首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of bacterial communities in drinking water distribution systems leads to a food chain which supports the growth of macroorganisms incompatible with water quality requirements and esthetics. Nevertheless, very few studies have examined the microbial communities in drinking water distribution systems and their trophic relationships. This study was done to quantify the microbial communities (especially bacteria and protozoa) and obtain direct and indirect proof of protozoan feeding on bacteria in two distribution networks, one of GAC water (i.e., water filtered on granular activated carbon) and the other of nanofiltered water. The nanofiltered water-supplied network contained no organisms larger than bacteria, either in the water phase (on average, 5 × 107 bacterial cells liter−1) or in the biofilm (on average, 7 × 106 bacterial cells cm−2). No protozoa were detected in the whole nanofiltered water-supplied network (water plus biofilm). In contrast, the GAC water-supplied network contained bacteria (on average, 3 × 108 cells liter−1 in water and 4 × 107 cells cm−2 in biofilm) and protozoa (on average, 105 cells liter−1 in water and 103 cells cm−2 in biofilm). The water contained mostly flagellates (93%), ciliates (1.8%), thecamoebae (1.6%), and naked amoebae (1.1%). The biofilm had only ciliates (52%) and thecamoebae (48%). Only the ciliates at the solid-liquid interface of the GAC water-supplied network had a measurable grazing activity in laboratory test (estimated at 2 bacteria per ciliate per h). Protozoan ingestion of bacteria was indirectly shown by adding Escherichia coli to the experimental distribution systems. Unexpectedly, E. coli was lost from the GAC water-supplied network more rapidly than from the nanofiltered water-supplied network, perhaps because of the grazing activity of protozoa in GAC water but not in nanofiltered water. Thus, the GAC water-supplied network contained a functional ecosystem with well-established and structured microbial communities, while the nanofiltered water-supplied system did not. The presence of protozoa in drinking water distribution systems must not be neglected because these populations may regulate the autochthonous and allochthonous bacterial populations.  相似文献   

2.
In two-stage continuous cultures, at bacterial concentrations, biovolumes, and growth rates similar to values found in Lake Vechten, ingestion rates of heterotrophic nanoflagellates (HNAN) increased from 2.3 bacteria HNAN−1 · h−1 at a growth rate of 0.15 day−1 to 9.2 bacteria · HNAN−1 · h−1 at a growth rate of 0.65 day−1. On a yeast extract medium with a C/N/P ratio of 100:15:1.2 (Redfield ratio), a mixed bacterial population showed a yield of 18% (C/C) and a specific carbon content of 211 fg of C · μm−3. The HNAN carbon content and yield were estimated at 127 fg of C · μm−3 and 47% (C/C). Although P was not growth limiting, HNAN accelerated the mineralization of PO4-P from dissolved organic matter by 600%. The major mechanism of P remineralization appeared to be direct consumption of bacteria by HNAN. N mineralization was performed mainly (70%) by bacteria but was increased 30% by HNAN. HNAN did not enhance the decomposition of the relatively mineral-rich dissolved organic matter. An accelerated decomposition of organic carbon by protozoa may be restricted to mineral-poor substrates and may be explained mainly by protozoan nutrient regeneration. Growth and grazing in the cultures were compared with methods for in situ estimates. Thymidine incorporation by actively growing bacteria yielded an empirical conversion factor of 1.1 × 1018 bacteria per mol of thymidine incorporated into DNA. However, nongrowing bacteria also showed considerable incorporation. Protozoan grazing was found to be accurately measured by uptake of fluorescently labeled bacteria, whereas artificial fluorescent microspheres were not ingested, and selective prokaryotic inhibitors blocked not only bacterial growth but also protozoan grazing.  相似文献   

3.
Using a combination of process rate determination, microsensor profiling and molecular techniques, we demonstrated that denitrification, and not anaerobic ammonium oxidation (anammox), is the major nitrogen loss process in biological soil crusts from Oman. Potential denitrification rates were 584±101 and 58±20 μmol N m−2 h−1 for cyanobacterial and lichen crust, respectively. Complete denitrification to N2 was further confirmed by an 15NO3 tracer experiment with intact crust pieces that proceeded at rates of 103±19 and 27±8 μmol N m−2 h−1 for cyanobacterial and lichen crust, respectively. Strikingly, N2O gas was emitted at very high potential rates of 387±143 and 31±6 μmol N m−2 h−1 from the cyanobacterial and lichen crust, respectively, with N2O accounting for 53–66% of the total emission of nitrogenous gases. Microsensor measurements revealed that N2O was produced in the anoxic layer and thus apparently originated from incomplete denitrification. Using quantitative PCR, denitrification genes were detected in both the crusts and were expressed either in comparable (nirS) or slightly higher (narG) numbers in the cyanobacterial crusts. Although 99% of the nirS sequences in the cyanobacterial crust were affiliated to an uncultured denitrifying bacterium, 94% of these sequences were most closely affiliated to Paracoccus denitrificans in the lichen crust. Sequences of nosZ gene formed a distinct cluster that did not branch with known denitrifying bacteria. Our results demonstrate that nitrogen loss via denitrification is a dominant process in crusts from Oman, which leads to N2O gas emission and potentially reduces desert soil fertility.  相似文献   

4.
We studied the dynamics of microbial communities attached to model aggregates (4-mm-diameter agar spheres) and the component processes of colonization, detachment, growth, and grazing mortality. Agar spheres incubated in raw seawater were rapidly colonized by bacteria, followed by flagellates and ciliates. Colonization can be described as a diffusion process, and encounter volume rates were estimated at about 0.01 and 0.1 cm3 h−1 for bacteria and flagellates, respectively. After initial colonization, the abundances of flagellates and ciliates remained approximately constant at 103 to 104 and ~102 cells sphere−1, respectively, whereas bacterial populations increased at a declining rate to >107 cells sphere−1. Attached microorganisms initially detached at high specific rates of ~10−2 min−1, but the bacteria gradually became irreversibly attached to the spheres. Bacterial growth (0 to 2 day−1) was density dependent and declined hyperbolically when cell density exceeded a threshold. Bacterivorous flagellates grazed on the sphere surface at an average saturated rate of 15 bacteria flagellate−1 h−1. At low bacterial densities, the flagellate surface clearance rate was ~5 × 10−7 cm2 min−1, but it declined hyperbolically with increasing bacterial density. Using the experimentally estimated process rates and integrating the component processes in a simple model reproduces the main features of the observed microbial population dynamics. Differences between observed and predicted population dynamics suggest, however, that other factors, e.g., antagonistic interactions between bacteria, are of importance in shaping marine snow microbial communities.  相似文献   

5.
A chemostat culture of the sulfate-reducing bacterium Desulfovibrio oxyclinae isolated from the oxic layer of a hypersaline cyanobacterial mat was grown anaerobically and then subjected to gassing with 1% oxygen, both at a dilution rate of 0.05 h−1. The sulfate reduction rate under anaerobic conditions was 370 nmol of SO42− mg of protein−1 min−1. At the onset of aerobic gassing, sulfate reduction decreased by 40%, although viable cell numbers did not decrease. After 42 h, the sulfate reduction rate returned to the level observed in the anaerobic culture. At this stage the growth yield increased by 180% compared to the anaerobic culture to 4.4 g of protein per mol of sulfate reduced. Protein content per cell increased at the same time by 40%. The oxygen consumption rate per milligram of protein measured in washed cell suspensions increased by 80%, and the thiosulfate reduction rate of the same samples increased by 29% with lactate as the electron donor. These findings indicated possible oxygen-dependent enhancement of growth. After 140 h of growth under oxygen flux, formation of cell aggregates 0.1 to 3 mm in diameter was observed. Micrometer-sized aggregates were found to form earlier, during the first hours of exposure to oxygen. The respiration rate of D. oxyclinae was sufficient to create anoxia inside clumps larger than 3 μm, while the levels of dissolved oxygen in the growth vessel were 0.7 ± 0.5 μM. Aggregation of sulfate-reducing bacteria was observed within a Microcoleus chthonoplastes-dominated layer of a cyanobacterial mat under daily exposure to oxygen concentrations of up to 900 μM. Desulfonema-like sulfate-reducing bacteria were also common in this environment along with other nonaggregated sulfate-reducing bacteria. Two-dimensional mapping of sulfate reduction showed heterogeneity of sulfate reduction activity in this oxic zone.  相似文献   

6.
We investigated attachment processes of hydrophobic and hydrophilic particles (diameter = 1 μm) to mature biofilms grown on clay marbles in a sequencing batch biofilm reactor. During a treatment cycle with filtered wastewater containing different fluorescent beads, the progression of particle density in various biofilm compartments (carrier biofilm, basic biofilm layer, biofilm flocs, and sessile ciliates) was determined by flow cytometry, confocal laser scanning microscopy and automated image analysis. Particles were almost completely removed from wastewater by typical processes of particle retention: up to 58% of particles attached to clay marbles, up to 15% were associated with suspended flocs, and up to 10% were ingested by sessile ciliates. Ingestion of particles by ciliates was exceptionally high immediately after wastewater addition (1,200 particles grazer−1 h−1) and continued until approximately 14% of the water had been cleared by ciliate filter feeding. Most probably, ciliate bioturbation increases particle sorption to the basic biofilm. Backwashing of the reactor detached pieces of biofilm and thus released approximately 50% of the particles into rinsing water. Clay marbles in the upper part of the reactor were more efficiently abraded than in the lower part. No indications for selective attachment of the applied hydrophobic and hydrophilic beads were found. As a consequence of interception patterns, organisms at elevated biofilm structures are probably major profiteers of wastewater particles; among them, ciliates may be of major importance because of their highly active digestive food vacuoles.  相似文献   

7.
Ultramicrobacteria (cell volume < 0.1 μm3) are the numerically dominant organisms in the plankton of marine and freshwater habitats. Flagellates and other protists are assumed to be the most important predators of these ultramicrobacteria as well as of larger planktonic bacteria. However, due to controversial observations conducted previously, it is not clear as to whether fractions of the ultramicrobacteria are resistant to flagellate predation. Furthermore, it is not known if closely related bacteria vary significantly in their sensitivity to flagellate predation. We investigated the sensitivity of ultramicrobacteria affiliated with the cosmopolitan Polynucleobacter cluster to grazing by Spumella-like nanoflagellates. Laboratory grazing experiments with four closely related (≥99.6% 16S rRNA gene sequence similarity) bacteria and three closely related (100% 18S rRNA gene sequence similarity) flagellates were performed. In comparison to larger bacteria, predation on the ultramicrobacterial Polynucleobacter strains was weak, and the growth of the predating flagellates was slow. Specific clearance rates ranged between 0.14 × 105 and 2.8 × 105 units of predator size h−1. Feeding rates strongly depended on the flagellate and bacterial strain (P < 0.001). Grazing mortality rates of the three flagellate strains investigated varied for the same prey strain by up to almost fourfold. We conclude that (i) ultramicrobacteria affiliated with the Polynucleobacter cluster are not protected from grazing, (ii) strain-specific variations in grazing sensitivity even between closely related bacteria are high, and (iii) strain-specific differences in predator-prey interaction could be an important factor in the evolution and maintenance of microbial microdiversity.  相似文献   

8.
The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.  相似文献   

9.
We investigated the growth and vertical flux of attached bacteria with floating sediment traps in the Hudson River Plume of the New York Bight during the spring diatom blooms. Traps were floated at the base of the mixed layer (ca. 10 m) for 1-day periods. After recovery, we measured bacterial abundance and rates of [methyl-3H]thymidine incorporation in the trap samples. The vertical flux of attached bacteria was estimated with a model formulated to distinguish between bacterial accumulation in traps due to in situ growth and that due to vertical flux. Attached bacterial flux ranged from 0.6 × 1011 to 2.0 × 1011 cells m−2 day−1, and attached bacterial settling rates of 0.1 to 1.0 m day−1 were observed during periods of vertical particulate organic carbon flux ranging from 254 to 1,267 mg of C m−2 day−1. In situ growth of bacteria in sediment traps was unimportant as a source of bacterial increase when compared with vertical flux during our study. The vertical flux of attached bacteria removed 3 to 67% of the total daily bacterial production from the water column. Particulate organic carbon is not significantly mineralized by attached bacteria during its descent to the sea floor in the plume area during this period, when water temperature and grazing rates are at their annual minima.  相似文献   

10.
Pigeon peas (Cajanus cajan) were grown in large soil columns (90-cm length by 30-cm diameter) and inoculated with four different strains of cowpea rhizobia, which varied with respect to hydrogen uptake activity (Hup). Despite the profuse liberation of H2 from Hup- nodules in vitro, H2 gas was not detected in any of the soil columns. When H2 was injected into the columns, the rates of consumption were highest in the treatments (including control) containing Hup- nodules (218 and 177 nmol · h−1 · cm−2) and lowest in the Hup+ treatments (158, 92, and 64 nmoles · h−1 · cm−2). In situ H2 uptake rates in small soil cores at fixed distances from the nodules decreased exponentially with distance from the nodule (R2 = 0.99). This decrease in H2 consumption was associated with a similar decrease in numbers of H2-oxidizing chemolithotrophic bacteria as determined by the most-probable-number method. On the basis of two equations derived separately upon diffusive theory (Fix's Law) and kinetic theory (Michaelis-Menten), the empirically derived rate constants and coefficients indicated that all of the H2 emitted from Hup- nodules would be consumed by H2-oxidizing bacteria within a 3- to 4.5-cm radius of the nodule surface. It is concluded that H2 is not lost from the soil-plant ecosystem during N2 fixation in C. cajan but is conserved by H2-oxidizing bacteria.  相似文献   

11.
The complicated routes by which organic material is channelled up to higher trophic levels via bacteria and protozoans is a major issue in aquatic microbial ecology. Because of the fragile nature of protists it is not straightforward to perform experimental studies of prey–predator interactions. Here we present an approach for the assessment of ciliate grazing on living heterotrophic nanoflagellates. Stationary phase cultures of a heterotrophic nanoflagellate (Cafeteria sp.) were live-stained by allowing them to take up fluorescently labelled macromolecules. Controls revealed that this label persisted for several hours. Fluorescently labelled living flagellates (FLLF) were added into enriched natural assemblages of marine oligotrich ciliates and uptake of FLLF was monitored over time. Oligotrich ciliates did not incorporate fluorescent-labelled macromolecules but a linear FLLF uptake over time was observed for 20–30 min at 20°C. Ingestion rates were 21–46 FLLF h–1 at a concentration of about 2×104 FLLF ml–1, which corresponded to clearance rates of 0.7–0.8 l ciliate–1 h–1. These results are in the same order of reported ciliate grazing on phytoplankton of similar size. This method represents a direct approach to measure ciliate grazing specifically on living heterotrophic nanoflagellates.  相似文献   

12.
Thermothrix thiopara did not appear to be stressed at high temperature (72°C). Both the actual and theoretical yields were higher than those of analogous mesophilic sulfur bacteria, and the specific growth rate (μmax) was more rapid than that of most autotrophs. The specific growth rate (0.58 h−1), specific maintenance rate (0.11 h−1), actual molar growth yield at μmax (Ymax = 16 g mol−1), and theoretical molar growth yield (YG = 24 g mol−1) were all higher for T. thiopara (72°C) than for mesophilic (25 to 30°C) Thiobacillus spp. The growth efficiencies for T. thiopara at 70 and 75°C (0.84 and 0.78) were significantly higher than at 65°C (0.47). Corresponding specific maintenance rates were highest at 65°C (0.41 h−1) and lowest at 70 and 75°C (0.11 and 0.15 h−1, respectively). Growth efficiencies of metabolically similar mesophiles were generally higher than for T. thiopara. However, the actual yields at μmax were higher for T. thiopara because its theoretical yield was higher. Thus, at 70°C, T. thiopara was capable of deriving more metabolically useful energy from thiosulfate than were mesophilic sulfur bacteria at 25 and 30°C. The low growth efficiency of T. thiopara reflected higher maintenance expenditures. T. thiopara had higher maintenance rates than Thiobacillus ferroxidans or Thiobacillus denitrificans, but also attained higher molar growth yields. It is concluded that sulfur metabolism may be more efficient overall at extremely high temperatures due to increased theoretical yields despite increased maintenance requirements.  相似文献   

13.
The dispersion and initial transport of Cryptosporidium oocysts from fecal pats were investigated during artificial rainfall events on intact soil blocks (1,500 by 900 by 300 mm). Rainfall events of 55 mm h−1 for 30 min and 25 mm h−1 for 180 min were applied to soil plots with artificial fecal pats seeded with approximately 107 oocysts. The soil plots were divided in two, with one side devoid of vegetation and the other left with natural vegetation cover. Each combination of event intensity and duration, vegetation status, and degree of slope (5° and 10°) was evaluated twice. Generally, a fivefold increase (P < 0.05) in runoff volume was generated on bare soil compared to vegetated soil, and significantly more infiltration, although highly variable, occurred through the vegetated soil blocks (P < 0.05). Runoff volume, event conditions (intensity and duration), vegetation status, degree of slope, and their interactions significantly affected the load of oocysts in the runoff. Surface runoff transported from 100.2 oocysts from vegetated loam soil (25-mm h−1, 180-min event on 10° slope) to up to 104.5 oocysts from unvegetated soil (55-mm h−1, 30-min event on 10° slope) over a 1-m distance. Surface soil samples downhill of the fecal pat contained significantly higher concentrations of oocysts on devegetated blocks than on vegetated blocks. Based on these results, there is a need to account for surface soil vegetation coverage as well as slope and rainfall runoff in future assessments of Cryptosporidium transport and when managing pathogen loads from stock grazing near streams within drinking water watersheds.  相似文献   

14.
Free-living and surface-associated microbial communities in sand-packed columns perfused with groundwater were compared by examination of compositional and functional characteristics. The composition of the microbial communities was assessed by bulk DNA extraction, PCR amplification of 16S ribosomal DNA fragments, separation of these fragments by denaturing gradient gel electrophoresis, and sequence analysis. Community function was assessed by measurement of β-glucosidase and aminopeptidase extracellular enzyme activities. Free-living populations in the aqueous phase exhibited a greater diversity of phylotypes than populations associated with the solid phase. The attached bacterial community displayed significantly greater β-glucosidase and aminopeptidase enzyme activities per volume of porous medium than those of the free-living community. On a per-cell basis, the attached community had a significantly higher cell-specific aminopeptidase enzyme activity (1.07 × 10−7 nmol cell−1 h−1) than the free-living community (5.02 × 10−8 nmol cell−1 h−1). Conversely, the free-living community had a significantly higher cell-specific β-glucosidase activity (1.92 × 10−6 nmol cell−1 h−1) than the surface-associated community (6.08 × 10−7 nmol cell−1 h−1). The compositional and functional differences observed between these two communities may reflect different roles for these distinct but interacting communities in the decomposition of natural organic matter or biodegradation of xenobiotics in aquifers.  相似文献   

15.
A new method of respiration rate measurement based on oxygen luminescence quenching in sensor spots was evaluated for the first time for aquatic bacterial communities. The commonly used Winkler and Clark electrode methods to quantify oxygen concentration both require long incubation times, and the latter additionally causes signal drift due to oxygen consumption at the cathode. The sensor spots proved to be advantageous over those methods in terms of precise and quick oxygen measurements in natural bacterial communities, guaranteeing a respiration rate estimate during a time interval short enough to neglect variations in organism composition, abundance, and activity. Furthermore, no signal drift occurs during measurements, and respiration rate measurements are reliable even at low temperatures and low oxygen consumption rates. Both a natural bacterioplankton sample and a bacterial isolate from a eutrophic river were evaluated in order to optimize the new method for aquatic microorganisms. A minimum abundance of 2.2 × 106 respiring cells ml−1 of a bacterial isolate was sufficient to obtain a distinct oxygen depletion signal within 20 min at 20°C with the new oxygen sensor spot method. Thus, a culture of a bacterial isolate from a eutrophic river (OW 144; 20 × 106 respiring bacteria ml−1) decreased the oxygen saturation about 8% within 20 min. The natural bacterioplankton sample respired 2.8% from initially 94% oxygen-saturated water in 30 min. During the growth season in 2005, the planktonic community of a eutrophic river consumed between 0.7 and 15.6 μmol O2 liter−1 h−1. The contribution of bacterial respiration to the total plankton community oxygen consumption varied seasonally between 11 and 100%.  相似文献   

16.
Production by attached and free-living planktonic bacteria in two blackwater rivers in the Southeastern United States was measured over a period of 14 months by using the rate of incorporation of [methyl-3H]thymidine into DNA. Production rates and biomass dynamics were compared to determine the potential for in situ production to supply planktonic biomass. Bacterial production in these rivers was moderate and varied seasonally. Rates varied from 0.058 to 2.120 mg of C m−3 h−1 in the Ogeechee River and from 0.002 to 2.418 mg of C m−3 h−1 in Black Creek. Regressions of growth rate on various environmental variables showed that temperature and total dissolved organic carbon concentration were the best predictors of growth. Although attached bacteria were <21% of the total biomass, they accounted for up to 53% of the total production. Turnover times for attached bacteria ranged from <1 day to >3 years depending on season. Turnover times of free-living bacteria varied from 4.4 days to 11.8 years. Comparisons of biomass with production indicated that during most seasons, the majority of bacterial biomass in these rivers was of allochthonous origin. During summer, when water temperatures were high, bacterial growth in the river may have supplied a greater percentage of the standing stock of bacteria than allochthonous inputs.  相似文献   

17.
A model of growth and substrate utilization for ferrous-iron-oxidizing bacteria attached to the disks of a rotating biological contactor was developed and tested. The model describes attached bacterial growth as a saturation function in which the rate of substrate utilization is determined by a maximum substrate oxidation rate constant (P), a half-saturation constant (Ks), and the concentration of substrate within the rotating biological contactor (S1). The maximum oxidation rate constant was proportional to flow rate, and the substrate concentration in the reactor varied with influent substrate concentration (S0). The model allowed the prediction of metabolic constants and included terms for both constant and growth-rate-dependent maintenance energies. Estimates for metabolic constants of the attached population of acidophilic, chemolithotrophic, iron-oxidizing bacteria limited by ferrous iron were: maximum specific growth rate (μmax), 1.14 h−1; half-saturation constant (Ks) for ferrous iron, 54.9 mg/liter; constant maintenance energy coefficient (m1), 0.154 h−1; growth-rate-dependent maintenance energy coefficient (m′), 0.07 h−1; maximum yield (Yg), 0.063 mg of organic nitrogen per mg of Fe(II) oxidized.  相似文献   

18.
Anaerobic oxidation of ammonium (anammox) is recognized as an important process for nitrogen (N) cycling, yet its role in agricultural ecosystems, which are intensively fertilized, remains unclear. In this study, we investigated the presence, activity, functional gene abundance and role of anammox bacteria in rhizosphere and non-rhizosphere paddy soils using catalyzed reporter deposition–fluorescence in situ hybridization, isotope-tracing technique, quantitative PCR assay and 16S rRNA gene clone libraries. Results showed that rhizosphere anammox contributed to 31–41% N2 production with activities of 0.33–0.64 nmol N2 g−1 soil h−1, whereas the non-rhizosphere anammox bacteria contributed to only 2–3% N2 production with lower activities of 0.08–0.26 nmol N2 g−1 soil h−1. Higher anammox bacterial cells were observed (0.75–1.4 × 107 copies g−1 soil) in the rhizosphere, which were twofold higher compared with the non-rhizosphere soil (3.7–5.9 × 106 copies g−1 soil). Phylogenetic analysis of the anammox bacterial 16S rRNA genes indicated that two genera of ‘Candidatus Kuenenia'' and ‘Candidatus Brocadia'' and the family of Planctomycetaceae were identified. We suggest the rhizosphere provides a favorable niche for anammox bacteria, which are important to N cycling, but were previously largely overlooked.  相似文献   

19.
In stratified Lake Vechten, The Netherlands, protozoan grazing was estimated on the basis of uptake of fluorescently labeled bacteria and compared with bacterial production estimated on the basis of thymidine incorporation. By using a grazer-free mixed bacterial population from the lake in continuous culture, an empirical relationship between cell production and thymidine incorporation was established. Thymidine incorporation into total cold-trichloroacetic-acid-insoluble macromolecules yielded a relatively constant empirical conversion factor of ca. 1018 (range, 0.38 × 1018 to 1.42 × 1018) bacteria mol of thymidine−1 at specific growth rates (μ) ranging from 0.007 to 0.116 h−1. Although thymidine incorporation has been assumed to measure DNA synthesis thymidine incorporation appeared to underestimate the independently measured bacterial DNA synthesis by at least 1.5- to 13-fold, even if all incorporated label was assumed to be in DNA. However, incorporation into DNA was found to be insignificant as measured by conventional acid-base hydrolysis. Methodological problems of the thymidine technique are discussed. Like the cultures, Lake Vechten bacteria showed considerable thymidine incorporation into total macromolecules, but no significant incorporation into DNA was found by acid-base hydrolysis. This applied not only to the low-oxygen hypo- and metalimnion but also to the aerobic epilimnion. Thus, the established empirical conversion factor for thymidine incorporation into total macromolecules was used to estimate bacterial production. Maximum production rates (141 × 106 bacteria liter−1 h−1; μ, 0.012 h−1) were found in the metalimnion and were 1 order of magnitude higher than in the epi- and hypolimnion. In all three strata, the estimated bacterial production was roughly balanced by the estimated protozoan grazing. Heterotrophic nanoflagellates were the major consumers of the bacterial production and showed maximum numbers (up to 40 × 106 heterotrophic nanoflagellates liter−1) in the microaerobic metalimnion.  相似文献   

20.
Resistant starch (RS) enrichments were made using chemostats inoculated with human feces from two individuals at two dilution rates (D = 0.03 h−1 and D = 0.30 h−1) to select for slow- and fast-growing amylolytic communities. The fermentations were studied by analysis of short-chain fatty acids, amylase and α-glucosidase activities, and viable counts of the predominant culturable populations and the use of 16S rRNA-targeted oligonucleotide probes. Considerable butyrate was produced at D = 0.30 h−1, which corresponded with reduced branched-chain fatty acid formation. At both dilution rates, high levels of extracellular amylase activity were produced, while α-glucosidase was predominantly cell associated. Bacteroides and bifidobacteria predominated at the low dilution rate, whereas saccharolytic clostridia became more important at D = 0.30 h−1. Microscopic examination showed that within 48 h of inoculation, one particular bacterial morphotype predominated in RS enrichments at D = 0.30 h−1. This organism attached apically to RS granules and formed rosette-like structures which, with glycocalyx formation, agglomerated to form biofilm networks in the planktonic phase. Attempts to isolate this bacterium in pure culture were repeatedly unsuccessful, although a single colony was eventually obtained. On the basis of its 16S rDNA sequence, this RS-degrading, butyrate-producing organism was identified as being a previously unidentified group I Clostridium sp. A 16S rRNA-targeted probe was designed using this sequence and used to assess the abundance of the population in the enrichments. At 240 h, its contributions to total rRNA in the chemostats were 5 and 23% at D = 0.03 and 0.30 h−1, respectively. This study indicates that bacterial populations with significant metabolic potential can be overlooked using culture-based methodologies. This may provide a paradigm for explaining the discrepancy between the low numbers of butyrate-producing bacteria that are isolated from fecal samples and the actual production of butyrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号