首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Allocasuarina verticillata is an actinorhizal tree that lives in symbiotic association with a nitrogen fixing actinomycete called Frankia. In the search for promoters that drive strong constitutive expression in this tropical tree, we studied the organ specificity of four different constitutive promoters (CaMV 35S, e35S, e35S-4ocs and UBQ1 from Arabidopsis thaliana) in stably transformed A. verticillata plants. The ß-glucuronidase (gus) gene was used as a reporter and expression studies were carried out by histochemical analyses on shoots, roots and actinorhizal nodules. While the 35S promoter was poorly expressed in the shoot apex and lateral roots, both the e35S and e35S-4ocs were found to drive high constitutive expression in the transgenic non-nodulated plants. In contrast, the UBQ1 promoter was very poorly expressed and appeared unsuitable for A. verticillata. We also showed that none of the promoters studied were active in the nodule infected cells, whatever the developmental stage studied.  相似文献   

4.
The efficiency of several promoters (pin2 from potato, ubiquitin from sunflower, rolC from Agrobacterium rhizogenes, act1 from rice and CaMV 35S from cauliflower mosaic virus) fused to the uidA reporter gene was measured after biolistic bombardment of birch leaves (Betula pendula L.). The highest level of β-glucuronidase (GUS) activity was achieved with the pin2 promoter and the lowest activity with the CaMV 35S promoter. The activity of the potato wound-inducible promoter (pin2) was also tested in stably transformed birch. The promoter showed induced activity after mechanical wounding and feeding by leaf weevils. The systemic effect was confirmed by enhanced GUS activity in non-wounded leaves. The results of this study indicated that the potato wound-inducible promoter maintains its function in birch and would be a suitable promoter in studies of insect-birch interaction at the molecular level. Received: 17 October 1996 / Revision received: 7 February 1997 / Accepted: 1 March 1997  相似文献   

5.
In order to study the expression in plants of therolD promoter ofAgrobacterium rhizogenes, we have constructed chimaeric genes placing the coding region of thegusA (uidA) marker gene under control of tworolD promoter fragments of different length. Similar results were obtained with both genes. Expression studies were carried out in transformed R1 progeny plants. In mature transformed tobacco plants, therolD-gus genes were expressed strongly in roots, and to much lower levels in stems and leaves. This pattern of expression was transmitted to progeny, though the ratio of the level of expression in roots relative to that in leaves was much lower in young seedlings. The degree of root specificity inrolD-gus transformants was less than that of a gene constructed with domain A of the CaMV 35S promoter,domA-gus, but the level of root expression was much higher than with the latter gene. However, the level of expression of therolD-gus genes was less than that of agus gene with a 35S promoter with doubled domain B, 35S2-gus. TherolD-gus genes had a distinctive pattern of expression in roots, compared to that of the two other genes, with the strongest GUS activity observed in the root elongation zone and in vascular tissue, and much less in the root apex.  相似文献   

6.
The effects of rolA on root and shoot architecture have been ascribed to a deficiency in gibberellic acid (GA3) and to changes in polyamine metabolism. Using tobacco, we examined interactions among GA3, a polyamine accumulation inhibitor (α-DL-difluoromethylornithine or DFMO) and the rolA gene controlled by the 35S CaMV promoter. We measured the effects of these three agents on architecture and polyamine accumulation in excised roots and whole plants grown in vitro. Previous work showed that DFMO or genetic transformation with the rolA gene from Agrobacterium rhizogenes, controlled by the 35S promoter (P35S-rolA), caused excised tobacco roots to grow faster with altered root system architecture. We show that gibberellic acid (GA3) reversed the effects of DFMO on the architecture of excised root systems, but neither reversed the effects of DFMO on growth, nor the changes in growth and architecture associated with P35S-rolA. GA3 treatment alone resulted in increased agmatine levels, suggesting that the inhibition of the effects of DFMO on architecture was through a stimulation of the arginine decarboxylase (ADC) pathway, GA3 alone also inhibited the accumulation of putrescine and tyramine conjugates in excised roots. In tobacco plants growing in vitro DFMO and P35S-rolA were associated with reduced shoot height, which was partially restored by GA3 treatment; however, GA3 also stimulated shoot height in the controls. GA3 did not lessen the leaf wrinkling associated with P35S-rolA. P35S-rolA increased root number in young seedlings in vitro, and increased root system length in seedlings grown in soil. As in excised roots, the developmental changes linked to DFMO and P35S-rolA were accompanied by reductions in putrescine titers. GA3 treatment stimulated putrescine accumulation in stems and leaves, and partially reversed the negative effects of DFMO and P35S-rolA on putrescine accumulation in roots, stems and leaves. Again, the restoration of putrescine pools appeared to be through a stimulation of the ADC pathway, since agmatine accumulated in plants exposed to GA3. In general, the effects of DFMO and P35S-rolA on phenotype and polyamine metabolism were coordinated, and in many cases these effects were similarly modulated by GA3, reinforcing the previous conclusion that the phenotypic effects of rolA in roots and shoots occur through interference with polyamine metabolism and that the putrescine conjugates are particularly important in regulating root system growth and architecture. We were unable, however, to discem consistent evidence for a direct role for GA3 in establishing the RolA phenotype.  相似文献   

7.
A full-length cDNA of the gene for phytochrome A from Arabidopsis thaliana was fused with the 35S promoter of cauliflower mosaic virus (CaMV35S-PHYA) and introduced into horseradish (Armoracia rusticana Gaert., Mey. et Scherb.) hairy roots. The phytochrome level in hairy roots transformed with CaMV35SPHYA was about three times greater than that in normal hairy roots and the rate of light-induced formation of adventitious shoots was also higher in the hairy roots transformed with CaMV35SPHYA. These results indicate that the light-induced formation of adventitious shoots on horseradish hairy roots is closely related to the phytochrome level. Received: 11 August 1998 / Revision received: 21 October 1998 / Accepted: 20 November 1998  相似文献   

8.
The wound-inducible quinolinate phosphoribosyl transferase promoter from Nicotiana tabacum (NtQPT2) was assessed for its capacity to produce B-subunit of the heat-labile toxin (LTB) from enterotoxigenic Escherichia coli in transgenic plant tissues. Comparisons were made with the widely used and constitutive Cauliflower Mosaic Virus 35S (CaMV35S) promoter. The NtQPT2 promoter produced somewhat lower average concentrations of LTB protein per unit weight of hairy root tissue but allowed better growth thereby producing similar or higher overall average yields of LTB per culture batch. Transgenic tobacco plants containing the NtQPT2-LTB construct contained LTB protein in roots but not leaves. Moreover, wounding NtQPT2-LTB transgenic plants, by removal of apices, resulted in an approximate 500% increase in LTB levels in roots when analysed several days later. CaMV35S-LTB transgenic plants contained LTB protein in leaves and roots but wounding made no difference to their LTB content.  相似文献   

9.
For the strong expression of genes in plant tissue, the availability of specific gene regulatory sequences is desired. We cloned promoter and terminator sequences of an apple (Malus x domestica) ribulose biphosphate carboxylase small subunit gene (MdRbcS), which is known for its high expression and used gus reporter gene expression to test the regulatory activity of the isolated promoter and terminator sequences in transgenic tobacco. The MdRbcS promoter itself seemed to be less strong than the CaMV35S promoter when both used in combination with the nos terminator. However, the combination of the promoter and terminator of MdRbcS was able to drive gus to similar expression levels as the reference construct with CaMV35S promoter and nos terminator. This observation indicates the importance of the terminator sequence for gene expression. It is concluded that the combination of the MdRbcS promoter and terminator is a suitable regulatory sequence set for the expression of transgenes to a high level in plants and for intragenesis in apple specifically.  相似文献   

10.
A cDNA fragment encoding human lactoferrin (hLF) linked to a plant microsomal retention signal peptide (SEKDEL) was stably integrated into the Solanum tuberosum genome by Agrobacterium tumefaciens-mediated leaf disk transformation methods. The lactoferrin gene was expressed under control of both the auxin-inducible manopine synthase (mas) P2 promoter and the cauliflower mosaic virus (CaMV) 35S tandem promoter. The presence of the hLF cDNA in the genome of regenerated transformed potato plants was detected by polymerase chain reaction amplification methods. Full-length hLF protein was identified by immunoblot analysis in tuber tissue extracts from the transformed plants by immunoblot analysis. The hLF produced in transgenic plant tissues migrated during polyacrylamide gel electrophoresis as a single band with an approximate molecular mass equal to hLF. Auxin activation of the mas P2 promoter increased lactoferrin expression levels in transformed tuber and leaf tissues to approximately 0.1% of total soluble plant protein. Antimicrobial activity against four different human pathogenic bacterial strains was detected in extracts of lactoferrin-containing potato tuber tissues. This is the first report of synthesis of full length, biologically active hLF in edible plants.  相似文献   

11.
12.
Inheritance of gusA and neo genes in transgenic rice   总被引:21,自引:0,他引:21  
Inheritance of foreign genes neo and gusA in rice (Oryza sativa L. cv. IR54 and Radon) has been investigated in three different primary (T0) transformants and their progeny plants. T0 plants were obtained by co-transforming protoplasts from two different rice suspension cultures with the neomycin phosphotransferase II gene [neo or aph (3) II] and the -glucuronidase gene (uidA or gusA) residing on separate chimeric plasmid constructs. The suspension cultures were derived from callus of immature embryos of indica variety IR54 and japonica variety Radon. One transgenic line of Radon (AR2) contained neo driven by the CaMV 35S promoter and gusA driven by the rice actin promoter. A second Radon line (R3) contained neo driven by the CaMV 35S promoter and gusA driven by a promoter of the rice tungro bacilliform virus. The third transgenic line, IR54-1, contained neo driven by the CaMV 35S promoter and gusA driven by the CaMV 35S.Inheritance of the transgenes in progeny of the transgenic rice was investigated by Southern blot analysis and enzyme assays. Southern blot analysis of genomic DNA showed that, regardless of copy numbers of the transgenes in the plant genome and the fact that the two transgenes resided on two different plasmids before transformation, the introduced gusA and neo genes were stably transmitted from one generation to another and co-inherited together in transgenic rice progeny plants derived from self-pollination. Analysis of GUS and NPT II activities in T1 to T2 plants provided evidence that inheritance of the gusA and neo genes was in a Mendelian fashion in one plant line (AR2), and in an irregular fashion in the two other plant lines (R3 and IR54-1). Homozygous progeny plants expressing the gusA and neo genes were obtained in the T2 generation of AR2, but the homozygous state was not found in the other two lines of transgenic rice.  相似文献   

13.
An amaranth (Amaranthus hypochondriacus) 11S globulin cDNA, encoding one of the most important storage proteins (amarantin) of the seed, with a high content of essential amino acids, was used in the transformation of CIMMYT tropical maize genotype. Constructs contained the amarantin cDNA under the control of a tissue-specific promoter from rice glutelin-1 (osGT1) or a constitutive (CaMV 35S) promoter with and without the first maize alcohol dehydrogenase intron (AdH). Southern-blot analysis confirmed the integration of the amarantin cDNA, and copy number ranged from one to more than ten copies per maize genome. Western-blot and ultracentrifugation analyses of transgenic maize indicate that the expressed recombinant amarantin precursors were processed into the mature form, and accumulated stably in maize endosperm. Total protein and some essential amino acids of the best expressing maize augmented 32% and 8–44%, respectively, compared to non-transformed samples. The soluble expressed proteins were susceptible to digestion by simulated gastric and intestinal fluids, and it is suggested that they show no allergenic activity. These findings demonstrate the feasibility of using genetic engineering to improve the amino acid composition of grain crops.Communicated by J.W. Snape  相似文献   

14.
In this study, the background activity of β-glucuronidase (GUS) was analyzed histochemically and fluorometrically in the negative control of Laminaria japonica (Phaeophyta) thalli, showing low level of activity. GUS gene transformation without selectable gene in L. japonica was performed using four different promoters, i.e., Cauliflower mosaic virus 35S promoter (CaMV35S) from cauliflower mosaic virus, ubiquitin promoter (UBI) from maize, adenine-methyl transfer enzyme gene promoter (AMT) from virus in green alga Chlorella, and fucoxanthin chlorophyll a/c-binding protein gene promoter (FCP) from diatom Phaeodactylum tricornutum. The GUS transient activity was determined fluorometrically after bombarding sliced parthenogenetic sporophytes explants, and it was found that the activity resulting from CaMV35S and FCP promoters (in 114.3 and 80.6 pmol MU min−1 (mg protein)−1, respectively) was higher than for the other two promoters. The female gametophytes were bombarded and regenerated parthenogenetic sporophytes. FCP was the only promoter that resulted in detectable GUS chimeric expression activity during histochemical staining and polymerase chain reaction. Results of Southern blot showed that GUS gene was integrated with the L. japonica genome.  相似文献   

15.
16.
A novel, constitutively expressed gene, designated MtHP, was isolated from the model legume species Medicago truncatula. Sequence analysis indicates that MtHP most likely belongs to the PR10 multi-gene family. The MtHP promoter was fused to a -glucuronidase gene to characterize its expression in different plant species. Transient assay by microprojectile bombardment and hairy root transformation by Agrobacterium rhizogenes revealed GUS expression in leaf, stem, radicle and root in M. truncatula. Detailed analysis in transgenic Arabidopsis plants demonstrated that the promoter could direct transgene expression in different tissues and organs at various developmental stages; its expression pattern was similar to that of CaMV35S promoter, and the level of expression was higher than the reporter gene driven by CaMV35S promoter. Deletion analysis revealed that even a 107 bp fragment of the promoter could still lead to a moderate level of expression. The promoter was further characterized in white clover (Trifolium repens), a widely grown forage legume species. Strong constitutive expression was observed in transgenic white clover plants. Compared with CaMV35S promoter, the level of GUS activity in transgenic white clover was higher when the transgene was driven by MtHP promoter. Thus, the promoter provides a useful alternative to the CaMV35S promoter in plant transformation for high levels of constitutive expression.  相似文献   

17.
18.
19.
Transgenic cotton lines were developed for high-level expression of a synthetic cry1EC gene from a wound inducible promoter. The tobacco pathogenesis related promoter PR-1a was modified by placing CaMV35S promoter on its upstream in reverse orientation. The resultant chimeric promoter CaMV35S(r)PR-1a expressed constitutively and was further up-regulated at the site of feeding by insects. It was induced more rapidly by treatment with salicylic acid (SA). The CaMV35S(r)PR-1a cry1EC expressing transgenic lines of cotton showed 100% mortality of Spodoptera litura larvae. The tightly regulated low-level expression of PR-1a was modified to a highly expressing constitutive expression by CaMV35S placed in reverse orientation. Salicylic acid treatment and wounding enhanced the expression further by the chimeric promoter. The leaves expressed more δ-endotoxin around the sites of insect bites. The levels of expression and induction varied among different transgenic lines, suggesting position effect. Some of the transgenic lines that expressed Cry1EC from the chimeric promoter at a low level also showed 100% mortality when induced with salicylic acid. A highly expressing insect bite and wound inducible promoter is desirable for developing insect resistant transgenic plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号