首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
IS A NEW AND GENERAL THEORY OF MOLECULAR SYSTEMATICS EMERGING?   总被引:5,自引:0,他引:5  
The advent and maturation of algorithms for estimating species trees—phylogenetic trees that allow gene tree heterogeneity and whose tips represent lineages, populations and species, as opposed to genes—represent an exciting confluence of phylogenetics, phylogeography, and population genetics, and ushers in a new generation of concepts and challenges for the molecular systematist. In this essay I argue that to better deal with the large multilocus datasets brought on by phylogenomics, and to better align the fields of phylogeography and phylogenetics, we should embrace the primacy of species trees, not only as a new and useful practical tool for systematics, but also as a long‐standing conceptual goal of systematics that, largely due to the lack of appropriate computational tools, has been eclipsed in the past few decades. I suggest that phylogenies as gene trees are a “local optimum” for systematics, and review recent advances that will bring us to the broader optimum inherent in species trees. In addition to adopting new methods of phylogenetic analysis (and ideally reserving the term “phylogeny” for species trees rather than gene trees), the new paradigm suggests shifts in a number of practices, such as sampling data to maximize not only the number of accumulated sites but also the number of independently segregating genes; routinely using coalescent or other models in computer simulations to allow gene tree heterogeneity; and understanding better the role of concatenation in influencing topologies and confidence in phylogenies. By building on the foundation laid by concepts of gene trees and coalescent theory, and by taking cues from recent trends in multilocus phylogeography, molecular systematics stands to be enriched. Many of the challenges and lessons learned for estimating gene trees will carry over to the challenge of estimating species trees, although adopting the species tree paradigm will clarify many issues (such as the nature of polytomies and the star tree paradox), raise conceptually new challenges, or provide new answers to old questions.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
《古生物学报》1983,(3):247-254
Through a preliminary study of the Changshanian trilobites collected from the Taizihe Valley of Liaoning by the Taizihe stratigraphical team (Wang et al., 1954), from the Qingshuihe region of Nei Monggol by F. H. Chia and Q. L. Kao in 1952, and from the Kushan and Tai'an areas of Shandong by Lu and Dong (1953). 12 new genera and 17 new species are identified (pls. I—III), and six faunal zones and two subzones are established. They are as follows in descending order: VI. Zone with Acanthometopus obesus gen. et sp. nov. (P1. III, figs. 1—4):  相似文献   

16.
17.
Abstract.— The fitness costs of high genetic load in wild populations have rarely been assessed under natural conditions. Such costs are expected to be greatest in small, bottlenecked populations, including those occurring near range edges. Britain is at the northwesterly range limit of the natterjack toad Bufo calamita . We compared fitness attributes in two populations of this amphibian with very different recent histories. Key larval fitness attributes in B. calamita , notably growth rate and metamorph production, were substantially higher in the large outbreeding population (Ainsdale) than in the small and isolated one (Saltfleetby). These differences were manifest under seminatural conditions, when larvae were reared in mesh cages within breeding ponds at the site of the small population, and were exacerbated by high stress treatments. The results indicate that genetic load effects can be sufficiently severe enough to predispose extinction over relatively short time frames, as predicted by extinction vortex models.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号