首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The incubation of porcine pancreatic lipase (449 amino acids) with chymotrypsin led to the preferential cleavage of the Phe-335-Ala-336 bond [Bousset-Risso et al. (1985) FEBS Lett. 182, 323-326]. Up to now it has not been possible to isolate the fragment (1-335) whereas fragment (336-449) was purified. This fragment does not display any activity towards the specific substrates of lipase, triacylglycerols, either in the aggregate form or monomeric solution, but like lipase it hydrolyzes p-nitrophenyl acetate. The biphasic kinetics of the release of p-nitrophenol by the fragment with different concentrations of p-nitrophenyl acetate ([S] greater than [E]) are very similar to those of lipase and other esterases. The initial burst is equal to 1 mol p-nitrophenol/mol fragment (when [S] = infinity). Ethoxyformic anhydride only reacts with 1 mol histidine out of the 2 mol that the fragment contained. The activity of the fragment towards p-nitrophenyl acetate hydrolysis is inhibited after ethoxyformic anhydride reaction as in the case of lipase. The results presented led to the hypothesis that in the area (336-449) a part of the active-site structure of the lipase molecule is included. It would seem that fragment (336-449) is a functional domain of lipase.  相似文献   

2.
J D De Caro  A A Guidoni  J J Bonicel  M Rovery 《Biochimie》1989,71(11-12):1211-1219
The activities of porcine pancreatic lipase (449 amino acid residues) toward two different substrates, p-nitrophenylacetate and tributyrylglycerol, and their dependence on histidine ethoxyformylation were studied. In parallel, the ethoxyformylation of the lipase fragment constituting the C-terminal sequence of lipase (residues 336 to 449) was also investigated. This fragment was found to have retained the ability of lipase to catalyse p-nitrophenylacetate hydrolysis. The first histidine to react either in lipase or in the lipase fragment was His-354. The activities of the two compounds toward p-nitrophenyl-acetate were lost but that of the enzyme toward tributyrylglycerol was almost entirely retained. When a larger excess of ethoxyformic anhydride was used for the lipase reaction, 2.8 histidine residues were ethoxyformylated and characterised as His-354, His-156 and His-75, which resulted in an 85% inhibition of the tributyrylglycerol hydrolysis by the enzyme. Hydroxylamine treatment reactivated most of the lipase and lipase fragment. This is the first demonstration that the two lipase activities are not associated with the same active site. The loss of activity toward triacylglycerol hydrolysis suggests that His-156 and/or His-75 belong(s) to the active site or that a conformational change resulting from the ethoxyformylation renders the lipase inactive.  相似文献   

3.
The GlcNAc-1-P-transferase that initiates the dolichol cycle for the biosynthesis of asparagine-linked glycoproteins has been purified from the lactating bovine mammary gland. After solubilization from microsomes with 0.25% Nonidet P-40, the enzyme activity was stabilized with 20% glycerol, 20 micrograms/ml phosphatidylglycerol, 5 microM dolichol phosphate, and 2.5 microM UDP-GlcNAc. The purification protocol involved (NH4)2SO4 precipitation, gel filtration on Sephacryl S-300, DEAE-TSK, and hydroxylapatite chromatography. The purified enzyme was devoid of several readily detectable glycosyltransferases of the dolichol cycle. It showed two bands (A, 50 kDa and B, 46 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis after either Coomassie Blue or silver staining. Antisera (anti-A and anti-B) raised against individual bands A and B inhibited the enzyme activity in solubilized microsomes. Each of the partially purified antibodies recognizes both bands A and B on Western blots of the enzyme; with the solubilized microsomes, the antibodies also recognize an additional polypeptide of approximately 70 kDa. When radioiodinated microsomes were immunoprecipitated with anti-B and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, again bands of 46, 50, and 70 kDa were observed. The peptide mapping of 50 and 46 kDa bands of the purified enzyme by chemical cleavage with N-chlorosuccinimide gave similar fragmentation patterns. The results indicate that either 70 kDa band is a precursor form of the enzyme or this polypeptide, representing the native enzyme or its subunit, is proteolyzed to smaller, enzymatically active peptide(s) of 50 and 46 kDa during purification despite the inclusion of several inhibitors against serine-proteases in all buffers used for tissue homogenization and enzyme purification. A number of properties of the purified enzyme, including its specific activation by Man-P-Dol were also characterized.  相似文献   

4.
We have identified four discrete proteolytic fragments of von Willebrand factor (vWF) that define two collagen-binding domains. Two of the fragments tested, T 96 kDa and T 55 kDa, were generated by digestion with trypsin, and two, Fragments I and III, with Staphylococcus aureus V8 protease. The larger Fragment III, a disulfide-linked homodimer, extends between residues 1 and 1365 of the 2050-residue vWF subunit and comprises the sequence of all the others. T 96 kDa, also a disulfide-linked homodimer, extends between residues 449 and 728. T 55 kDa and Fragment I, both single-chain polypeptides, have a partial sequence overlap corresponding to residues 911-1114, and together extend from residue 730 to 1365. The ability of the fragments to interfere with the vWF-collagen interaction was evaluated by measuring inhibition of 125I-labeled vWF binding to fibrillar bovine collagen types I and III. All the four fragments tested inhibited binding. Native conformation was essential for expression of this function; denaturation with guanidine hydrochloride and reduction of disulfide bonds resulted in marked reduction or complete loss, respectively, of the inhibitory activity at all the concentrations tested. Two monoclonal antibodies were prepared, one directed against T 96 kDa and the other against Fragment I. Both antibodies partially inhibited vWF binding to collagen, and their inhibitory effect was enhanced when they were used together. 125I-Labeled Fragment I bound to collagen in a saturable manner, and the binding was completely blocked by both T 96 kDa and T 55 kDa. Thus, we have identified at least two distinct functional domains of vWF that concurrently mediate the vWF-collagen interaction. The two domains appear to share a common recognition site on collagen.  相似文献   

5.
Human gastric lipase (HGL) is a lipolytic enzyme that is secreted by the chief cells located in the fundic part of the stomach. HGL plays an important role in lipid digestion, since it promotes the subsequent hydrolytic action of pancreatic lipase in duodenal lumen. Physiological studies have shown that HGL is able of acting not only in the highly acid stomach environment but also in the duodenum in synergy with human pancreatic lipase (HPL). Recombinant HGL (r-HGL) was expressed in the baculovirus/insect cell system in the form of an active protein with a molecular mass of 45 kDa. The specific activities of r-HGL were found to be similar to that of the native enzyme when tested on various triacylglycerol (TG) substrates. The 3-D structure of r-HGL was the first solved within the mammalian acid lipase family. This globular enzyme (379 residues) shows a new feature, different from the other known lipases structures, which consists of a core domain having the alpha/beta hydrolase fold and a cap domain including a putative 'lid' of 30 residues covering the active site of the lipase (closed conformation). HPL is the major lipolytic enzyme involved in the digestion of dietary TG. HPL is a 50 kDa glycoprotein which is directly secreted as an active enzyme. HPL was the first mammalian lipase to be solved structurally, and it revealed the presence of two structural domains: a large N-terminal domain (residues 1-336) and a smaller C-terminal domain (residues 337-449). The large N-terminal domain belongs to the alpha/beta hydrolase fold and contains the active site. A surface loop called the lid domain (C237-C261) covers the active site in the closed conformation of the lipase. The 3-D structure of the lipase-procolipase complex illustrates how the procolipase might anchor the lipase at the interface in the presence of bile salts: procolipase binds to the C-terminal domain of HPL and exposes the hydrophobic tips of its fingers at the opposite site of its lipase-binding domain. These hydrophobic tips help to bring N-terminal domain into close conformation with the interface where the opening of the lid domain probably occurs. As a result of all these conformational changes, the open lid and the extremities of the procolipase form an impressive continuous hydrophobic plateau, extending over more than 50 A. This surface might able to interact strongly with a lipid-water interface. The biochemical, histochemical and clinical studies as well as the 3-D structures obtained will be a great help for a better understanding of the structure-function relationships of digestive lipases.  相似文献   

6.
J D De Caro  M P Chautan  P Rouimi  M Rovery 《Biochimie》1988,70(12):1785-1790
The reactions of lipase (449 amino acid residues) and lipase fragment (336-449) with p-nitrophenyl acetate have been studied from 2 different angles. In previous papers it has been shown that lipase and lipase fragment enzymatically hydrolyze p-nitrophenyl acetate. The amino acid residue of the catalytic site that is temporarily acetylated has not yet been characterized in lipase or lipase fragment. Besides this very fast enzymatic hydrolysis, acetylation reactions may take place on nucleophilic amino acid side-chain groups. In the present report, acetylated amino acid residues whose acetyl linkages were not cleaved after pH 7.5-8.5 incubations have been investigated. Several residues were acetylated in very low proportion, whereas lysine 373 was stoichiometrically acetylated in lipase and in lipase fragment. This specific acetylation may have been favored by the presence of a hydrophobic reversible binding site for p-nitrophenyl acetate near Lys-373. This acetylation did not greatly change the specific activity of lipase towards an emulsion of tributyrylglycerol in the presence of colipase, but under certain conditions it had an effect on the enzymatic hydrolysis of p-nitrophenyl acetate by the lipase fragment.  相似文献   

7.
Three major calmodulin-binding cyanogen bromide peptides (fragments A, B, and D) were isolated from chicken gizzard muscle caldesmon and their amino acid sequences were determined. The molecular masses of fragments A, B, and D were estimated to 16, 12, and 9 kDa, respectively, by SDS-urea polyacrylamide gel electrophoresis. Fragment A was composed of 102 amino acid residues and contained homoserine at the C terminus. The amino acid sequence from the 37th residue of fragment A corresponds to the N-terminal sequence of the 15 kDa peptide which was obtained by thrombin digestion [Mornet, D., Audemard, E., & Derancourt, J. (1988) Biochem. Biophys. Res. Commun. 154, 564-571]. Thrombin 15 kDa peptide binds to F-actin but does not bind to calmodulin. Thus the N-terminal 36 residues and the C-terminal part from the 37th residue of fragment A are supposed to bind to calmodulin and F-actin, respectively. The sequences of fragments B and D were identical, but fragment D was composed of 64 amino acid residues and ended with tryptophan, whereas fragment B was of 98 or 99 amino acid residues and ended with proline. Both fragments B and D are supposed to be the C-terminal peptides of chicken caldesmon. Fragment B had heterogeneous sequences at the C-terminal region. These results can explain the reported heterogeneity of chicken caldesmon in charge and molecular mass.  相似文献   

8.
Factor VIIIa can be reconstituted from A2 subunit and A1/A3-C1-C2 dimer in a reaction that is facilitated by slightly acidic pH. We recently demonstrated that a truncated A1 (A1(37-336)) possessed markedly reduced affinity for A2 compared with intact A1, but retained 30% of native factor VIIIa activity in the presence of A3-C1-C2. We now identify A1-interactive regions for A2 using A1 fragments derived from a limited tryptic digest. Unfractionated trypsin-cleaved A1 inhibited reconstituted factor VIIIa activity. Two fragments, designated A1(37-121) and A1(221-336), markedly inhibited factor VIIIa reconstitution with either native A1 (K(i)=340 and 194 nM, respectively) or with A1(37-336) (K(i)=69 and 116 nM, respectively) at pH 6.0. A third fragment designated A1(122-206) did not possess inhibitory activity. At pH 7.2, the A1(221-336) partially inhibited reconstitution, whereas the A1(37-121) possessed little if any inhibitory activity. Both fragments inhibited factor VIIIa reconstitution as judged by fluorescence energy transfer using acrylodan-labeled A2 and fluorescein-labeled A1 forms at pH 6.0. Furthermore, covalent cross-linking between A2 and A1(37-121) but not A1(221-336) was observed following reaction with a zero-length cross-linker. These findings demonstrate the presence of an extended, pH-dependent A2-interactive surface within regions 37-121 and 221-336 of A1. This interactive surface appears conformationally labile in the truncated A1 as judged by its apparent stabilization following association with A3-C1-C2.  相似文献   

9.
We have purified and examined the substrate specificity of four lipases from two strains of the mould Geotrichum candidum, ATCC 34614 and CMICC 335426. We have designated the lipases I and II (ATCC 34614), and A and B (CMICC 335426). The enzymes are monomeric and have similar molecular masses and pI. Thus, lipases I and II have native molecular masses of 50.1 kDa and 55.5 kDa, and pI of 4.61 and 4.47, respectively. Lipases A and B are very similar to lipases I and II with native molecular masses of 53.7 kDa and 48.9 kDa, and pI of 4.71 and 4.50, respectively. Treatment with endo-beta-N-acetylglucosaminidase caused a reduction in molecular mass of approximately 4.5 kDa for all four lipases, indicating that these enzymes are glycosylated. Western blotting shows that the lipases are related. However, lipase B from CMICC 335426 shows a remarkable specificity for unsaturated substrates with a double bond at position 9 (cis configuration), and this specificity is not exhibited by the other three lipases. No lipase of this unique specificity has previously been purified to homogeneity. Structural studies using these four lipases should allow insight into the molecular basis of this remarkable specificity.  相似文献   

10.
We have purified and crystallized bovine liver phosphorylase a. Starting from 2.5 kg of liver, we obtain 250 mg of phosphorylase a, with a specific activity of 90 units/mg, representing 15% recovery. SDS polyacrylamide gels show three bands, a 95 kDa band with the same mobility as muscle phosphorylase, and two smaller bands of 55 kDa and 40 kDa, which are probably proteolytic fragments. These fragments remain associated and have native conformation and catalytic activity. Crystals which diffract to 2.8 A resolution, were prepared by the hanging drop method using polyethylene glycol PEG 4000 as precipitant. The crystals were prepared in the presence of activators maltotriose and phosphite and crack when placed in solutions containing the inhibitors glucose and caffeine. This suggests phosphorylase is present in an active conformation.  相似文献   

11.
Esterase and lipase activity showed significant changes during embryogenesis of camel tick Hyalomma dromedarii. From the elution profile of chromatography on DEAE-cellulose, six forms of H. dromedarii esterase (El to EVI) can be distinguished. Esterase EIII was purified to homogeneity after chromatography on Sepharose 6B. The molecular mass of esterase EIII was 45 kDa for the native enzyme and represented a monomer of 45 kDa by SDS-PAGE. Esterase EIII had an acidic pI at 5.3. Lipase activity was detected in the same DEAE-cellulose peaks (LI to LVI) of H. dromedarii esterases. The highest lipase activity was exhibited by lipase LIII. Esterase EIII and lipase LIII were compared with respect to Michaelis constant, substrate specificity, temperature optimum, heat stability, pH optimum, effect of metal ions and inhibitors. This study suggests that H. dromedarii lipolytic enzymes may play a central role in the interconversion of lipovitellins during embryogenesis.  相似文献   

12.
Hepatic lipase activity is detectable in liver but also in adrenal glands, ovaries, and plasma. The subunit size of hepatic lipase in liver, adrenal glands, and nonheparin plasma was compared. Hepatic lipase in liver and adrenal glands appeared as a 55 kDa band. In liver, a faint band of lower size was also detected. In nonheparin plasma, hepatic lipase appeared as a doublet of 57 kDa and 59 kDa. When activity/mass ratio was calculated, similar values were obtained for liver and adrenal glands. In plasma this value was much lower. After heparin administration in vivo, hepatic lipase activity in plasma increased nearly 100-fold with appearance of an additional 55 kDa band in postheparin plasma. This band coeluted with activity after preparative polyacrylamide gel electrophoresis. Differences in size persisted after digestion with peptide-N-glycosidase F. A progressive increase in 57 kDa and 59 kDa in postheparin plasma followed disappearance of the 55 kDa band, suggesting that these larger bands originate from the smaller form. In plasma, both smaller and larger forms were associated with HDL, but not with LDL or VLDL. We conclude that rat plasma contains a larger form of hepatic lipase that is inactive in in vitro assay.  相似文献   

13.
Salmon liver was chosen for the isolation of 6-pyruvoyl tetrahydropterin synthase, one of the enzymes involved in tetrahydrobiopterin biosynthesis. A 9500-fold purification was obtained and the purified enzyme showed two single bands of 16 and 17 kDa on SDS/PAGE. The native enzyme (68 kDa) consists of four subunits and needs free thiol groups for enzymatic activity as was shown by reacting the enzyme with the fluorescent thiol reagent N-(7-dimethylamino-4-methylcoumarinyl)-maleimide. The enzyme is heat-stable up to 80 degrees C, has an isoelectric point of 6.0-6.3, and a pH optimum at 7.5. The enzyme is Mg2+ -dependent and has a Michaelis constant for its substrate dihydroneopterin triphosphate of 2.2 microM. The turnover number of the purified salmon liver enzyme is about 50 times as high as that of the enzyme purified from human liver. It does not bind to the lectin concanavalin A, indicating that it is free of mannose and glucose residues. Polyclonal antibodies raised against the purified enzyme in Balb/c mice were able to immunoprecipitate enzyme activity. The same polyclonal serum was not able to immunoprecipitate enzyme activity of human liver 6-pyruvoyl tetrahydropterin synthase, nor was any cross-reaction in ELISA tests seen.  相似文献   

14.
A tuber lectin from Arisaema jacquemontii Blume belonging to family Araceae was purified by employing a single step affinity chromatography using column of asialofetuin-linked amino activated silica beads and the bound lectin was eluted with 100 mM glycine-HCl buffer pH 2.5. The purified A. jacquemontii lectin (AJL) showed a single protein band with an apparent molecular mass of 13.4 kDa when submitted to SDS-polyacrylamide gel electrophoresis under reducing as well as non-reducing conditions. The native molecular mass of AJL determined by gel filtration on a Biogel P-200 column was 52 kDa and its carbohydrate content was estimated to be 3.40%. Thus AJL is a tetrameric glycoprotein. The purified lectin agglutinated erythrocytes from rabbit but not from human. Its activity was not inhibited by any of the mono- and disaccharides tested except N-acetyl-D-lactosamine having minimal inhibitory sugar concentration (MIC) 25 mM. Among the glycoproteins tested only asialofetuin was found to be inhibitory (MIC125 microg/mL). A single band was obtained in native PAGE at pH 4.5 while PAGE at pH 8.3 showed two bands. Isoelectric focusing of AJL gave multiple bands in the pI range of 4.6-5.5. When incorporated in artificial diet AJL significantly affected the development of Bactrocera cucurbitae (Coquillett) larvae indicating the possibility of using this lectin in a biotechnological strategy for insect management of cucurbits. Larvae fed on artificial diet containing sublethal dose of AJL showed a significant decrease in acid phosphatase and alkaline phosphatase activity while esterase activity markedly increased as compared to larvae fed on diet without lectin. Out of various human cancer cell lines employed in sulphorhodamine B (SRB) assay, this lectin was found to have appreciable inhibitory effect on the in vitro proliferation of HCT-15, HOP-62, SW-620, HT-29, IMR-32, SKOV-3, Colo-205, PC-3, HEP-2 and A-549 cancer cell lines by 82, 77, 73, 70, 41, 41, 37, 29, 21 and 21% respectively.  相似文献   

15.
Effect of N-linked glycosylation on hepatic lipase activity   总被引:2,自引:0,他引:2  
Hepatic lipase (HL) is a secretory protein synthesized in hepatocytes and bound to liver endothelium. Previous studies have suggested that HL N-linked glycans are required for catalytic activity. To directly test this hypothesis, Xenopus laevis oocytes were used to express native rat HL or HL lacking one or both N-linked glycosylation sites. The expressed and secreted native HL had an apparent molecular mass of 53 kDa, consistent with purified rat liver HL. The mutant lacking both glycosylation sites, while poorly secreted, had an apparent molecular mass of 48 kDa, the same size observed for HL after enzymatic removal of N-linked oligosaccharides. Mutants lacking one of the two sites were intermediate in size and showed reduced secretion. Each of these expressed and secreted proteins had full catalytic activity that was inhibited by antisera to rat HL. Thus, N-linked glycosylation of rat HL, while important to lipase secretion, is not essential for the expression of lipase activity.  相似文献   

16.
An enzyme with broad substrate specificity would be an asset for industrial application. T1 lipase apparently has the same active site residues as polyhydroxyalkanoates (PHA) depolymerase. Sequences of both enzymes were studied and compared, and a conserved lipase box pentapeptide region around the nucleophilic serine was detected. The alignment of 3-D structures for both enzymes showed their active site residues were well aligned with an RMSD value of 1.981 Å despite their sequence similarity of only 53.8%. Docking of T1 lipase with P(3HB) gave forth high binding energy of 5.4 kcal/mol, with the distance of 4.05 Å between serine hydroxyl (OH) group of TI lipase to the carbonyl carbon of the substrate, similar to the native PhaZ7 Pl . This suggests the possible ability of T1 lipase to bind P(3HB) in its active site. The ability of T1 lipase in degrading amorphous P(3HB) was investigated on 0.2% (w/v) P(3HB) plate. Halo zone was observed around the colony containing the enzyme which confirms that T1 lipase is indeed able to degrade amorphous P(3HB). Results obtained in this study highlight the fact that T1 lipase is a versatile hydrolase enzyme which does not only record triglyceride degradation activity but amorphous P(3HB) degradation activity as well.  相似文献   

17.
The 95 kDa transmembrane glycoprotein triadin is believed to be an essential component of excitation-contraction coupling in the junctional sarcoplasmic reticulum of skeletal muscle fibers. It is debatable whether triadin mediates intraluminal interactions between calsequestrin and the ryanodine receptor exclusively or whether this junctional protein provides also a cytoplasmic linkage between the Ca2+-release channel and the dihydropyridine receptor. Here, we could show that native triadin exists as disulfide-linked homo-polymers of above 3000 kDa. Under non-reducing conditions, protein bands representing the alpha1-dihydropyridine receptor and calsequestrin did not show an immunodecorative overlap with the extremely high-molecular-mass triadin clusters. Following chemical crosslinking, the ryanodine receptor and triadin exhibited a similarly decreased electrophoretic mobility. However, immunoblotting of diagonal non-reducing/reducing two-dimensional gels clearly demonstrated a lack of overlap between the immunodecorated bands representing triadin, the alpha1-dihydropyridine receptor, the ryanodine receptor and calsequestrin. Thus, in native membranes triadin appears to form large self-aggregates primarily. Although triadin exists in a close neighborhood relationship to the Ca2+-release channel tetramers, it does not seem to be directly linked to the other main triad components implicated in the regulation of the excitation-contraction-relaxation cycle and Ca2+-homeostasis. This agrees with a proposed role of triadin in the maintenance of overall triad architecture.  相似文献   

18.
A novel thrombin inhibitor, Bothrops jararaca inhibitor (BjI), has been identified and purified from B. jararaca snake blood by two anionic chromatographic steps. Purified BjI showed two polypeptide chains with molecular masses of 109 and 138 kDa, by SDS-PAGE in reducing conditions. On the other hand, in nonreducing conditions the molecular masses were 150 and 219 kDa, suggesting that the polypeptide chain 109 kDa can be a dimer form linked by disulfide bond. However, the native BjI shows a molecular mass higher than 1000 kDa by gel filtration chromatography, indicating the need of a quaternary structure formation for the blood coagulation inhibition. BjI is a specific thrombin coagulant activity inhibitor that does not affect other thrombin functions, such as: amidolytic and platelet aggregation activities. BjI is not an antithrombin-like inhibitor. Fibrinogen and heparin competition ELISA assays with BjI and thrombin showed that fibrinogen does not interfere in the BjI and thrombin binding, however, heparin interferes in BjI and thrombin interaction, suggesting that BjI binds to heparin site or other sites close to it. Our findings indicate that BjI is an exosite binding thrombin inhibitor, specific upon coagulant activity thrombin inhibitor, without any anti-platelet aggregation activity.  相似文献   

19.
Zouari N  Miled N  Rouis S  Gargouri Y 《Biochimie》2007,89(3):403-409
Unlike classical digestive lipases, the scorpion digestive lipase (SDL) has a strong basic character. The SDL activity's optimal pH, when using tributyrin or olive oil as substrate, was 9.0. Added to that, the estimated isoelectric point of the native SDL using the electrofocusing technique, was found to be higher than 9.6. To our knowledge, this is the first report of an animal digestive lipase having such a basic character. When olive oil was used as substrate, SDL was shown to be insensitive to the presence of amphiphilic proteins such as bovine serum albumin (BSA). Furthermore, the hydrolysis was found to be specifically dependent on the presence of Ca(2+) ions, since no significant SDL activity was detected in the presence of ions chelator such as EDTA. Nevertheless, the SDL does not require Ca(2+) to trigger the hydrolysis of tributyrin emulsion. Interestingly Zn(2+) and Cu(2+) ions act as strong inhibitors of SDL activity when using tributyrin as substrate. An internal chymotryptic cleavage of SDL generated two fragments of 28 and 25 kDa having the same N-terminal sequence. This sequence of 19 residues does not share any homology with known animal and microbial lipases. Polyclonal antibodies directed against SDL (pAbs anti-SDL) failed to recognise ostrich pancreatic and dog gastric lipases (OPL and rDGL). Moreover, both pAbs anti-OPL and anti-rDGL failed to immunoreact with SDL. These immunological as well as distinct biochemical properties strengthen the idea that SDL appears to belong to a new invertebrate's lipase group.  相似文献   

20.
The autolysins of Bacillus subtilis 168 were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis with substrate-containing gels. Four bands of vegetative autolytic activity of 90, 50, 34, and 30 kDa (bands A1 to A4) were detected in SDS and LiCl extracts and in native cell walls by using B. subtilis 168 vegetative cell walls as the substrate incorporated in the gel. The four enzyme activities showed different substrate specificities and sensitivities to various chemical treatments. The autolysin profile was not medium dependent and remained constant during vegetative growth. During sporulation, band A4 greatly increased in activity just prior to mother-cell lysis. No germination-associated changes in the profile were observed, although a soluble 41-kDa endospore-associated cortex-lytic enzyme was found. By using insertionally inactivated mutants, bands A1 and A2 were positively identified as the previously characterized 90-kDa glucosaminidase and 50-kDa amidase, respectively. The common filamentous phenotype of various regulatory mutants could not be correlated to specific changes in the autolysin profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号