首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By assessing the development of Y-linked autoimmune acceleration (Yaa) gene-induced systemic lupus erythematosus in C57BL/6 (B6) x (New Zealand Black (NZB) x B6.Yaa)F(1) backcross male mice, we mapped three major susceptibility loci derived from the NZB strain. These three quantitative trait loci (QTL) on NZB chromosomes 1, 7, and 13 differentially regulated three different autoimmune traits: anti-nuclear autoantibody production, gp70-anti-gp70 immune complex (gp70 IC) formation, and glomerulonephritis. Contributions to the disease traits were further confirmed by generating and analyzing three different B6.Yaa congenic mice, each carrying one individual NZB QTL. The chromosome 1 locus that overlapped with the previously identified Nba2 (NZB autoimmunity 2) locus regulated all three traits. A newly identified chromosome 7 locus, designated Nba5, selectively promoted anti-gp70 autoantibody production, hence the formation of gp70 IC and glomerulonephritis. B6.Yaa mice bearing the NZB chromosome 13 locus displayed increased serum gp70 production, but not gp70 IC formation and glomerulonephritis. This locus, called Sgp3 (serum gp70 production 3), selectively regulated the production of serum gp70, thereby contributing to the formation of nephritogenic gp70 IC and glomerulonephritis, in combination with Nba2 and Nba5 in NZB mice. Among these three loci, a major role of Nba2 was demonstrated, because B6.Yaa Nba2 congenic male mice developed the most severe disease. Finally, our analysis revealed the presence in B6 mice of an H2-linked QTL, which regulated autoantibody production. This locus had no apparent individual effect, but most likely modulated disease severity through interaction with NZB-derived susceptibility loci.  相似文献   

2.
The F1 hybrids of New Zealand Black (NZB) and New Zealand White (NZW) mice spontaneously develop an autoimmune disease that serves as a model for human systemic lupus erythematosus. Autoimmunity in (NZB x NZW)F1 mice includes the production of autoantibodies to the endogenous retroviral envelope glycoprotein, gp70, and gp70-anti-gp70 immune complexes (gp70 IC) have been implicated in the development of lupus nephritis in these animals. We used backcross and intercross combinations of C57BL/6 (B6; low gp70 levels) and NZB mice (high gp70 levels) to examine the contribution of serum gp70 Ag levels to the development of gp70 IC and nephritis. Analysis of (B6.H2z x NZB)F1 x NZB backcross mice and (NZB x B6)F2 mice showed a much stronger association of gp70 IC with kidney disease compared with IgG anti-chromatin autoantibodies in both populations of mice. Serum levels of gp70 correlated with production of gp70 IC in mice producing autoantibodies, although the overall effect on nephritis appeared to be small. Genetic mapping revealed three NZB-derived regions on chromosomes 2, 4, and 13 that were strongly linked with increased gp70 levels, and together, accounted for over 80% of the variance for this trait. However, additional linkage analyses of these crosses showed that loci controlling autoantibody production rather than gp70 levels were most important in the development of nephritogenic immune complexes. Together, these studies characterize a set of lupus-susceptibility loci distinct from those that control autoantibody production and provide new insight into the components involved in the strong association of gp70 IC with murine lupus nephritis.  相似文献   

3.
By interval mapping of a backcross progeny between New Zealand White (NZW) and C57BL/6 (B6) mice bearing the Y chromosome-linked autoimmune acceleration gene Yaa, we previously identified a genetic locus on mid-chromosome 13, here designated as Sgp3, showing a major effect on the expression of a nephritogenic autoantigen, gp70. In this study, the NZW-derived Sgp3 region was transferred by backcross procedure and marker-assisted selection on the B6 background to produce three independent congenic strains B6.NZW-Sgp3/1, -Sgp3/2, and -Sgp3/3. We show that NZW homozygosity at a single 3 centiMorgans ( approximately 12 megabases (Mb)) interval between markers D13Mit142 and D13Mit254 mediates increased basal serum levels of gp70 in B6.NZW-Sgp3/1 and B6.NZW-Sgp3/2 mice and with a higher degree in males ( approximately 15 micro g/ml) than in females ( approximately 9 micro g/ml) as compared with B6 ( approximately 2 micro g/ml), revealing a gender effect. However, their gp70 levels are still lower than that of NZW mice ( approximately 60 micro g/ml). In addition, B6.NZW-Sgp3/1 and B6.NZW-Sgp3/2 mice showed a moderate 2- to 3-fold increase in serum gp70 in response to LPS, which contrasted with over a 10-fold increase in NZW mice. Although both B6.NZW-Sgp3/1 and B6.NZW-Sgp3/2 mice failed to produce significant amounts of gp70 anti-gp70 immune complexes, unexpectedly, aged B6.NZW-Sgp3/2 congenic males bearing the Yaa gene developed increased titers of IgG autoantibodies to DNA and chromatin. Our data indicate that Sgp3 is involved in a complex process of gp70 production under polygenic control and may provide a significant contribution to lupus susceptibility not only through up-regulation of gp70 autoantigen production but also predisposition to autoimmunity.  相似文献   

4.
We mated 129 mice (prototype strain of GIX + with C5713L/6 mice (prototype strain of GIX ) and thereby identified the gene controlling enhancement of serum gp70 production after lipopolysaccharide (LPS) injection. This gene has been tentatively designated Sgp-2. Sgp-2 is linked with the Hbb locus on chromosome 7. The estimated frequency of recombination between Sgp-2 and Hbb in this setting is about 20%.  相似文献   

5.
To investigate the possible effects of NZW genes on the class conversion of dsDNA-specific antibodies in NZB X NZW (B/W)F1 hybrids, we measured IgM, IgG1, and IgG2 dsDNA-specific antibodies, using the Crithidia luciliae kinetoplast immunofluorescence test, in NZB, NZW, B/W F1 hybrid, B/W F1 X NZB backcross, and B/W F1 X NZW backcross mice at 4, 7, and 10 months of age. The highest serum levels of IgM dsDNA-specific antibodies were observed in NZB mice at the ages tested; however, the amounts of IgG1 and IgG2 antibodies were scanty. In contrast, a large amount of both IgG1 and IgG2 dsDNA-specific antibodies was produced in B/W F1 hybrids, in which the serum IgM antibodies were lower than those observed in NZB mice. NZW mice were virtually negative for these antibodies. Progeny testing suggested that a combined effect of two unlinked dominant genes of the NZB strain determines the production of dsDNA-specific antibodies and that these genes only act to produce IgM antibodies. These traits are to a great degree modified by the NZW loci in B/W F1 hybrids, and a combined effect of two unlinked dominant genes leads to conversion of the class of the antibodies from IgM to IgG, which, in turn, increases the serum levels of dsDNA-specific antibodies. The F1 hybrid of C57BL/6 and NZW strains produced no dsDNA-specific antibodies, indicating that the relevant NZB predisposing genes are required for the NZW gene action. Linkage studies showed that one of such NZW genes is to some extent linked to the H-2 complex on chromosome 17, but not to Mup-1 (chromosome 4) or a coat color locus (chromosome 2). The appearance of IgG dsDNA-specific antibodies correlated well with the incidence of renal disease in B/W F1 X NZB backcross mice.  相似文献   

6.
The BM12 mutation and autoantibodies to dsDNA in NZB.H-2bm12 mice   总被引:4,自引:0,他引:4  
Molecular and genetic tools have been used to shed light on the genes that contribute to susceptibility to murine lupus and the mechanisms that lead to immunopathology. The MHC genes and their products have been consistently shown to contribute toward the development of disease. To understand the contribution of MHC-class II genes, our laboratory had derived two inbred strains of mice, NZB.H-2bm12 and NZB.H-2b. These new colonies of mice were studied and compared in the 10th generation backcross; inbreeding was serially followed by H-2 typing, responses to beef/porcine insulin, and the presence of the B6 Ig allotype, IgG2ab. Of great interest is the finding that NZB.H-2bm12, in contrast to NZB.H-2b or NZB (H-2d), mice develop high titer autoantibodies to dsDNA. This result is unique because NZB (H-2d) mice, unliked NZB x NZW (NZB/W F1) or NZB x SWR (SNF1) hybrids do not develop autoantibodies to dsDNA, even after immunization. NZB mice, in contrast, are characterized only by autoantibodies to ssDNA. Our observation is also striking because the gene conversion that resulted in the I-A beta bm12 mutation occurred at amino acid residues 68, 71, and 72 of I-E beta b. Recently the contribution of NZW to accelerated autoimmunity in the NZB x NZW F1 hybrid has also been linked to H-2 and a single amino acid change at amino acid 72 of I-E beta. Thus, amino acid residue 72 may be a hot spot for disorders of immune regulation when superimposed on the appropriate genetic background. NZB mice expressing the I-Abm12 mutation will allow specific dissection of the requirements for autoantibody production to dsDNA uncomplicated by heterozygosity.  相似文献   

7.
A high-level expression of a transgene, Ead, encoding the I-Ed alpha-chain is very effective in protection against murine lupus. To investigate the specific contribution of select H-2 haplotypes on the Ead transgene-mediated disease-suppressing effect, we generated H-2 congenic (NZB x BXSB)F1 hybrid mice bearing either H-2b/b, H-2d/b, or H-2d/d haplotype, and compared the transgene-mediated protective effect on the clinical development (autoantibody production and glomerulonephritis) of lupus in these F1 hybrids. The level of protection was most remarkable in mice bearing the I-E- H-2b/b haplotype but was only minimal in I-E+ H-2d/d F1 hybrids. Additional analysis demonstrated a marked suppression of lupus in I-E+ H-2k/k (MRL x BXSB)F1 hybrid mice, indicating that the transgene is able to suppress autoimmune responses even in mice already expressing I-E molecules at a homozygous level. Our results indicate that the level of the transgene-mediated protection is dependent on the host H-2 haplotype. This suggests that the autoimmune suppressive activity of the Ead transgene is likely to be determined through the interaction of the transgene product with the host MHC class II molecules, providing new insight into the role of MHC in lupus-like autoimmunity.  相似文献   

8.
We have previously demonstrated that the introduction of the bm12 mutation into NZB mice results in animals that spontaneously produce high titer IgG autoantibodies to dsDNA. The observation that NZB.H-2bm12 develop lupus although NZB.H-2b control mice do not, provides a unique system to study the role of Th cells in the production of antibodies to dsDNA. We have isolated, in the absence of a known stimulating autoantigen, a series of seven autoreactive T cell clones that provide help in vitro for the production of IgG anti-dsDNA antibodies by syngeneic B cells. The data on these seven cloned T cell lines was compared to two cloned T cell lines specific for keyhole limpet hemocyanin. The seven cloned T cell lines, coined clones 19D, 23G, 410F, 410H, C1, C15, and C52 all show significant help in vitro for production of IgM and IgG antibodies to ssDNA and dsDNA; antibody levels increased 7- to 30-fold compared to cultures without T cells. Clones C1, C15, and C52 were furthered studied and were shown to provide help for IgM antihistone and anti-OVA responses but provided significantly less help for IgG antibodies. In contrast, keyhole limpet hemocyanin-specific cloned T cell lines TK2 and TK5 provided help for IgM antibodies to ssDNA, dsDNA, and histone, but failed to significantly increase IgG antibodies to ssDNA, dsDNA, or histone. The cloned T cell lines were restricted to H-2bm12 and proliferated only in response to APC from NZB.H-2bm12 and B6.C-H-2bm12 but not NZB.H-2b or NZB.H-2d mice; their in vitro helper activity was inhibited by antibodies to class II. All cloned T cell lines expressed Thy-1, CD5, and TCR-alpha/beta. Three of the seven clones used TCR-V beta 4. However, the V beta expression of the four remaining autoreactive T cell clones could not be determined. All of the autoreactive cloned T cell lines produce significant IL-4 but no detectable IL-2 or IFN-gamma. We believe that HPLC-purified peptides eluted from I-Abm12 molecules from APC can potentially provide insight on the putative autoantigen.  相似文献   

9.
We elucidated previously that cytotoxic T lymphocyte precursors (CTLp) against H-43a allo-antigen, which we had discovered as a new mouse minor H antigen, were primed in H-43b mice only in the context of self H-2Kb restriction element, and that anti-H-43a CTLp tolerance was induced in H-43b mice by injection with H-43a spleen cells (SC) from H-43 congenic mice, i.e., under the condition of disparity at only the H-43 locus. The present study attempted to determine whether the H-2Kb restriction element for anti-H-43a CTLp priming is also implicated in the induction of anti-H-43a CTLp tolerance. For this purpose, we used a newly established H-43b C3W (H-2k) strain which is H-43 congenic to H-43a C3H/HeN. When (C3W X B10.MBR)F1 (H-43b, H-2Kk/b, Ik/k, Dk/q) mice were injected with H-43a-bearing (C3H/HeN X B10.AKM)F1 (H-43a/b;H-2Kk/k,Ik/k,Dk/q)SC, their selfH-2Kb-restricted anti-H-43a CTLp were were primed (cross-priming). By contrast, injection of H-43a-bearing (C3H/HeN X B10.MBR)F1 (H-43a/b; H-2Kk/b,Ik/k, Dk/q)SC, which differ from (C3H/HeN x B10.AKM) F1 SC solely at H-2K and possess H-2Kb molecules, did not prime but specifically inactivated the anti-H-43a CTLp of (C3W x B10.MBR)F1 mice. These results indicate clearly that anti-H-43a CTLp tolerance is induced exclusively in the context of the H-2Kb element expressed on the antigenic H-43a SC.  相似文献   

10.
The F(1) hybrid of New Zealand Black (NZB) and New Zealand White (NZW) mice develop an autoimmune disease similar to human systemic lupus erythematosus. Because NZB and (NZB x NZW)F(1) mice manifest expansions of marginal zone (MZ) B and B1a cells, it has been postulated that these B cell abnormalities are central to the NZB genetic contribution to lupus. Our previous studies have shown that a major NZB contribution comes from the Nba2 locus on chromosome 1. C57BL/6 (B6) mice congenic for Nba2 produce antinuclear Abs, and (B6.Nba2 x NZW)F(1) mice develop elevated autoantibodies and nephritis similar to (NZB x NZW)F(1) mice. We studied B cell populations of B6.Nba2 mice to better understand the mechanism by which Nba2 leads to disease. The results showed evidence of B cell activation early in life, including increased levels of serum IgM, CD69(+) B cells, and spontaneous IgM production in culture. However, B6.Nba2 compared with B6 mice had a decreased percentage of MZ B cells in spleen, and no increase of B1a cells in the spleen or peritoneum. Expansions of these B cell subsets were also absent in (B6.Nba2 x NZW)F(1) mice. Among the strains studied, B cell expression of beta(1) integrin correlated with differences in MZ B cell development. These results show that expansions of MZ B and B1a cells are not necessary for the NZB contribution to lupus and argue against a major role for these subsets in disease pathogenesis. The data also provide additional insight into how Nba2 contributes to lupus.  相似文献   

11.
We investigated the heterogeneity of the humoral immune responses to whole cells and lipopolysaccharide (LPS) of Actinobacillus actinomycetemcomitans serotype b and production of cytokines in inbred strains of mice. Nine such strains were tested: A/J (H-2(a)), C57BL/6 (H-2(b)), BALB/c (H-2(d)), DBA/2 (H-2(d)), B10.BR (H-2(k)), C3H/He (H-2(k)), C3H/HeJ (H-2(k)), DBA/1 (H-2(q)) and B10.S (H-2(s)). Mice were immunized intraperitoneally with whole cells of A. actinomycetemcomitans ATCC 43718 (serotype b) in phosphate buffered saline (PBS; pH 7.2) emulsified with an equal volume of Freund's incomplete adjuvant. Serum immunoglobulin G (IgG), immunoglobulin A (IgA) and immunoglobulin M (IgM) levels against A. actinomycetemcomitans were measured by an ELISA system. ELISA analysis, using LPS fractions from serotype a, b or c strains of A. actinomycetemcomitans as the coating antigens, revealed that mice strains C3H/He, C3H/HeJ, B10.BR and B10.S had an extremely high-IgM response against serotype b LPS. High-IgM titer sera contain also elevated levels of IgA antibodies to the antigen. To compare the cytokine production among inbred mice, the amounts of interleukin-4 (IL-4), interleukin-5 (IL-5), and interleukin-6 (IL-6) released from mouse splenocytes were measured using ELISA systems specific for these cytokines. A. actinomycetemcomitans serotype b LPS stimulation induced IL-6 release from murine splenocytes of all tested strains. However, IL-4 and IL-5 were detected only in high-IgM/IgA responders to A. actinomycetemcomitans serotype b LPS, not in low-IgM/IgA responders. Thus, we found a relationship between the humoral immune response to LPS of A. actinomycetemcomitans serotype b and production of type 2 cytokines by splenocytes.  相似文献   

12.
To assess whether the presence of a responder H-2b haplotype would be sufficient to allow mice of nonresponder "high leukemic" phenotype to generate syngeneic anti-AKR/Gross virus cytolytic T lymphocytes (CTL), the AKR.H-2b strain was examined. Although capable of mounting vigorous apparent anti-minor histocompatibility-specific CTL responses, AKR.H-2b mice failed to produce anti-viral CTL after a variety of stimulation protocols. In contrast, the "doubly congenic" AKR.H-2b:Fv-1b strain was able to respond with substantial levels of H-2-restricted anti-AKR/Gross virus CTL activity. These results indicated that Fv-1n alleles could exert negative epistatic control over responder H-2b-encoded gene(s). Because the B6.Fv-1n congenic was also able to generate anti-viral CTL indistinguishable from the prototype B6 strain, however, it was apparent that other genes of AKR background were required for the Fv-1n-mediated inhibition in AKR.H-2b mice. The mechanism by which Fv-1 intereacted with other genes to override positive H-2b control appeared to be related to the expression of the CTL-defined, virus-associated antigens by normal AKR.H-2b cells. Thus, AKR.H-2b spleen cells but not thymus cells were able to stimulate the production of B6 anti-AKR/Gross virus CTL and were recognized as target cells by such anti-viral CTL. In contrast, both spleen cells and thymocytes from AKR.H-2b:Fv-1b mice were negative when tested as stimulator or target cells in these assays. In addition, AKR.H-2b but not AKR.H-2b:Fv-1b spleen cells were shown to display serologically defined gp70 determinants and the Gross cell surface antigen. Taking these data together, it appeared that the inhibition of anti-viral CTL responsiveness might be due to tolerance induced by the cell surface expression of virus-associated antigens by normal AKR.H-2b cells. Widespread display of viral antigens, in turn, may have been due to the permissive effects of Fv-1n on the spread of the early arising N-ecotropic, endogenous AKR leukemia virus controlled by other background genes. In this context, the implications of the multi-gene control of anti-AKR/Gross virus CTL production are discussed with respect to the induction of spontaneous leukemia in the high incidence AKR strain.  相似文献   

13.
The lupus-like disease that develops in hybrids of NZB and NZW mice is genetically complex, involving both MHC- and non-MHC-encoded genes. Studies in this model have indicated that the H2d/z MHC type, compared with H2d/d or H2z/z, is critical for disease development. C57BL/6 (B6) mice (H2b/b) congenic for NZB autoimmunity 2 (Nba2), a NZB-derived susceptibility locus on distal chromosome 1, produce autoantibodies to nuclear Ags, but do not develop kidney disease. Crossing B6.Nba2 to NZW results in H2b/z F1 offspring that develop severe lupus nephritis. Despite the importance of H2z in past studies, we found no enhancement of autoantibody production or nephritis in H2b/z vs H2b/b B6.Nba2 mice, and inheritance of H2z/z markedly suppressed autoantibody production. (B6.Nba2 x NZW)F1 mice, compared with MHC-matched B6.Nba2 mice, produced higher levels of IgG autoantibodies to chromatin, but not to dsDNA. Although progressive renal damage with proteinuria only occurred in F1 mice, kidneys of some B6.Nba2 mice showed similar extensive IgG and C3 deposition. We also studied male and female B6.Nba2 and F1 mice with different MHC combinations to determine whether increased susceptibility to lupus among females was also expressed within the context of the Nba2 locus. Regardless of MHC or the presence of NZW genes, females produced higher levels of antinuclear autoantibodies, and female F1 mice developed severe proteinuria with higher frequencies. Together, these studies help to clarify particular genetic and sex-specific influences on the pathogenesis of lupus nephritis.  相似文献   

14.
Early in life, mice of four kinds [NZB, (NZB X NZW)F1, MRL/1, and male BXSB] with autoimmune disease spontaneously produced far more (greater than 3 S.D.) anti-hapten antibody-forming cells in spleens and greater concentrations of anti-hapten antibodies in sera than immunologically normal strains of mice (AKR, BALB/c, C57BL/6, DBA/1-J, DBA/2J, LG/J, 129, NZW, and female BXSB). This increased nonspecific antibody production by the abnormal animals' B cells correlated well with the spontaneous development of anti-single-stranded DNA antibodies, but not with serum levels of the viral envelope glycoprotein, gp70. These results suggest that the spontaneous formation of autoantibodies in mice whose immunologic disorder is manifested by a lupus-like disease may result from polyclonal activation of B cells by endogenous or exogenous B cell activators.  相似文献   

15.
The genetic control of susceptibility to tolerance induction with human gamma-globulin (HGG) was studied by using H-2 congenic mice. Strains tested that were congenic with C57BL/10Sn were completely tolerized by 1.0 mg deaggregated HGG. In contrast A/Sn mice showed full tolerance whereas A.SW mice were only intermediately tolerant. It was further shown that (B10 X SJL)F1 mice could be rendered tolerant but (B10.S X SJL)F1 mice could not. These data indicate a role for H-2 linked genes in control of tolerance susceptibility. Results obtained with the progeny of (B10.S X SJL)F1 backcrossed to B10.S indicate that two non-H-2 linked genes are involved in control of tolerance induction. Preliminary mapping studies show the H-2 gene located to the left of the IC subregion. These results confirm our previous finding that both H-2 and non-H-2 genes control susceptibility of adult mice to tolerance induction with HGG.  相似文献   

16.
Lethally irradiated F1 mice, heterozygous at the hematopoietic histocompatibility locus Hh-1, which is linked with H-2Db, reject bone marrow grafts from H-2b parents. This hybrid resistance (HR) is reduced by prior injection of H-2b parental spleen cells. Because injection of parental spleen cells produces a profound suppression of F1 immune functions, we investigated whether parental-induced abrogation of HR was due to graft-vs-host-induced immune deficiency (GVHID). HR was assessed by quantifying engraftment of H-2b bone marrow in F1 mice with the use of splenic [125I]IUdR uptake; GVHID, by the ability of F1 spleen cells to generate cytotoxic T lymphocytes (CTL) in vitro. We observed a correlation in the time course and spleen cell dose dependence between loss of HR and GVHID. Both GVHID and loss of HR were dependent on injection of parental T cells; nude or T-depleted spleen cells were ineffective. The injection of B10 recombinant congenic spleens into (B10 X B10.A)F1 mice, before grafting with B10 marrow, demonstrated that only those disparities in major histocompatibility antigens that generated GVH would result in loss of HR. Thus, spleens from (B10 X B10.A(2R]F1 mice (Class I disparity only) did not induce GVHID or affect HR, whereas (B10 X B10.A(5R))F1 spleens (Class I and II disparity) abrogated CTL generation and HR completely. GVHID produced by a class II only disparity, as in (B10 X B10.A(5R))F1 spleens injected into (B6bm12 X B10.A(5R))F1 mice, was also sufficient to markedly reduce HR to B10 bone marrow. This evidence that GVHID can modulate hematopoietic graft rejection may be relevant to the mechanisms of natural resistance to marrow grafts in man.  相似文献   

17.
A series of H-2 and non-H-2 congenic resistant (CR) strains on a C57BL/10Sn background were infected with 10(7) amastigotes of Leishmania donovani. Non-H-2 congenic strains B10.LP-H-3b and B10.CE(30NX) and (B10.LP-H-3b x B10)F1 hybrids showed a very rapid decrease in liver-parasite burdens beyond day 21. Parasite counts for these strains at day 35 were significantly lower than for all other strains tested. The rapid decrease in parasite numbers, massive lymphocellular infiltration into the liver and strong delayed hypersensitivity reactions to parasite antigens in strains congenic for a portion of chromosome 2 indicated that acquired immunity to L. donovani was controlled by a dominant gene at or near the Ir-2 locus. In addition, B10.129(10M) mice, which differ from C57BL/10Sn at the H-11 locus, showed highly significant increases in parasite numbers at day 35. Other observations supporting the absence of acquired immunity in B10.129(10M) included negative delayed hypersensitivity tests to parasite antigens and the absence of lymphocellular infiltrate into the liver. Although the differences were not as pronounced, H-2 CR strains with H-2b, H-2a, and H-2k haplotypes also showed significantly greater decreases in parasite numbers by day 35 as compared to other H-2 CR strains.  相似文献   

18.
19.
Cytotoxic lymphocyte (CTL) responses are not usually generated during primary mixed leukocyte culture (MLC) with H-2 identical cells. Thus NZB mice are unusual in that their spleen cells do mount CTL responses during primary MLC with H-2d identical stimulator cells; the predominant target antigen for these NZB responses is Qa-1b. Considering the numerous immunoregulatory defects in NZB mice, we postulated that these NZB anti-Qa-1 primary CTL responses were due to an abnormality in T suppressor cell activity. Cellular interactions capable of suppressing NZB anti-Qa-1 primary CTL responses were investigated by using one-way and two-way MLC with spleen cells from NZB mice and other H-2d strains. Although H-2d identical one-way MLC with the use of NZB responders resulted in substantial CTL responses, only minimal CTL responses were detected from two-way MLC with the use of NZB spleen cells plus nonirradiated spleen cells from other H-2d mice. Thus the presence of non-NZB spleen cells in the two-way H-2d identical MLC prevented the generation of NZB CTL. Noncytotoxic mechanisms were implicated in the suppression of the NZB CTL responses during two-way MLC, because only minimal CTL activity was generated when NZB spleen cells were cultured with semiallogeneic, H-2d identical (e.g., NZB X BALB) F1 spleen cells. The observed suppression could be abrogated with as little as 100 rad gamma-irradiation to the non-NZB spleen cells. The phenotype of these highly radiosensitive spleen cells was Thy-1+, Lyt-1+, Lyt-2-, L3T4+. The functional presence of these cells in the spleens of semiallogeneic, H-2d identical F1 mice indicated that their deficiency in NZB mice was a recessive trait. These data suggest that NZB mice lack an L3T4+ cell present in the spleens of normal mice that is capable of suppressing primary anti-Qa-1 CTL responses. This model system should facilitate additional investigations of the cellular interactions and immunoregulatory mechanisms responsible for controlling primary CTL responses against non-H-2K/D class I alloantigens. The model may also provide insight into the immunoregulatory defects of autoimmune NZB mice.  相似文献   

20.
The lupus-prone New Zealand Black (NZB) strain uniquely develops a genetically imposed severe spontaneous autoimmune hemolytic anemia (AIHA) that is very similar to the corresponding human disease. Previous studies have mapped anti-erythrocyte Ab (AEA)-promoting NZB loci to several chromosomal locations, including chromosome 4; however, none of these have been analyzed with interval congenics. In this study, we used NZB.NZW-Lbw2 congenic (designated Lbw2 congenic) mice containing an introgressed fragment of New Zealand White (NZW) on chromosome 4 encompassing Lbw2, a locus previously linked to survival, glomerulonephritis, and splenomegaly, to investigate its role in AIHA. Lbw2 congenic mice exhibited marked reductions in AEAs and splenomegaly but not in anti-nuclear Abs. Furthermore, Lbw2 congenics had greater numbers of marginal zone B cells and reduced expansion of peritoneal cells, particularly the B-1a cell subset at early ages, but no reduction in B cell response to LPS. Analysis of a panel of subinterval congenic mice showed that the full effect of Lbw2 on AEA production was dependent on three subloci, with splenomegaly mapping to two of the subloci and expansions of peritoneal cell populations, including B-1a cells to one. These results directly demonstrated the presence of AEA-specific promoting genes on NZB chromosome 4, documented a marked influence of background genes on autoimmune phenotypes related to Lbw2, and further refined the locations of the underlying genetic variants. Delineation of the Lbw2 genes should yield new insights into both the pathogenesis of AIHA and the nature of epistatic interactions of lupus-modifying genetic variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号