首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
干细胞参与组织再生的一种机制:细胞融合   总被引:1,自引:0,他引:1  
干细胞的研究开创了生命科学革命性的进程,人们将通过这一研究找到攻克诸如心血管疾病、神经退行性疾病、癌症、糖尿病等顽症的方法,因而这一工程又被称之为治疗人类疾病的“希望工程”。然而,人们对干细胞在组织修复和再生过程中的作用机制还知之甚少,目前认为干细胞横向分化能力及干细胞的融合是其主要的,也是最有争议的两种可能的机制。细胞融合在发育过程中是不可或缺的,如果人体内不能进行正常的细胞融合,将产生因精卵不融合造成的不孕、骨骼石化症、肌营养不良等疾病,而将干细胞融合应用于临床治疗的研究也日渐兴起。本文对干细胞参与组织再生和修复过程中与细胞融合相关的研究进展进行了综述,概述了干细胞融合的机制,分析了体内融合产生的原因及条件,以期为今后这方面的研究提供理论基础。  相似文献   

2.
In spite of the extensive potential of human mesenchymal stem cells (hMSCs) in cell therapy, little is known about the molecular mechanisms that regulate their therapeutic properties. We aimed to identify microRNAs (miRNAs) involved in controlling the transition between the resting and reparative phenotypes of hMSCs, hypothesizing that these miRNAs must be present in the undifferentiated cells and downregulated to allow initiation of distinct activation/differentiation programs. Differential miRNA expression analyses revealed that miR-335 is significantly downregulated upon hMSC differentiation. In addition, hMSCs derived from a variety of tissues express miR-335 at a higher level than human skin fibroblasts, and overexpression of miR-335 in hMSCs inhibited their proliferation and migration, as well as their osteogenic and adipogenic potential. Expression of miR-335 in hMSCs was upregulated by the canonical Wnt signaling pathway, a positive regulator of MSC self-renewal, and downregulated by interferon-γ (IFN-γ), a pro-inflammatory cytokine that has an important role in activating the immunomodulatory properties of hMSCs. Differential gene expression analyses, in combination with computational searches, defined a cluster of 62 putative target genes for miR-335 in hMSCs. Western blot and 3'UTR reporter assays confirmed RUNX2 as a direct target of miR-335 in hMSCs. These results strongly suggest that miR-335 downregulation is critical for the acquisition of reparative MSC phenotypes.  相似文献   

3.
In equine medicine, stem cell therapies for orthopaedic diseases are routinely accompanied by application of NSAIDs (non-steroidal anti-inflammatory drugs). Thus, it has to be analysed how NSAIDs actually affect the growth and differentiation potential of MSCs (mesenchymal stem cells) in vitro in order to predict the influence of NSAIDs such as phenylbutazone, meloxicam, celecoxib and flunixin on MSCs after grafting in vivo. The effects of NSAIDs were evaluated regarding cell viability and proliferation. Additionally, the multilineage differentiation capacity and cell migration was analysed. NSAIDs at lower concentrations (0.1-1 μM for celecoxib and meloxicam and 10-50 μM for flunixin) exert a positive effect on cell proliferation and migration, while at higher concentrations (10-200 μM for celecoxib and meloxicam and 100-1000 μM for flunixin and phenylbutazone), there is rather a negative influence. While there is hardly any influence on the adipogenic as well as on the chondrogenic MSC differentiation, the osteogenic differentiation potential, as demonstrated with the von Kossa staining, is significantly disturbed. Thus, it can be concluded that the effects of NSAIDs on MSCs are largely dependent on the concentrations used. Additionally, for some differentiation lineages, also the choice of NSAID is critical.  相似文献   

4.
The P2X7 receptor is an ion‐gated channel, which is activated by high extracellular concentrations of adenosine triphosphate (ATP). Activation of P2X7 receptors has been shown to induce neuroinflammatory changes associated with several neurological conditions. The matrix metalloproteinases (MMPs) are a family of endopeptidases that have several functions including degradation of the extracellular matrix, cell migration and modulation of bioactive molecules. The actions of MMPs are prevented by a family of protease inhibitors called tissue inhibitors of metalloproteinases (TIMPs). In this study, we show that ATP‐treated glial cultures from neonatal C57BL/6 mice release and increase MMP‐9 activity, which is coupled with a decrease in release of TIMP‐1 and an increase in activated cathepsin B within the extracellular space. This process occurs independently of NLRP3‐inflammasome formation. Treatment with a P2X7 receptor antagonist prevents ATP‐induced MMP‐9 activity, inhibition of active cathepsin B release and allows for TIMP‐1 to be released from the cell. We have shown that cathepsin B degrades TIMP‐1, and inhibition of cathepsin B allows for release of TIMP‐1 and inhibits MMP‐9 activity. We also present data that indicate that ATP or cell damage induces glial cell migration, which is inhibited by P2X7 antagonism, depletion of MMP‐9 or inhibition of cathepsin B.  相似文献   

5.
6.
Stem cell factor (SCF) activates a variety of signals associated with stimulation of proliferation, differentiation, migration, and survival in melanocytes. However, the molecular mechanisms by which SCF and its receptor Kit activates these signaling pathways simultaneously and independently are still poorly defined. Here, we examined whether SCF induces ezrin/radixin/moesin (ERM) proteins phosphorylation as a downstream target of PI3K in melanocytes. ERM proteins are cross-linkers between the plasma membrane and the actin cytoskeleton and are activated by phosphorylation of a C-terminal threonine residue. Our results demonstrated that SCF-induced ERM proteins phosphorylation on threonine residue and Rac1 activation in cultured normal human melanocytes through the activation of PI3K. The functional role of phosphorylated-ERM proteins was examined using melanocytes infected with adenovirus carrying a dominant negative mutant (Ala-558, TA) or wild type of moesin. In the TA moesin-overexpressing melanocytes, SCF-induced cell proliferation and migration were inhibited. Thus, our results indicate that phosphorylation of ERM proteins plays an important role in the regulation of SCF-induced melanocyte proliferation and migration.  相似文献   

7.
High-throughput screening has become a popular method used to identify new “leads” for potentially therapeutic compounds. Further screening of these lead compounds is typically done with secondary assays which may utilize living, functioning cells as screening tools. A problem (or benefit) with these cell-based assays is that living cells are very sensitive to their environment. We have been interested in the process of stem cell migration and how it relates to the cellular therapy of bone marrow transplantation. In this study we describe a secondary, cell-based assay for screening the effects of variousin-vitro conditions on Immature Hematopoietic Cell (IHC) migration. Our results have revealed many subtle factors, such as the cell's adhesive characteristics, or the effect of a culture's growth phase, that need to be accounted for in a screening protocol. Finally, we show that exponentially growing KG1a cells (a human IHC cell line) were 10 times more motile than those in the lag or stationary phases. These data strongly suggest that KG1a cells secrete a chemokinetic factor during the exponential growth phase of a culture.  相似文献   

8.
A novel method to quantify cell migration through potential tissue engineering 3-d scaffolds is described. The migration assay uses a dot-blotting apparatus into which the tissue engineering matrix is placed on top of a nitrocellulose membrane. This assay was used to evaluate human dermal fibroblast migration through four porcine collagen matrices with varying pore diameters and pitch lengths. Fibroblasts were placed on the matrix surface, at between 1 ×103–3 × 103 cells mm–2, and left for 18 h to allow migration. The nitrocellulose membrane was stained with haematoxylin, the membrane digitised and the pixel intensity of the stained cells quantified. We showed that for all matrix variants, migration was more effective with a higher initial seeding density. The application of varying initial cell densities resulted in the greatest extent of cell migration through the matrix variant with pores of 30 m diameter and 400 m pitch length (i.e. 10.3% migration at 1 ×103 cells mm–2). This method was coupled with confocal microscopy to evaluate the depth of cell migration within the matrix. At a depth of 20 m cell numbers were similar to those on the matrix surface: at a depth of 100 m only a few cells were observed.  相似文献   

9.
10.
Cell death is an integral part of the life of an organism being necessary for the maintenance of organs and tissues. If, however, cell death is allowed to proceed unrestricted, tissue damage and degenerative disease may ensue. Until recently, three morphologically distinct types of cell death were recognized, apoptosis (type I), autophagy (type II) and necrosis (type III). Apoptosis is a highly regulated, genetically determined mechanism designed to dismantle cells systematically (e.g. cells that are no longer functionally viable), via protease (caspase) action, and maintain homeostasis. Autophagy is responsible for the degradation of cytoplasmic material, e.g. proteins and organelles, through autophagosome formation and subsequent proteolytic degradation by lysosomes, and is normally considered in the context of survival although it is sometimes associated with cell death. Necrosis was formerly considered to be an accidental, unregulated form of cell death resulting from excessive stress, although it has been suggested that this is an over-simplistic view as necrosis may under certain circumstances involve the mobilization of specific transduction mechanisms. Indeed, recently, an alternative death pathway, termed necroptosis, was delineated and proposed as a form of 'programmed necrosis'. Identified with the aid of specific inhibitors called necrostatins, necroptosis shares characteristics with both necrosis and apoptosis. Necroptosis involves Fas/tumour necrosis factor-α death domain receptor activation and inhibition of receptor-interacting protein I kinase, and it has been suggested that it may contribute to the development of neurological and myocardial diseases. Significantly, necrostatin-like drugs have been mooted as possible future therapeutic agents for the treatment of degenerative conditions.  相似文献   

11.
The migration of epidermal stem cells (EpSCs) is critical for wound re-epithelization and wound healing. Recently, growth/differentiation factor-5 (GDF-5) was discovered to have multiple biological effects on wound healing; however, its role in EpSCs remains unclear. In this work, recombinant mouse GDF-5 (rmGDF-5) was found via live imaging in vitro to facilitate the migration of mouse EpSCs in a wound-scratch model. Western blot and real-time PCR assays demonstrated that the expression levels of RhoA and matrix metalloproteinase-9 (MMP9) were correlated with rmGDF-5 concentration. Furthermore, we found that rmGDF-5 stimulated mouse EpSC migration in vitro by regulating MMP9 expression at the mRNA and protein levels through the RhoA signalling pathway. Moreover, in a deep partial-thickness scald mouse model in vivo, GDF-5 was confirmed to promote EpSC migration and MMP9 expression via RhoA, as evidenced by the tracking of cells labelled with 5-bromo-2-deoxyuridine (BrdU). The current study showed that rmGDF-5 can promote mouse EpSC migration in vitro and in vivo and that GDF-5 can trigger the migration of EpSCs via RhoA-MMP9 signalling.  相似文献   

12.
In order to define the relative contribution of the proteolytic domain and the receptor-binding domain of urokinase plasminogen activator (uPA) toward its mitogenic properties we studied the effects of different uPA isoforms on migration and proliferation of human aortic smooth muscle cells (hSMC). The isoforms tested included native human glycosylated uPA, and two recombinant uPA forms, namely a recombinant uPA with wild type structure (r-uPA), and a uPA-mutant in which the first 24 N-terminal amino acid residues of the receptor binding domain were replaced by 13 foreign amino acid residues (r-uPAmut). Cell migration was evaluated using a micro-Boyden chamber assay, and cell proliferation assessed by measurement of [3H]-thymidine incorporation into DNA. Competition binding studies on hSMC using 125I-r-uPA as ligand demonstrated that r-uPA and r-uPAmut exhibited equivalent displacement profiles. However, migration of hSMC was promoted by r-uPA and not by r-uPAmut. r-uPA-induced migration occurred at concentrations (half-maximally effective concentration of 2 nM) approximating the Kd for uPA-uPAR binding (1 nM). r-uPA-induced migration was not affected by the plasmin inhibitor aprotinin. In contrast to their differential chemotactic properties, uPA, r-uPA and r-uPAmut, which possess similar proteolytic activities, all stimulated [3H]-thymidine incorporation in hSMC. Since the [3H]-thymidine incorporation response to each isoform occurred at concentrations (> 50 nM) much higher than necessary for uPAR saturation by ligand (1 nM), this mitogenic response may be independent of binding to uPAR. [3H]-thymidine incorporation responses to r-uPA and -uPAmut were sensitive to the plasmin inhibitor aprotinin, and uPA stimulated DNA synthesis was inhibited by plasminogen activator inhibitor. We conclude that hSMC migration in response to uPA depends upon on its binding to uPAR, whereas uPA-stimulated DNA synthesis in these cells requires proteolysis and plasmin generation.  相似文献   

13.
14.
Heterotopic ossification is common in tendon healing after trauma, but the detailed mechanisms remain unknown. Tendon-derived stem cells (TDSCs) are a type of progenitor cell found in the tendon niche, and their incorrect differentiation after trauma may lead to tendon calcification. The expression of hepatocyte growth factor (HGF) presents drastic fluctuations in serum/tissue after trauma and was found to activate quiescent stellate cells and contribute to wound healing; however, its potential role in TDSCs remains elusive. In this study, TDSCs isolated from rats were cultured in media containing HGF with or without a signaling inhibitor, and the proliferation, migration, and differentiation ability of TDSCs were measured to determine the role and mechanism of HGF in TDSCs. We showed that HGF promotes TDSC proliferation and migration but inhibits TDSC osteogenic differentiation ability. HGF activated-HGF/c-Met, mitogen-activated protein kinase (MAPK)/extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling, which was positively correlated with TDSCs proliferation and migration but negatively related to TDSC osteogenic differentiation ability. The phosphorylation of Smad1/5/8 was also negatively related to HGF/c-Met, MAPK/ERK1/2, and PI3K/AKT signaling, which demonstrated that the inhibition of osteogenic differentiation was dependent on BMP/Smad1/5/8 signaling. Overall, we showed that HGF could promote TDSCs proliferation and migration and inhibit osteogenic differentiation in vitro, suggesting a potential role for HGF as a cytokine treatment of tendon trauma.  相似文献   

15.
Mesenchymal stem cells (MSCs) are a population of primary and non-specialized cells, which can be isolated from various tissues. Currently, MSCs are key players in cellular therapy and regenerative medicine. However, the possibility of using MSCs in the treatment of many diseases needs to be preceded, though, by in-depth analysis of their properties, especially by determining the mechanism of tissue homing as well as the mechanism, due to which cells contribute to tissue regeneration. This review is intended to present information on recent findings regarding the mechanism of recruitment and tissue homing by MSCs and discuss current hypotheses for how MSCs can reach target tissues.  相似文献   

16.
Kim M  Yoon S  Lee S  Ha SA  Kim HK  Kim JW  Chung J 《PloS one》2012,7(4):e35100
Gremlin-1, a bone morphogenetic protein (BMP) antagonist, is overexpressed in various cancerous tissues but its role in carcinogenesis has not been established. Here, we report that gremlin-1 binds various cancer cell lines and this interaction is inhibited by our newly developed gremlin-1 antibody, GRE1. Gremlin-1 binding to cancer cells was unaffected by the presence of BMP-2, BMP-4, and BMP-7. In addition, the binding was independent of vascular endothelial growth factor receptor-2 (VEGFR2) expression on the cell surface. Addition of gremlin-1 to A549 cells induced a fibroblast-like morphology and decreased E-cadherin expression. In a scratch wound healing assay, A549 cells incubated with gremlin-1 or transfected with gremlin-1 showed increased migration, which was inhibited in the presence of the GRE1 antibody. Gremlin-1 transfected A549 cells also exhibited increased invasiveness as well as an increased growth rate. These effects were also inhibited by the addition of the GRE1 antibody. In conclusion, this study demonstrates that gremlin-1 directly interacts with cancer cells in a BMP- and VEGFR2-independent manner and can induce cell migration, invasion, and proliferation.  相似文献   

17.
Angiogenesis is a fundamental step in several important physiological events and pathological conditions including embryonic development, wound repair, tumor growth and metastasis. PRKX was identified as a novel type-I cAMP-dependent protein kinase gene expressed in multiple developing tissues. PRKX has also been shown to be phylogenetically and functionally distinct from PKA. This study presents the first evidence that PRKX stimulates endothelial cell proliferation, migration, and vascular-like structure formation, which are the three essential processes for angiogenesis. In contrast, classic PKA demonstrated an inhibitory effect on endothelia vascular-like structure formation. Our findings suggest that PRKX is an important protein kinase engaged in the regulation of angiogenesis and could play critical roles in various physiological and pathological conditions involving angiogenesis. PRKX binds to Pin-1, Magi-1 and Bag-3, which regulate cell proliferation, apoptosis, differentiation and tumorigenesis. The interaction of PRKX with Pin-1, Magi-1 and Bag-3 could contribute to the stimulating role of PRKX in angiogenesis.  相似文献   

18.
Recent studies have observed that lncRNAs (long non-coding RNAs) are involved in the progression of various tumours including tongue squamous cell carcinoma (TSCC). Recently, a new lnRNA, GACAT1, has been firstly identified in gastric cancer. However, its potential role in TSCC remains unknown. In this reference, we observed that GACAT1 was overexpressed in TSCC samples and cell lines. Of 25 TSCC specimens, GACAT1 expression was overexpressed in 18 patients (18/25, 72%) compared to non-tumour specimens. Ectopic expression of GACAT1 induced cell growth and migration and promoted epithelial to mesenchymal transition in TSCC. In addition, ectopic expression of GACAT1 decreased miR-149 expression in SCC1 cell. We observed that miR-149 expression was down-regulated in TSCC cell lines. Moreover, we observed that GACAT1 expression was negatively correlated with miR-149 expression. GACAT1 overexpression induced TSCC cell growth and migration via regulating miR-149 expression. These data provided that GACAT1 played an oncogenic role in the progression of TSCC partly through modulating miR-149 expression.  相似文献   

19.
20.
Bone resorption is linked to bone formation via temporal and spatial coupling within the remodeling cycle. Several lines of evidence point to the critical role of coupling factors derived from pre-osteoclasts (POCs) during the regulation of bone marrow-derived mesenchymal stem cells (BMMSCs). However, the role of glial cell-derived neurotrophic factor (GDNF) in BMMSCs is not completely understood. Herein, we demonstrate the role of POC-derived GDNF in regulating the migration and osteogenic differentiation of BMMSCs. RNA sequencing revealed GDNF upregulation in POCs compared with monocytes/macrophages. Specifically, BMMSC migration was inhibited by a neutralizing antibody against GDNF in pre-osteoclast-conditioned medium (POC-CM), whereas treatment with a recombinant GDNF enhanced migration and osteogenic differentiation. In addition, POC-CM derived from GDNF knockdowned bone marrow macrophages suppressed BMMSC migration and osteogenic differentiation. SPP86, a small molecule inhibitor, inhibits BMMSC migration and osteogenic differentiation by targeting the receptor tyrosine kinase RET, which is recruited by GDNF into the GFRα1 complex. Overall, this study highlights the role of POC-derived GDNF in BMMSC migration and osteogenic differentiation, suggesting that GDNF regulates bone meta-bolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号