as a primary trisomic from the original translocation heterozygote progenies. Three of the five trisomics — weak stem, dark green leaf, and convex leaf — originated first as tertiary trisomics. The related primary trisomics were isolated later from progenies of selfed tertiary trisomics. The fifth group, chlorotic leaf, originated at a low frequency among the progenies of three other trisomics: puckered leaf, convex leaf, and dark green leaf. The chlorotic leaf did not set seed under field conditions. The remaining four groups — puckered leaf, dark green leaf, convex leaf, and weak stem — are fertile, though sensitive to high temperature conditions. The transmission rate of the extra chromosome on selfing ranges from 28% to 41%. Physical identification of the extra chromosome has not been achieved for any of the five trisomic groups. Two trisomic groups, dark green leaf and convex leaf, have produced tetrasomics at low frequency. The phenotypes of these two tetrasomics are similar to the corresponding trisomics but more exaggerated.Fla. Agr. Expt. Stn. Journal Series No. 7137  相似文献   

2.
Summary An attempt was carried out to produce trisomics of the wild tomato L. peruvianum, to define their essential features, and to detect relationships between trisomy and the expression of self-compatibility.Triploid-diploid crosses in L. peruvianum yielded nearly 40% aneuploids. Of these, 18% were single trisomics, and the rest had 2, 3 and 4 extra chromosomes. Almost all the trisomics occurred in crosses where the triploid was used as female parent. Vigour and fertility of trisomics were not much different from those of disomics, and morphologically they were very similar.The extra chromosome was identified in three self-compatible trisomic plants through somatic and pachytene chromosome morphology. One of these plants was trisomic for chromosome 1, while the other two were trisomic for chromosome 3. In these trisomics a positive correlation was found between chromosome length and trivalent formation, but no relationship between chromosome length and frequency of laggards was observed.A series of test-crosses revealed that the capacity of the trisomics to produce seed upon selfing always resulted from alterations of the incompatibility phenotype of the style and not from competitive interaction in the pollen. Progeny analyses showed that the self-compatibility features of the trisomics were not transmitted from one generation to the next. The implications of these findings are discussed.This work has been supported by a contract between the European Communities and the CNEN. This publication is contribution no. 1458 from the Biology Division of the European Communities and contribution no. 472 from the Divisione Applicazioni delle Radiazioni del CNEN.  相似文献   

3.
Summary Variation in male and female transmission of the translocated extra chromosome (5R3R) was studied in a tertiary trisomic of rye (Secale cereale L.). In two F5 lines derived from a single F4 line, female transmission was lower than in five others derived from another F4 line. This could be caused by genetic factors or by the strong inbreeding depression in these lines, leading to low viability of trisomic progeny. After selfing, male transmission was estimated as very low, but this was primarily based on the occurrence of tetrasomics that probably have a very poor viability. In testcrosses with disomic female parents, male transmission was much higher (up to 27%), without variation within F5 lines. One F5 line showed significantly higher male transmission than any of the seven tested, including a sister line from the same F4. This was consistent in the F6. Apparently high male transmission is genetically determined. There was a positive correlation with recombination of the marker ti (tigrina) on the extra chromosome and the normal 5R chromosomes. At the first meiotic metaphase, trivalents and quinquivalents were frequent in the trisomics. Assuming loss of univalents, 40% of the microspores should carry the translocated extra chromosome. In most lines, more than 40% were found at pollen mitosis. Observations on timing of pollen mitosis showed a delayed development in aneuploid spores, with clear differences between plants, but no correlation with male transmission. The cause of reduced male transmission and the expression of genetic variation therein can, therefore, not be found in meiotic behaviour or delayed microspore development. Pollen germination and tube growth may be more important.  相似文献   

4.
以谷子(Setaria italica (L.) Beauv.)雄性不育系1066A为母本,豫谷1号三体(1~7)及四体8和四体9作父本进行杂交,应用初级三体分析法,进行了谷子雄性不育基因和黄苗基因的染色体定位研究.通过配置大量杂交组合和反复授粉,利用豫谷1号三体的极少量花粉,获得了三体2~9的F1代杂种,各杂种三体的形态与豫谷1号三体基本相似,略有差异,苗色呈绿色且可育.杂种F2植株的苗色和育性都产生分离.结果是三体3、5、7、8、9的F2代分离出的可育株与不育株之比为3∶1,三体6的可育株与不育株之比为14∶1 (χ2=0.012,P=0.01).杂种F2分离出的绿苗与黄苗之比只有三体7为12∶1 (χ2=0.36, P=0.01),其他均为3∶1.因此,可以确定1066A的不育基因为隐性单基因,位于第6号染色体上,该品系的黄苗基因也是隐性单基因,位于第7号染色体上.  相似文献   

5.
Summary Transmission rates of extra chromosomes found in the full set of trisomics of pearl millet (Pennisetum americanum) (2n = 14) were estimated by examining the progeny of selfed trisomics and the progeny of trisomics crossed to disomics. When the trisomics were selfed, dark green and tiny had the highest transmission rate (23.8% and 23.3%, respectively) and pseudonormal the lowest (13.8%). Other trisomics had an intermediate rate of transmission. When the trisomics were used as females in crosses with disomics, both dark green and tiny again had the highest transmission rate and pseudonormal the lowest. When the trisomics were used as males in crosses to disomics, no trisomic was transmitted to the progeny except for spindle, and this occurred with a very low frequency (2.0%). A variation in transmission rate was observed from plant to plant and season to season for the same trisomic type. A study of the transmission rate of the extra chromosomes indicated that the following factors were probably contributing to the lower rate of transmission: small- or light-weight seeds tended to have a higher proportion of trisomics than heavier seeds; lighter seeds had a lower percentage germination; a positive and significant correlation was noticed between trivalent frequency and transmission rate. Plants with reduced vigour produced a higher frequency of trisomics. Though trisomics involving longer extra chromosomes showed a high degree of pollen and ovule sterility, they were highly transmissible. This has resulted in a close relationship between gametic sterility and transmission rate of extra chromosome.  相似文献   

6.
Maize tertiary trisomic stocks derived from B-A translocations   总被引:2,自引:0,他引:2  
Reciprocal translocations between supernumerary B chromosomes and the basic complement of A chromosomes in maize have resulted in a powerful set of tools to manipulate the dosage of chromosomal segments. From 15 B-A reciprocal translocation stocks that have the B-A chromosome genetically marked we have developed tertiary trisomic stocks. Tertiary trisomics are 2n + 1 aneuploids where the extra chromosome is a translocation element, in this case a B-A chromosome. Whereas B-A translocations produce aneuploidy in the sperm, the tertiary trisomic plant efficiently transmits hyperploid gametes maternally. Because the B-A tertiary trisomic stocks and the B-A translocation stocks from which they were derived are introgressed into the W22 inbred line, the effects of maternally and paternally transmitted trisomic B-A chromosomes can be compared. Data are presented on both the male and female transmission rates of the B-A chromosomes in the tertiary trisomic stocks.  相似文献   

7.
Summary In pearl millet [Pennisetum americanum (L.) Leeke], in the open pollinated and crossed progenies of autotriploids, desynaptics and translocation heterozygotes, two primary trisomics, one each of secondary and tertiary trisomics, two primary trisomics with interchanges, two interchange secondary trisomics, and three interchange tertiary trisomics were located. These categories were determined on the basis of chromosomal associations formed at meiosis. In one other trisomic, its category, whether tertiary or interchange trisomy, could not be determined. Some of these categories, like the secondary trisomy and interchange tertiary trisomy, are reported for the first time.  相似文献   

8.
G. Fedak  T. Tsuchiya 《Genetica》1975,45(2):177-190
Recent developments in the study of aneuploids in barley are reviewed. To date five complete series of primary trisomics have been produced. Considerable progress has been made toward the production of a complete set of monotelotrisomics. Eleven of the possible 14 have thus far been identified though not all in the same genetic background. Studies on existing monotelotrisomics have shown that those representing the long arm frequently resemble the corresponding primary trisomic in gross morphology while short arm counterparts are rarely distinguishable from diploids. The average transmission rate of extra telos through female gametes was 31.9% with all showing a low rate of male transmission. In 81.3% of cells at metaphase 1 of meiosis the extra telos are synapsed with normal homologues to form heteromorphic trivalents. Tandem-chain configurations were the predominant type.  相似文献   

9.
Summary Nineteen tertiary trisomics were isolated from some translocation heterozygotes and interchange trisomics of pearl millet. Cytological analysis of these trisomics indicates that chromosome association of trivalents, univalents and pentavalents were frequent in all the trisomics. But their ratio varied from one trisomic to the next. Other associations were relatively infrequent. The relative frequencies of 6 pentavalent configurations observed in different trisomics were studied and their probable association with mode of fertility and transmission rates have been discussed.  相似文献   

10.
Twenty trisomic plants found in the progeny 3x x 2x crosses in Solatium chacoense and their F1 trisomies obtained by 2x + 1 X 2x crosses were studied with respect to their fertility and cytology. The female transmission of the extra chromosome in the trisomics varied from 2 to 60 %. The transmission frequencies of F1 trisomies were similar to their parent trisomies in most of the lines. The transmission through the pollen ranged from 0 to 20 %. Female and male fertility of the parent trisomies was high. They produced an average of 37 seeds per pollination as the female or as the male parent. The F1 trisomies produced about half the seed set of their parent trisomies. The extra chromosomes of six trisomies were identified by pachytene analysis. They were isochromosomes for the long arms of chromosomes I, IV and IX and the short arms of IV, IX and XII. Chromosome morphology of the extra chromosomes in pachytene stage was described. A chromosome association of 12 II + 1 I was found in 66 % of the cells at MI. About 29 % of the cells had one trivalent and 5 % had three or five univalents. The frequency of trivalent formation was not affected by the length of the extra chromosome. The possibility of univalent shift in secondary trisomies was discussed.  相似文献   

11.
Summary Primary trisomics (2 n + 1 = 15), double trisomics (2 n + 1 + 1 = 16) and aneuploids with 24 to 30 chromosomes, as well as a diploid and tetraploids, were found in the progeny of a hypertriploid (2 n = 22) plant of perennial ryegrass, Lolium perenne L. Trisomics and double trisomics differed in their mean chromosome association, chiasma number and spike morphology. A few aneuploids and tetraploids had reciprocal translocations. The diploid, primary trisomics and tetraploids were more fertile than the double trisomics and aneuploids. Most trisomics and aneuploids were probably produced through female transmission. One double trisomic had a high univalent number, a low chiasma number and loose chromosome coiling. Both the extra chromosomes carried secondary constrictions. The gene for desynapsis might be located on one of these chromosomes.  相似文献   

12.
A set of trisomics of Chinese cabbage was used for determining the n+1 gamete transmission rate and locating the gene controlling 2n gamete formation on the corresponding chromosome. The results showed that the transmission rates of extra chromosomes in different trisomica varied from 0% to 15.38% by male gametes and from 0% to 17.39% by female gametes. Of the nine F2 populations derived from the hybridizations between each triaomic and Bp058 (2n gamete material), only Tri-4×Bp058 showed that the segregation ratio of plants without 2n gamete formation to plants with 2n gamete formation was 10.38:1, which fitted the expected segregation ratio of the trisomics (AAa) based on the 7.37% of n+1 gamete transmission through female and 5.88% through male. In other populations the segregation ratios varied from 2.48:1 to 3.72:1, which fitted the expected 3:1 segregation ratio of the bisomice (Aa). These results suggested that the gene controlling 2n gamete formation in Chinese cabbage Bp058 was located on chromosome 4. Further trisomic analysis based on the chromosome segregation and the incomplete stochastic chromatid segregation indicated that the gene locus was tightly linked to the centromere.  相似文献   

13.
N S Kim  J Kuspira 《Génome》1993,36(3):565-579
Cytogenetic studies in Triticum monococcum (2n = 2x = 14, AA) were initiated by generating a series of primary as well as double and triple trisomics from autotriploids derived from crosses between induced autotetraploids and a diploid progenitor. Analysis of meiotic chromosome behaviour revealed that, with the exception of primary trisomics for chromosome 7A, the chromosome present in triple dose in all other trisomics formed either a bivalent plus a univalent or a trivalent (always V shaped) at diakinesis - metaphase I in approximately equal proportions. Trisomics for chromosome 7A formed a bivalent plus a univalent or a trivalent in approximately a 1:2 ratio. About 99% of the anaphase I segregations in all the trisomics were seven to one pole and eight to the other, suggesting that primary trisomics in T. monococcum form n and n + 1 meiotic products in equal proportions. The double trisomics and triple trisomics formed 5 II + 2 III and 4 II + 3 III during metaphase I, respectively. A majority of the secondary meiocytes from the double and triple trisomics possessed unbalanced chromosome numbers. All the trisomics differed phenotypically from their diploid progenitors. Single primary trisomics for chromosomes 3A and 7A produced distinct morphological features on the basis of which they could be distinguished. The phenotypes of the double and triple trisomics deviated to a greater extent from that of diploids than those of the single trisomics. Less than 50% of the progeny of all primary trisomics were trisomics themselves. Trisomic progeny were not produced in diploid female x trisomic male crosses, indicating that functional n + 1 male gametes were not generated. Diploid as well as trisomic progeny were produced in the reciprocal crosses and upon self-fertilization of the trisomics. The average frequency of trisomic progeny was 9.9%. The fertility of primary trisomics ranged from 3.8% in trisomics for chromosome 1A to 40.6% in trisomics for chromosome 2A and was significantly less than that of diploids (99.6%). The breeding behaviour and low fertility of these trisomics make their maintenance and use in cytogenetic analyses difficult.  相似文献   

14.
Vasek , F. C. (U. California, Riverside.) Trisomic transmission in Clarkia unguiculata. Amer. Jour. Bot. 48(9): 829–833. 1961.—Seven primary trisomic plants derived from a triploid-diploid cross were self-pollinated. The 7 progenies included diploids and trisomics, the latter varying in frequency from 16 to 30%. In addition, 2 of the progenies included tetrasomic plants. Crosses were made between diploids and either trisomics or tetrasomics. The extra chromosome of 1 progeny was readily transmitted through the pollen of trisomic and tetrasomic plants. When a trisomic of the same progeny was used as a seed parent, only diploids and tetrasomics were found among the offspring, indicating a duplication of the extra chromosome. The extra chromosomes of other progenies were not transmitted through either pollen or eggs in controlled diploid-trisomic crosses but trisomics of these progenies were recovered after self-pollination. It is suggested that differential pollen-tube growth precluded transmission to diploid-trisomic hybrids and that under conditions of reduced pollen competition the extra chromosome normally would be transmitted through pollen. The extra chromosomes generally occur as univalents at metaphase and are ordinarily included in telophase nuclei.  相似文献   

15.
Khush GS  Singh RJ  Sur SC  Librojo AL 《Genetics》1984,107(1):141-163
Twelve primary trisomics of Oryza sativa L. were isolated from the progenies of spontaneous triploids and were transferred by backcrossing to the genetic background of IR36, a widely grown high yielding rice variety. Eleven trisomics can be identified morphologically from one another and from diploids. However, triplo 11 is difficult to distinguish from diploid sibs.—The extra chromosome of each trisomic was identified cytologically at pachytene stage of meiosis, and the chromosomes were numbered according to their length at this stage. The major distinguishing features of each pachytene chromosome were redescribed.—The female transmission rates varied from 15.5% for triplo 1, the longest chromosome, to 43.9% for triplo 12, the shortest chromosome. Seven of the 12 primary trisomics transmitted the extra chromosome through the male. The low level of chromosomal imbalance tolerated by rice and other evidence are interpreted to indicate that this species is a basic diploid.—Genetic segregation for 22 marker genes in the trisomic progenies was studied. Of a possible 264 combinations, involving 22 genes and 12 trisomics, 120 were examined. Marker genes for each of the 12 chromosomes were identified. The results helped establish associations between linkage groups and cytologically identifiable chromosomes of rice for the first time. Relationships between various systems of numbering chromosomes, trisomics, linkage groups and marker genes are described, and a revised linkage map of rice is presented.  相似文献   

16.
In crosses betweenP. lagopus trisomic for chromosome 4 and normal disomics the extra chromosome is transmitted to about 1/4 of the progeny through the male side and to over 1/2 on the female side. Among the progeny some non-parental types which include a tetrasomic (2x + 2) and an aneutriploid (3x + 1) were also found. Chromosomal behaviour during their male meiosis is described.  相似文献   

17.
Summary The transmission rate of trisomy was determined for two primary trisomic types, triplo-1 and triplo-3, of the self-incompatible species Lycopersicum peruvianum. Chromosome counts in somatic metaphases of root-tip squashes from 112 progeny plants showed that 8 individuals (7.2 %) were trisomic and 104 (92.8%) were diploid. The average frequency of transmission approximated 2.6% in triplo-1 and 8.6% in triplo-3. Data are presented on the karyotype and the morphological features of the 8 trisomics detected in the progenies of triplo-1 and triplo-3 and the various factors affecting the transmission rate of trisomy are discussed.The transmission rate of trisomy was also determined for the trisomic plant 269 which displayed a complete deletion of the satellited part of chromosome 2 and was characterized by ovate fruits. Out of 18 progeny plants analysed, 8 (44.4%) were trisomic and 10 (55.6%) were diploid. Cytological and morphological analyses of the 8 trisomic individuals revealed that only two of them (11.1 %) resembled the parental trisomic. A number of diploid and trisomic progenies exhibited a partial or a complete deletion of the satellited segment of chromosome 2.This work has been supported by a contract between the European Communities and the CNEN. This publication is contribution n ° 484 from The Division Applicazioni delle Radiazioni del CNEN and contribution n ° 1482 from the Biology Radioprotection Medical Research programme of the Directorate General XII of the European communities  相似文献   

18.
Summary The progeny from a cross between diploid H. vulgare and triploid H. bulbosum were mostly triploid (VBB) hybrids, the other progeny were haploid (V) barley (H. vulgare). From a cross between diploid and triploid H. bulbosum, four of the seven possible trisomic lines were isolated. The Giemsa banded karyotype of H. bulbosum was produced, and two of the lines were identified as trisomic for chromosomes 6 and 7. The cytology and transmission rates of the trisomics were examined.  相似文献   

19.
Summary Primary trisomics of perennial ryegrass, Lolium perenne L., were studied for meiotic behaviour, fertility, morphology and trisome transmission. Trisomics differed from each other in mean meiotic association, pollen fertility, seed set and morphology. The combined cytomorphological data suggested that the investigated trisomic plants included trisomes 2 to 7. No pollen transmission of trisomes was detected. Female transmission of trisomes ranged from 12% for tri 3 to 37% for tri 4 with a mean of 24% for the six trisomes. Trisome transmission was not related to either chromosome size or trivalent/univalent frequency, although the larger trisomes formed trivalents more frequently than the smaller trisomes.Part of M.Sc.Agr. Thesis, submitted by senior author to the National University of Ireland, Dublin  相似文献   

20.
四倍体水稻花药培养筛选初级三体的研究   总被引:4,自引:0,他引:4  
以同源四倍体水稻 ( Oryza sativa L.)各世代杂种和四倍体籼、粳原种为材料进行花药培养 ,诱导花粉植株再生。根据三体植株表型上相互区别的特性 ,且又显著区别于二倍体 ,对其中所诱导的 1 5个花药培养品系 4 390株 H1花粉植株进行了重点固定和染色体镜检。结果表明 ,花粉 H1植株染色体组成包括二倍体、四倍体和非整倍体 ,其频率分别为 88.0 %、5 .5 3%和 6.67%。鉴定出 2 72株三体 ,占全部花粉植株的 6.2 0 %。对照已配套三体系的形态 ,将鉴定的三体株划分为 9种类型 ,并对其中的 91 2 4 - 7窄叶三体进行粗线期核型分析 ,鉴定为三体 8。将三体 8的种子播种 ,在 H2 代苗期统计额外染色体的传递率 ,三体株占 34 .1 1 % ,其农艺性状也同于 H1亲代  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号