首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
The technique of back-transplantation was used to investigate the developmental potential of neural crest-derived cells that have migrated to and colonized the avian bowel. Segments of quail bowel (removed at E4) were grafted between the somites and neural tube of younger (E2) chick host embryos. Grafts were placed at a truncal level, adjacent to somites 14-24. Initial experiments, done in vitro, confirmed that crest-derived cells are capable of migrating out of segments of foregut explanted at E4. The foregut, which at E4 has been colonized by cells derived from the vagal crest, served as the donor tissue. Comparative observations were made following grafts of control tissues, which included hindgut, lung primordia, mesonephros and limb bud. Additional experiments were done with chimeric bowel in which only the crest-derived cells were of quail origin. Targets in the host embryos colonized by crest-derived cells from the foregut grafts included the neural tube, spinal roots and ganglia, peripheral nerves, sympathetic ganglia and the adrenals, but not the gut. Donor cells in these target organs were immunostained by the monoclonal antibody, NC-1, indicating that they were crest-derived and developing along neural or glial lineages. Some of the crest-derived cells (NC-1-immunoreactive) that left the bowel and reached sympathetic ganglia, but not peripheral nerves or dorsal root ganglia, co-expressed tyrosine hydroxylase immunoreactivity, a neural characteristic never expressed by crest-derived cells in the avian gut. None of the cells leaving enteric back-grafts produced pigment. Cells of mesodermal origin were also found to leave donor explants and aggregate in dermis and feather germs near the grafts. These observations indicate that crest-derived cells, having previously migrated to the bowel, retain the ability to migrate to distant sites in a younger embryo. The routes taken by these cells appear to reflect, not their previous migratory experience, but the level of the host embryo into which the graft is placed. Some of the population of crest-derived cells that leave the back-transplanted gut remain capable of expressing phenotypes that they do not express within the bowel in situ, but which are appropriate for the site in the host embryo to which they migrate.  相似文献   

3.
The enteric nervous system is formed by cells that migrate to the bowel from the neural crest. Previous experiments have established that avian crest cells in vitro will colonize explants of murine bowel and there give rise to neurons. It has been proposed that phenotypic expression by the crest-derived precursors of enteric neurons and glia is critically influenced by the microenvironment these cells encounter within the gut. To test this hypothesis, quail crest cells were cocultured with explants of control or presumptive aganglionic bowel from the ls/ls mutant mouse, and the effects of the enteric tissue on five phenotypic markers of crest cell development were followed. Aganglionosis develops in the terminal region of the colon of the ls/ls mouse because viable crest-derived neural and glial precursors fail to colonize this tissue. Expression of the phenotypic markers in the cocultures was compared with that in cultures of crest alone, crest plus neural tube, and gut grown alone. The markers examined were melanogenesis and immunostaining with antisera to 5-hydroxytryptamine (5-HT) and tyrosine hydroxylase (TH) and the monoclonal antibodies, NC-1 and GlN1. Explants of control, but not presumptive aganglionic ls/ls gut were found to increase the incidence of the expression of 5-HT and NC-1 immunoreactivities; moreover, especially near the gut, the assumption of a neuronal morphology by 5-HT-, NC-1-, and GlN1-immunoreactive cells was also increased. Coincidence of expression of 5-HT with NC-1 and GlN1 immunoreactivities was observed. The effect of the bowel was selective in that the expression of TH immunoreactivity, which is not a marker of mature enteric neurons, was reduced rather than enhanced. The effect of enteric explants on crest cell development was specific in that it was not mimicked by explants of metanephros, which inhibited expression of 5-HT immunoreactivity and the acquisition of a neuritic form by NC-1-immunoreactive cells. It is concluded that the enteric microenvironment affects the phenotypic expression of subsets of crest cells and that this action of the bowel is manifested in vitro. The inability of presumptive aganglionic gut from ls/ls mice to influence neural phenotypic expression may be due to the failure of this tissue to produce putative factor(s) required for the effect or to the inability of the crest-derived precursor cells to migrate into the abnormal enteric tissue.  相似文献   

4.
Deregulation of mechanisms that control cell motility plays a key role in tumor progression by promoting tumor cell dissemination. Secreted netrins and their receptors, Deleted in Colorectal Cancer (DCC), neogenin, and the UNC5 homologues, regulate cell and axon migration, cell adhesion, and tissue morphogenesis. Netrin and netrin receptor expression have previously been shown to be disrupted in invasive tumors, including glioblastoma. We determined that the human glioblastoma cell lines U87, U343, and U373 all express neogenin, UNC5 homologues, and netrin-1 or netrin-3, but only U87 cells express DCC. Using transfilter migration assays, we demonstrate DCC-dependent chemoattractant migration of U87 cells up a gradient of netrin-1. In contrast, U343 and U373 cells, which do not express DCC, were neither attracted nor repelled. Ectopic expression of DCC by U343 and U373 cells resulted in these cells becoming competent to respond to a gradient of netrin-1 as a chemoattractant, and also slowed their rate of spontaneous migration. Here, in addition to netrins' well-characterized chemotropic activity, we demonstrate an autocrine function for netrin-1 and netrin-3 in U87 and U373 cells that slows migration. We provide evidence that netrins promote the maturation of focal complexes, structures associated with cell movement, into focal adhesions. Consistent with this, netrin, DCC, and UNC5 homologues were associated with focal adhesions, but not focal complexes. Disrupting netrin or DCC function did not alter cell proliferation or survival. Our findings provide evidence that DCC can slow cell migration, and that neogenin and UNC5 homologues are not sufficient to substitute for DCC function in these cells. Furthermore, we identify a role for netrins as autocrine inhibitors of cell motility that promote focal adhesion formation. These findings suggest that disruption of netrin signalling may disable a mechanism that normally restrains inappropriate cell migration.  相似文献   

5.
The ENS resembles the brain and differs both physiologically and structurally from any other region of the PNS. Recent experiments in which crest cell migration has been studied with DiI, a replication-deficient retrovirus, or antibodies that label cells of neural crest origin, have confirmed that both the avian and mammalian bowel are colonized by émigrés from the sacral as well as the vagal level of the neural crest. Components of the extracellular matrix, such as laminin, may play roles in enteric neural and glial development. The observation that an overabundance of laminin develops in the presumptive aganglionic region of the gut in Is/Is mutant mice and is associated with the inability of crest-derived cells to colonize this region of the bowel has led to the hypothesis that laminin promotes the development of crest-derived cells as enteric neurons. Premature expression of a neuronal phenotype would cause crest-derived cells to cease migrating before they complete the colonization of the gut. The acquisition by crest-derived cells of a nonintegrin, nervespecific, 110 kD laminin-binding protein when they enter the bowel may enable these cells to respond to laminin differently from their pre-enteric migrating predecessors. Crest-derived cells migrating along the vagal pathway to the mammalian gut are transiently catecholaminergic (TC). This phenotype appears to be lost rapidly as the cells enter the bowel and begin to follow their program of terminal differentiation. The appearance and disappearance of TC cells may thus be an example of the effects of the enteric microenvironment on the differentiation of crest-derived cells in situ. Crest-derived cells can be isolated from the enteric microenvironment by immunoselection, a method that takes advantage of the selective expression on the surfaces of crest-derived cells of certain antigens. One neurotrophin, NT-3, promotes the development of enteric neurons and glia in vitro. Because trkC is expressed in the developing and mature gut, it seems likely that NT-3 plays a critical role in the development of the ENS in situ. Although the factors that are responsible for the development of the unique properties of the ENS remain unknown, progress made in understanding enteric neuronal development has recently accelerated. The application of new techniques and recently developed probes suggest that the accelerated pace of discovery in this area can be expected to continue. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Vagal sensory axons navigate to specific sites in the bowel during fetal life. Netrin/deleted in colorectal cancer (DCC) were found to mediate the attraction of vagal sensory axons to the fetal mouse gut. We tested the hypothesis that laminin-111 can reverse the chemoattractive effects of netrin and act as a stop signal for vagal sensory axons. Laminin-111-expressing cells were located in the E12 and E16 mouse bowel by in situ hybridization. At E12, these cells extended centrifugally from the endoderm; by E16, laminin-111 expressing cells were found in the mucosa and outer gut mesenchyme. A similar pattern was seen in preparations of E13 and E15 mouse gut labeled with antibodies to laminin. Application of DiI to nodose ganglia identified vagal sensory axons growing into the fetal bowel. These terminals were found to avoid concentrations of laminin or to terminate at laminin-delimited boundaries. Soluble laminin inhibited the preferential growth of nodose neurites toward netrin-secreting cells (p < 0.01). This effect was mimicked by a peptide, YIGSR, a sequence within the beta1 chain of laminin-111 (p < 0.004) and antagonized by a peptide, IKVAV, a sequence within the alpha1 chain of laminin-111. Antibodies to beta1-integrins were also able to reverse the inhibitive effects of laminin and restore the attraction of nodose neurites towards netrin-1-secreting cells. Soluble laminin inhibited the preferential growth of nodose neurites toward a cocultured explant of foregut. These findings suggest that laminin terminates the attraction of vagal sensory axons towards sources of netrin in the developing bowel.  相似文献   

7.
GDNF is a chemoattractant for enteric neural cells   总被引:13,自引:0,他引:13  
In situ hybridization revealed that GDNF mRNA in the mid- and hindgut mesenchyme of embryonic mice was minimal at E10.5 but was rapidly elevated at all gut regions after E11, but with a slight delay (0.5 days) in the hindgut. GDNF mRNA expression was minimal in the mesentery and in the pharyngeal and pelvic mesenchyme adjacent to the gut. To examine the effect of GDNF on enteric neural crest-derived cells, segments of E11.5 mouse hindgut containing crest-derived cells only at the rostral ends were attached to filter paper supports and grown in catenary organ culture. With GDNF (100 ng/ml) in the culture medium, threefold fewer neurons developed in the gut explants and fivefold more neurons were present on the filter paper outside the gut explants, compared to controls. Thus, in controls, crest-derived cells colonized the entire explant and differentiated into neurons, whereas in the presence of exogenous GDNF, most crest-derived cells migrated out of the gut explant. This is consistent with GDNF acting as a chemoattractant. To test this idea, explants of esophagus, midgut, superior cervical ganglia, paravertebral sympathetic chain ganglia, or dorsal root ganglia from E11.5-E12.5 mice were grown on collagen gels with a GDNF-impregnated agarose bead on one side and a control bead on the opposite side. Migrating neural cells and neurites from the esophagus and midgut accumulated around the GDNF-impregnated beads, but neural cells in other tissues showed little or no chemotactic response to GDNF, although all showed GDNF-receptor (Ret and GFRalpha1) immunoreactivity. We conclude that GDNF may promote the migration of crest cells throughout the gastrointestinal tract, prevent them from straying out of the gut (into the mesentery and pharyngeal and pelvic tissues), and promote directed axon outgrowth.  相似文献   

8.
9.
Ren XR  Hong Y  Feng Z  Yang HM  Mei L  Xiong WC 《Neuro-Signals》2008,16(2-3):235-245
Deleted in colorectal cancer (DCC) and neogenin are receptors of netrins, a family of guidance cues that promote axon outgrowth and guide growth cones in developing nervous system. The intracellular mechanisms of netrins, however, remain elusive. In this paper, we show that both DCC and neogenin become tyrosine phosphorylated in cortical neurons in response to netrin-1. Using a site-specific antiphosphor DCC antibody, we show that Y1420 phosphorylation is increased in netrin-1-stimulated neurons and that tyrosine-phosphorylated DCC is located in growth cones. In addition, we show that tyrosine-phosphorylated DCC selectively interacts with the Src family kinases Fyn and Lck, but not Src, c-Abl, Grb2, SHIP1, Shc, or tensin, suggesting a role of Fyn or Lck in netrin-1-DCC signaling. Of interest to note is that tyrosine-phosphorylated neogenin and uncoordinated 5 H2 (Unc5H2) not only bind to the Src homology 2 (SH2) domains of Fyn and SHP2, but also interact with the SH2 domain of SHIP1, suggesting a differential signaling between DCC and neogenin/Unc5H2. Furthermore, we demonstrate that inhibition of Src family kinase activity attenuated netrin-1-induced neurite outgrowth. Together, these results suggest a role of Src family kinases and tyrosine phosphorylation of netrin-1 receptors in regulating netrin-1 function.  相似文献   

10.
The vagal neural crest is the origin of majority of neurons and glia that constitute the enteric nervous system, the intrinsic innervation of the gut. We have recently confirmed that a second region of the neuraxis, the sacral neural crest, also contributes to the enteric neuronal and glial populations of both the myenteric and the submucosal plexuses in the chick, caudal to the level of the umbilicus. Results from this previous study showed that sacral neural crest-derived precursors colonised the gut in significant numbers only 4 days after vagal-derived cells had completed their migration along the entire length of the gut. This observation suggested that in order to migrate into the hindgut and differentiate into enteric neurons and glia, sacral neural crest cells may require an interaction with vagal-derived cells or with factors or signalling molecules released by them or their progeny. This interdependence may also explain the inability of sacral neural crest cells to compensate for the lack of ganglia in the terminal hindgut of Hirschsprung's disease in humans or aganglionic megacolon in animals. To investigate the possible interrelationship between sacral and vagal-derived neural crest cells within the hindgut, we mapped the contribution of various vagal neural crest regions to the gut and then ablated appropriate sections of chick vagal neural crest to interrupt the migration of enteric nervous system precursor cells and thus create an aganglionic hindgut model in vivo. In these same ablated animals, the sacral level neural axis was removed and replaced with the equivalent tissue from quail embryos, thus enabling us to document, using cell-specific antibodies, the migration and differentiation of sacral crest-derived cells. Results showed that the vagal neural crest contributed precursors to the enteric nervous system in a regionalised manner. When quail-chick grafts of the neural tube adjacent to somites 1-2 were performed, neural crest cells were found in enteric ganglia throughout the preumbilical gut. These cells were most numerous in the esophagus, sparse in the preumbilical intestine, and absent in the postumbilical gut. When similar grafts adjacent to somites 3-5 or 3-6 were carried out, crest cells were found within enteric ganglia along the entire gut, from the proximal esophagus to the distal colon. Vagal neural crest grafts adjacent to somites 6-7 showed that crest cells from this region were distributed along a caudal-rostral gradient, being most numerous in the hindgut, less so in the intestine, and absent in the proximal foregut. In order to generate aneural hindgut in vivo, it was necessary to ablate the vagal neural crest adjacent to somites 3-6, prior to the 13-somite stage of development. When such ablations were performed, the hindgut, and in some cases also the cecal region, lacked enteric ganglionated plexuses. Sacral neural crest grafting in these vagal neural crest ablated chicks showed that sacral cells migrated along normal, previously described hindgut pathways and formed isolated ganglia containing neurons and glia at the levels of the presumptive myenteric and submucosal plexuses. Comparison between vagal neural crest-ablated and nonablated control animals demonstrated that sacral-derived cells migrated into the gut and differentiated into neurons in higher numbers in the ablated animals than in controls. However, the increase in numbers of sacral neural crest-derived neurons within the hindgut did not appear to be sufficiently high to compensate for the lack of vagal-derived enteric plexuses, as ganglia containing sacral neural crest-derived neurons and glia were small and infrequent. Our findings suggest that the neuronal fate of a relatively fixed subpopulation of sacral neural crest cells may be predetermined as these cells neither require the presence of vagal-derived enteric precursors in order to colonise the hindgut, nor are capable of dramatically altering their proliferation or d  相似文献   

11.
Stem cell therapy offers the potential of rebuilding the enteric nervous system (ENS) in the aganglionic bowel of patients with Hirschsprung’s disease. P0-Cre/Floxed-EGFP mice in which neural crest-derived cells express EGFP were used to obtain ENS stem/progenitor cells. ENS stem/progenitor cells were transplanted into the bowel of Ret−/− mouse, an animal model of Hirschsprung’s disease. Immunohistochemical analysis was performed to determine whether grafted cells gave rise to neurons in the recipient bowel. EGFP expressing neural crest-derived cells accounted for 7.01 ± 2.52 % of total cells of gastrointestinal tract. ENS stem/progenitor cells were isolated using flow cytometry and expanded as neurosphere-like bodies (NLBs) in a serum-free culture condition. Some cells in NLBs expressed neural crest markers, p75 and Sox10 and neural stem/progenitor cells markers, Nestin and Musashi1. Multipotency of isolated ENS stem/progenitor cells was determined as they differentiated into neurons, glial cells, and myofibloblasts in culture. When co-cultured with explants of hindgut of Ret−/− mice, ENS stem/progenitor cells migrated into the aganglionic bowel and gave rise to neurons. ENS stem/progenitor cells used in this study appear to be clinically relevant donor cells in cell therapy to treat Hirschsprung’s disease capable of colonizing the affected bowel and giving rise to neurons.  相似文献   

12.
Specific cellular accumulation of [3H]5-hydroxytryptamine ([3H]5-HT) occurs during development of the avian gut. This accumulation is transient in extraganglionic mesenchymal cells (TES cells) but is a permanent characteristic of enteric serotonergic neurons (ESN). Species-specific differences were found in the location of TES cells and ESN. In chicks TES cells surrounded myenteric ganglia and ESN were restricted to the myenteric plexus. In quails TES cells surrounded submucosal ganglia and [3H]5-HT-labeled submucosal as well as myenteric neurons. [3H]Norepinephrine accumulated only in noradrenergic terminals and not in TES cells or ESN. The origins of TES cells and ESN were studied in chimeras, in which neuraxis from appropriate or inappropriate axial levels was grafted from quail to chick. Both types of chimeric bowel contained TES cells and ESN. Most TES cells in chimeras were chick in origin and distributed as in chicks (around myenteric ganglia); however, some TES cells and all ESN were quail cells. To test whether crest cells are required for development of TES cells and ESN, aneuronal chick hindgut was explanted and grown alone, or with quail neuraxis, as chorioallantoic membrane (CAM) grafts. TES cells appeared in CAM grafts whether or not crest cells were present; however ESN only appeared in explants when quail neuraxis was included. In addition, an ectopic [3H]5-HT-labeled chromaffin-like cell, also of quail origin, was found in enteric plexuses in these combined explants of crest and gut. Most TES cells, therefore, are neither derived from nor dependent on the presence of crest cells in the gut wall. Since even an inappropriate axial level of crest was found to produce ESN when it was experimentally induced to colonize the bowel the enteric microenvironment probably plays a critical role in serotonergic neural development. The species-specific location of TES cells and ESN is consistent with the hypothesis that TES cells constitute an important component of this microenvironment.  相似文献   

13.
14.
The chemotropic guidance cue netrin-1 promotes neurite outgrowth through its receptor Deleted in Colorectal Cancer (DCC) via activation of Rac1. The guanine nucleotide exchange factor (GEF) linking netrin-1/DCC to Rac1 activation has not yet been identified. Here, we show that the RhoGEF Trio mediates Rac1 activation in netrin-1 signaling. We found that Trio interacts with the netrin-1 receptor DCC in mouse embryonic brains and that netrin-1-induced Rac1 activation in brain is impaired in the absence of Trio. Trio(-/-) cortical neurons fail to extend neurites in response to netrin-1, while they are able to respond to glutamate. Accordingly, netrin-1-induced commissural axon outgrowth is reduced in Trio(-/-) spinal cord explants, and the guidance of commissural axons toward the floor plate is affected by the absence of Trio. The anterior commissure is absent in Trio-null embryos, and netrin-1/DCC-dependent axonal projections that form the internal capsule and the corpus callosum are defective in the mutants. Taken together, these findings establish Trio as a GEF that mediates netrin-1 signaling in axon outgrowth and guidance through its ability to activate Rac1.  相似文献   

15.
16.
While they are migrating caudally along the developing gut, around 10%-20% of enteric neural crest-derived cells start to express pan-neuronal markers and tyrosine hydroxylase (TH). We used explants of gut from embryonic TH-green fluorescence protein (GFP) mice and time-lapse microscopy to examine whether these immature enteric neurons migrate and their mode of migration. In the gut of E10.5 and E11.5 TH-GFP mice, around 50% of immature enteric neurons (GFP(+) cells) migrated, with an average speed of around 15 mum/h. This is slower than the speed at which the population of enteric neural crest-derived cells advances along the developing gut, and hence neuronal differentiation seems to slow, but not necessarily halt, the caudal migration of enteric neural crest cells. Most migrating immature enteric neurons migrated caudally by extending a long-leading process followed by translocation of the cell body. This mode of migration is different from that of non-neuronal enteric neural crest-derived cells and neural crest cells in other locations, but resembles that of migrating neurons in many regions of the developing central nervous system (CNS). In migrating immature enteric neurons, a swelling often preceded the movement of the nucleus in the direction of the leading process. However, the centrosomal marker, pericentrin, was not localized to either the leading process or swelling. This seems to be the first detailed report of neuronal migration in the developing mammalian peripheral nervous system.  相似文献   

17.
Over recent years the secreted guidance cue, netrin-1, and its receptor, DCC, have been shown to be an essential guidance system driving axon pathfinding within the developing vertebrate central nervous system (CNS). Mice lacking DCC exhibit severe defects in commissural axon extension towards the floor plate demonstrating that the DCC-netrin guidance system is largely responsible for directing axonal projections toward the ventral midline in the developing spinal cord (Fazeli et al., Nature 386 (1997) 796). In addition, these mutants lack several major commissures within the forebrain, including the corpus callosum and the hippocampal commissure. In contrast to the CNS, the role of the DCC guidance receptor in the development of the mammalian peripheral and enteric nervous systems (PNS and ENS) has not been investigated. Here we demonstrate using immunohistochemical analysis that the DCC receptor is present in the developing mouse PNS where it is found on spinal, segmental, and sciatic nerves, and in developing sensory ganglia and their associated axonal projections. In addition, DCC is present in the ENS throughout the early developmental phase.  相似文献   

18.
Netrin-4 is a 628 amino acid basement membrane component that promotes neurite elongation at low concentrations but inhibits neurite extension at high concentrations. There is a growing body of literature suggesting that several molecules, including netrins, are regulators of both neuronal and vascular growth. It is believed that molecules that guide neural growth and development are also involved in regulating morphogenesis of the vascular tree. Further, netrins have recently been implicated in controlling epithelial cell branching morphogenesis in the breast, lung and pancreas.Characterization of purified netrin-4 in in vitro angiogenesis assays demonstrated that netrin-4 markedly inhibits HMVEC migration and tube formation. Moreover, netrin-4 inhibits proliferation of a variety of human tumor cells in vitro. Netrin-4 has only modest effects on proliferation of endothelial and other non-transformed cells. Netrin-4 treatment results in phosphorylation changes of proteins that are known to control cell growth. Specifically, Phospho-Akt-1, Phospho-Jnk-2, and Phospho-c-Jun are reduced in tumor cells that have been treated with netrin-4. Together, these data suggest a potential role for netrin-4 in regulating tumor growth.  相似文献   

19.
The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells (NCC). Within the embryonic avian gut, vagal NCC migrate in a rostrocaudal direction to form the majority of neurons and glia along the entire length of the gastrointestinal tract, whereas sacral NCC migrate in an opposing caudorostral direction, initially forming the nerve of Remak, and contribute a smaller number of ENS cells primarily to the distal hindgut. In this study, we have investigated the ability of vagal NCC, transplanted to the sacral region of the neuraxis, to colonise the chick hindgut and form the ENS in an experimentally generated hypoganglionic hindgut in ovo model. Results showed that when the vagal NC was transplanted into the sacral region of the neuraxis, vagal-derived ENS precursors immediately migrated away from the neural tube along characteristic pathways, with numerous cells colonising the gut mesenchyme by embryonic day (E) 4. By E7, the colorectum was extensively colonised by transplanted vagal NCC and the migration front had advanced caudorostrally to the level of the umbilicus. By E10, the stage at which sacral NCC begin to colonise the hindgut in large numbers, myenteric and submucosal plexuses in the hindgut almost entirely composed of transplanted vagal NCC, while the migration front had progressed into the pre-umbilical intestine, midway between the stomach and umbilicus. Immunohistochemical staining with the pan-neuronal marker, ANNA-1, revealed that the transplanted vagal NCC differentiated into enteric neurons, and whole-mount staining with NADPH-diaphorase showed that myenteric and submucosal ganglia formed interconnecting plexuses, similar to control animals. Furthermore, using an anti-RET antibody, widespread immunostaining was observed throughout the ENS, within a subpopulation of sacral NC-derived ENS precursors, and in the majority of transplanted vagal-to-sacral NCC. Our results demonstrate that: (1) a cell autonomous difference exists between the migration/signalling mechanisms used by sacral and vagal NCC, as transplanted vagal cells migrated along pathways normally followed by sacral cells, but did so in much larger numbers, earlier in development; (2) vagal NCC transplanted into the sacral neuraxis extensively colonised the hindgut, migrated in a caudorostral direction, differentiated into neuronal phenotypes, and formed enteric plexuses; (3) RET immunostaining occurred in vagal crest-derived ENS cells, the nerve of Remak and a subpopulation of sacral NCC within hindgut enteric ganglia.  相似文献   

20.
Puberty is a critical period in mesocorticolimbic dopamine (DA) system development, particularly for the medial prefrontal cortex (mPFC) projection which achieves maturity in early adulthood. The guidance cue netrin-1 organizes neuronal networks by attracting or repelling cellular processes through DCC (deleted in colorectal cancer) and UNC-5 homologue (UNC5H) receptors, respectively. We have shown that variations in netrin-1 receptor levels lead to selective reorganization of mPFC DA circuitry, and changes in DA-related behaviors, in transgenic mice and in rats. Significantly, these effects are only observed after puberty, suggesting that netrin-1 mediated effects on DA systems vary across development. Here we report on the normal expression of DCC and UNC5H in the ventral tegmental area (VTA) by DA neurons from embryonic life to adulthood, in both mice and rats. We show a dramatic and enduring pubertal change in the ratio of DCC:UNC5H receptors, reflecting a shift toward predominant UNC5H function. This shift in DCC:UNC5H ratio coincides with the pubertal emergence of UNC5H expression by VTA DA neurons. Although the distribution of DCC and UNC5H by VTA DA neurons changes during puberty, the pattern of netrin-1 immunoreactivity in these cells does not. Together, our findings suggest that DCC:UNC5H ratios in DA neurons at critical periods may have important consequences for the organization and function of mesocorticolimbic DA systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号