首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 551 毫秒
1.
A rapid and sensitive method is described for the measurement of picomole levels of the biological thiols glutathione, cysteine, penicillamine, cysteamine, and ergothioneine by a combination of high-performance liquid chromatography and electrochemical detection (ECD). The compounds were separated isocratically on a reversed-phase C18 column by ion-pair chromatography with a mobile phase containing 5 mM acetic acid and 2.5 mM sodium 1-octanesulfonate. After chromatographic separation, the eluate was combined with silver nitrate dissolved in ammonium nitrate buffer at pH 10.5. A platinum disc electrode was used at -0.1 V vs Ag/AgCl to detect the amount of silver ions that had been consumed by the reaction with thiols. For measurement of disulfide, S-sulfonation with sodium sulfite or electroreduction were used to cleave the disulfide, and the thiol anions produced were detected by HPLC-ECD as for the reduced forms. The method was used to assay thiols and disulfides in biological materials.  相似文献   

2.
Glutathione (GSH) and glutathione disulfide (GSSG) are important thiols, which provide defence against oxidative stress by scavenging free radicals or causing the reduction of hydrogen peroxide. The ratio GSH/GSSG is often used as a sensitive index of oxidative stress in vivo. In this paper, a direct electrochemical method using an electrode modified with functionalized carbon nanotubes as electrochemical detector (ED) for liquid chromatography (LC) was described. The electrochemical behaviors of GSH and GSSG on this modified electrode were investigated by cyclic voltammetry and it was found that the functionalized carbon nanotubes exhibited efficiently electrocatalysis on the current responses of GSH and GSSG. In LC-ED, both of the analytes showed good and stable current responses. The detection limit of GSH was 0.2 pmol on column and that of GSSG was 1.2 pmol on column, which were low enough for the analysis of real small samples. The method was sensitive enough to detect difference in concentration of GSH and GSSG in hepatocytes from animals with and without introduction of oxidation stress by glucose or hydrogenperoxide.  相似文献   

3.
This investigation evaluates in an in vivo system the possible correlation between the intracellular content of GSH and cysteine and thermal sensitivity and thermotolerance. The studies were performed on C3H mammary carcinomas, located on the hind paw of CBA mice. Intracellular thiols were measured by the HPLC technique and the degree of thermotolerance induction was determined from tumour growth rate studies. It was found that the intracellular GSH levels did not change significantly during thermotolerance induction, and that subtoxic hyperthermia induced a pronounced transient decrease in GSH down to 30 per cent of the control level. When the intracellular GSH level was decreased to the same extent, by pretreatment with D,L-buthionine-S-R-sulphoximine (BSO), thermotolerance was still inducible. Thus, the induction of heat-induced thermal resistance did not seem to be dependent on the intracellular GSH level. When hyperthermia and BSO were combined, the GSH levels were further reduced. Treatment with BSO slightly increased the toxicity of both thermotolerance-inducing and subtoxic hyperthermia. The cysteine concentrations increased several fold after BSO and heat treatments and contributed, under these conditions, to more than 25 per cent of the intracellular free reduced thiols. In general, there was no direct correlation between GSH and cysteine levels. It is concluded that thermotolerance induction does not depend on or cause changes in intracellular GSH levels and that subtoxic heat treatments induce a pronounced transient decrease in GSH concentration.  相似文献   

4.
In this study, the electrochemical activity of ordered mesoporous carbon (OMC) was investigated and applied to the determination of glutathione (GSH) and cysteine (CySH). It has been demonstrated that the ordered mesostructure of OMC has an important role in the electrocatalytic activity towards thiols, and the destruction of this structure results in the decrease of such properties. The electrochemical behavior of GSH at an OMC electrode was also investigated. The results showed that the process of oxidation of GSH at the OMC electrode is differs from that of CySH at the same electrode by the peak at 0.47 V associated with CySH. This difference helped to reduce the interference of GSH during the determination of CySH in the presence of GSH. A sensor for the two thiols was developed with acceptable sensitivity and detection limits in a large determination range. These results obtained in the physiological medium and in the physiological levels of GSH and CySH, suggest that OMC is a promising material in the detection of thiols in biologically relevant experimental conditions (in terms of pH).  相似文献   

5.
The fluorescence emission spectrum of N-dansyl-S-nitrosohomocysteine was enhanced approximately 8-fold upon removal of the NO group either by photolysis or by transnitrosation with free thiols like glutathione. The fluorescence enhancement was reversible in that it could be quenched in the presence of excess S-nitrosoglutathione. Attempts were then made to utilize N-dansyl-S-nitrosohomocysteine as an intracellular probe of thiols/S-nitrosothiols. Fluorescence microscopy of fibroblasts in culture indicated that intracellular N-dansyl-S-nitrosohomocysteine levels reached a maximum within 5 min. N-Dansyl-S-nitrosohomocysteine fluorescence was directly proportional to intracellular GSH levels, directly determined with HPLC. N-Dansyl-S-nitrosohomocysteine preloaded cells were also sensitive to S-nitrosoglutathione uptake as the intracellular fluorescence decreased as a function of time upon exposure to extracellular S-nitrosoglutathione.  相似文献   

6.
Glutathione (GSH) is an abundant intracellular tripeptide that has been implicated as an important regulator of T cell proliferation. The effect of pharmacological regulators of GSH and other thiols on murine T cell signaling, proliferation, and intracellular thiol levels was examined. l-Buthionine-S,R-sulfoximine (BSO), an inhibitor of GSH synthesis, markedly reduced GSH levels and blocked T cell proliferation without significant effect on cell viability. N-acetylcysteine markedly enhanced T cell proliferation without affecting GSH levels. Cotreatment of T cells with N-acetylcysteine and BSO failed to restore GSH levels, but completely restored the proliferative response. Both 2-ME and l-cysteine also reversed the BSO inhibition of T cell proliferation. Intracellular l-cysteine levels were reduced with BSO treatment and restored with cotreatment with NAC or l-cysteine. However, 2-ME completely reversed the BSO inhibition of proliferation without increasing intracellular cysteine levels. Therefore, neither GSH nor cysteine is singularly critical in limiting T cell proliferation. Reducing equivalents from free thiols were required because oxidation of the thiol moiety completely abolished the effect. Furthermore, BSO did not change the expression of surface activation markers, but effectively blocked IL-2 and IL-6 secretion. Importantly, exogenous IL-2 completely overcame BSO-induced block of T cell proliferation. These results demonstrate that T cell proliferation is regulated by thiol-sensitive pathway involving IL-2.  相似文献   

7.
Low-molecular-mass thiols, such as glutathione (GSH), and their associated disulfides are ubiquitous in nature, and based upon the many known functions of these compounds, their identification and accurate measurement is essential. Our objectives were to develop a simple method for the simultaneous measurement of thiols and disulfides in biological samples using HPLC with dual electrochemical detection (HPLC-DED). Particular emphasis was placed on the applicability to a wide variety of important GSH-related thiols and disulfides, including γ-Glu-Cys, Cys-Gly, their disulfides, and the mixed disulfide of glutathione and cysteine (CSSG), validation on different types of biological samples, maintenance of chromatographic resolution and reproducibility with routine and extended use, and enhancement of assay sensitivity. To this end, optimal HPLC conditions including mobile phase, column, and electrode polishing procedures were established and the method was applied to, and validated on a variety of biological samples. This improved methodology should prove to be a useful tool in studies on the metabolism of GSH and other thiols and disulfides and their role in cellular homeostasis and disease processes.  相似文献   

8.
9.
Diabetes mellitus may be associated with intracellular glutathione (GSH) deficiency. Since in vivo studies have shown that plasma intracellular GSH plays a key role in regulating the activation of nuclear factor kappaB (NF-kappaB), we have investigated the relationship between intracellular thiols (GSH, homocysteine, cysteine and cysteinyglycine) and NF-kappaB activity in the peripheral blood mononuclear cells (PBMC) of 63 elderly non-insulin dependent diabetes mellitus (NIDDM) patients (28 microalbuminurics and 35 normoalbuminurics) and 30 healthy age- and sex-matched subjects. In addition, we have measured plasma concentrations of these thiol compounds, serum concentrations of interleukin-6 (IL-6) and vascular cell adhesion molecule-1 (sVCAM-1), that are partly dependent on the NF-kappaB activation, as well as the serum levels of thiobarbituric acid reacting substances (TBARS), as index of lipid peroxidation. Diabetic patients with microalbuminuria (MAB) and normoalbuminuria had NF-kappaB activity 2.1- and 1.5-fold greater, respectively, than the control group. As compared to normoalbuminuric patients, patients with MAB had significantly higher levels of glycemia, plasma homocysteine, and serum concentrations of TBARS, IL-6 and sVCAM-1 (in all cases, p < 0.01), and significantly lower GSH content in the PBMC (p < 0.05). The intracellular GSH in PBMC correlated with NF-kappaB activation (r = -0.82; p < 0.0001), serum TBARS (r = -0.60; p < 0.001), and with fasting glycemia (r = -0.56; p < 0.001) in patients with MAB, whereas a weaker association between GSH levels in PBMC and NF-kappaB activation (r = -0.504, p < 0.001) was seen in patients without MAB. These results suggest that the decrease of intracellular GSH content in elderly NIDDM patients with MAB is strongly associated with enhanced NF-kappaB activation, which could contribute to the development of increased glomerular capillary permeability and its rapid progression.  相似文献   

10.
Horan AD  Koch CJ 《Radiation research》2001,156(4):388-398
We studied the role of cysteine as an intracellular radiation protector under conditions in which both oxygen and thiols were monitored at 37 degrees C. In HCT-116 human colon cancer cells, the intracellular cysteine content affects the radiation survival dramatically at intermediate oxygen levels, but not at zero or high oxygen levels. Using a spin-through-oil method with a dual radioactive label detection system, we measured intracellular cysteine and glutathione (GSH) levels for cells in suspension culture. A comparison of the cysteine levels of monolayer cells lysed in situ and of trypsinized monolayer cells in suspension (Horan et al., Cytometry 29, 76-82, 1997) revealed that, upon trypsinization from monolayer culture and transfer to a spinner apparatus at 37 degrees C, HCT-116 cells lose most of their intracellular cysteine. Over the 60-min time course of control experiments, these cells do not recover intracellular cysteine despite the availability of cystine (the disulfide of cysteine) in the medium. When cells in spinner culture are provided with exogenous cysteine, they initially concentrate it to 10-fold the extracellular concentration, with the concentration factor decreasing to about 5-fold over the course of an hour. The intracellular GSH concentration changes little throughout this period, regardless of the changes in cysteine levels. The same apparatus was used to assess the survival of HCT-116 cells irradiated at 37 degrees C under conditions of constant pO(2) monitoring. For cells without added cysteine, the oxygen concentration for half-maximal radiation sensitivity was about 7.5 mmHg (intermediate hypoxia), more than twice the commonly accepted value (3 mmHg). At 7.5 mmHg, cells with added cysteine (intracellular concentration 3.5 mM) were almost as radioresistant as severely hypoxic cells (approximately 0.005% oxygen). Cells in parallel experiments in which the cells were grown in monolayers on glass Petri dishes had intermediate cysteine values and also intermediate radiosensitivity. We conclude that the radiation response of cells at intermediate oxygen levels is controlled predominantly by intracellular cysteine levels and that the cysteine levels commonly found in tumors may increase the K(m) for radiosensitivity to values much higher than suggested previously.  相似文献   

11.
The thiol redox status of cultured human bronchial fibroblasts has been characterized at various growth conditions using thiol-reactive monobromobimane, with or without the combination of dithiotreitol, a strong reducing agent. This procedure has enabled measurement of the cellular content of reduced glutathione (GSH), total glutathione equivalents, cysteine, total cysteine equivalents, protein sulfhydryls, protein disulfides, and mixed disulfides. Passage of cells with trypsin perturbs the cellular thiol homeostasis and causes a 50% decrease in the GSH content, whereas the total cysteine content is subsequently increased severalfold during cell attachment. During subsequent culture, transient severalfold increased levels of GSH, protein-bound thiols, and protein disulfides are reached, whereas the total cysteine content gradually declines. These changes in the redox balance of both low-molecular-weight thiols and protein-bound thiols correlate with cell proliferation and mostly precede the major growth phase. When the onset of proliferation is inhibited by maintenance of cells in medium containing decreased amounts of serum, the GSH content remains significantly increased. Subsequent stimulation of growth by addition of serum results in decreased GSH levels at the onset of proliferation. In thiol-depleted medium, proliferation is also inhibited, whereas GSH levels are increased to a lesser extent than in complete medium. Exposure to buthionine sulfoximine inhibits growth, prevents GSH synthesis, and results in accumulation of total cysteine, protein-bound cysteine, and protein disulfides. For extracellular cystine, variable rates of cellular uptake correlate with the initial increase in the total cysteine content observed following subculture and with the GSH peak that precedes active proliferation. The results strongly suggest that specific fluctuations in the cellular redox balance of both free low-molecular-weight thiols and protein sulfhydryls are involved in growth regulation of normal human fibroblasts.  相似文献   

12.
Thiols and pancreatic beta-cell function: a review   总被引:2,自引:0,他引:2  
In pancreatic islets insulin secretion in response to a variety of stimulators is sensitive to the redox state of extracellular and intracellular thiols. In this connection variations of plasma glutathione (GSH) may also be of importance. In the process of stimulus-secretion coupling, membrane thiols play an important role. One major localization of critical thiols appears to be related to the influx of calcium through the voltage-dependent channel. Other transmembranal ion movements and the cAMP system seem to be less sensitive to thiol oxidation than calcium influx via voltage-dependent Ca channels.  相似文献   

13.
Leishmania parasites lack catalase and therefore, their anti-oxidant system hinges primarily upon non-protein thiols; accordingly, depletion of thiols could potentially serve as an effective drug target. We have developed a flow cytometry based assay using 5-chloromethyl fluorescein diacetate based upon its selective staining of non-protein thiols. Its specificity was confirmed using buthionine sulphoximine (a γ-glutamyl cysteine synthetase inhibitor), diamide (an oxidizing agent of intracellular thiols) and N-ethylmaleimide (a covalent modifier of cysteine residues) as evidenced by reduction in fluorescence; furthermore, restoration of fluorescence by N-acetyl cysteine corroborated specificity of 5-chloromethyl fluorescein diacetate to measure non-protein thiols. Differences in basal level of thiols in antimony sensitive and antimony resistant Leishmania field isolates were detected. The depletion of non-protein thiols by conventional anti-leishmanial drugs e.g. antimony and miltefosine was demonstrated. Furthermore, fluorescence was unaffected by depletion of ATP in majority of the strains studied, indicating that 5-chloromethyl fluorescein diacetate is not a substrate for the pump operative in most Leishmania donovani strains. Taken together, measurement of 5-chloromethyl fluorescein diacetate fluorescence is an effective method for monitoring non-protein thiols in Leishmania promastigotes.  相似文献   

14.
The phytotoxin cercosporin, a singlet oxygen-generating photosensitizer, is toxic to plants, mice, and many fungi, yet the fungi that produce it, Cercospora spp., are resistant. We hypothesize that resistance to cercosporin may result from a reducing environment at the cell surface. Twenty tetrazolium dyes differing in redox potential were used as indicators of cell surface redox potential of seven fungal species differing in resistance to cercosporin. Resistant fungi were able to reduce significantly more dyes than were sensitive fungi. A correlation between dye reduction and cercosporin resistance was also observed when resistance levels of Cercospora species were manipulated by growth on different media. The addition of the reducing agents ascorbate, cysteine, and reduced glutathione (GSH) to growth media decreased cercosporin toxicity for sensitive fungi. None of these agents directly reduced cercosporin at the concentrations at which they protected fungi. Spectral and thin-layer chromatographic analyses of cercosporin solutions containing the different reducing agents indicated that GSH, but not cysteine or ascorbate, reacted with cercosporin. Resistant and sensitive fungi did not differ in endogenous levels of cysteine, GSH, or total thiols. On the basis of data from this and other studies, this report presents a model which proposes that cercosporin resistance results from the production of reducing power at the surfaces of resistant cells, leading to transient reduction and detoxification of the cercosporin molecule.  相似文献   

15.
The phytotoxin cercosporin, a singlet oxygen-generating photosensitizer, is toxic to plants, mice, and many fungi, yet the fungi that produce it, Cercospora spp., are resistant. We hypothesize that resistance to cercosporin may result from a reducing environment at the cell surface. Twenty tetrazolium dyes differing in redox potential were used as indicators of cell surface redox potential of seven fungal species differing in resistance to cercosporin. Resistant fungi were able to reduce significantly more dyes than were sensitive fungi. A correlation between dye reduction and cercosporin resistance was also observed when resistance levels of Cercospora species were manipulated by growth on different media. The addition of the reducing agents ascorbate, cysteine, and reduced glutathione (GSH) to growth media decreased cercosporin toxicity for sensitive fungi. None of these agents directly reduced cercosporin at the concentrations at which they protected fungi. Spectral and thin-layer chromatographic analyses of cercosporin solutions containing the different reducing agents indicated that GSH, but not cysteine or ascorbate, reacted with cercosporin. Resistant and sensitive fungi did not differ in endogenous levels of cysteine, GSH, or total thiols. On the basis of data from this and other studies, this report presents a model which proposes that cercosporin resistance results from the production of reducing power at the surfaces of resistant cells, leading to transient reduction and detoxification of the cercosporin molecule.  相似文献   

16.
The first and highly conserved step in glutathione (GSH) biosynthesis is formation of γ-glutamyl cysteine by the enzyme glutamate-cysteine ligase (GshA). However, bioinformatic analysis revealed that many prokaryotic species that encode GSH-dependent proteins lack the gene for this enzyme. To understand how bacteria cope without gshA, we isolated Escherichia coli ΔgshA multigenic suppressors that accumulated physiological levels of GSH. Mutations in both proB and proA, the first two genes in L-proline biosynthesis, provided a new pathway for γ-glutamyl cysteine formation via the selective interception of ProB-bound γ-glutamyl phosphate by amino acid thiols, likely through an S-to-N acyl shift mechanism. Bioinformatic analysis suggested that the L-proline biosynthetic pathway may have a second role in γ-glutamyl cysteine formation in prokaryotes. Also, we showed that this mechanism could be exploited to generate cytoplasmic redox buffers bioorthogonal to GSH.  相似文献   

17.
Chemical reactivity of some isothiazolone biocides   总被引:2,自引:0,他引:2  
Chemical reactions between the isothiazolone biocides, N-methylisothiazol-3-one (MIT), benzisothiazol-3-one (BIT) and 5-chloro-N-methylisothiazol-3-one (CMIT) with cysteine have been investigated by u.v. and NMR spectroscopy. At physiological pH all three agents interacted oxidatively with thiols to form disulphides. Further interaction with thiols caused the release of cystine and formation of a reduced, ring-opened form of the biocide (mercaptoacrylamide). In an analogous fashion to the initial reaction the mercaptoacrylamide reacted with another molecule of biocide to give biocide dimers. NMR spectral studies indicated that for CMIT the mercaptoacrylamide form is capable of tautomerization to a highly reactive thio-acyl chloride. Formation of mercaptoacrylamide was in all cases highly pH-dependent. Alcohol dehydrogenase was insensitive to all three agents but was highly sensitive to CMIT when co-administered with dithiothreitol. Capacity to form a thioacyl chloride from the mercaptoacrylamide is suggested to account for much of this enhanced activity. Stopped-flow spectroscopic studies showed rates of reaction with glutathione (GSH) to directly parallel antimicrobial activity. Additionally, CMIT was able to react directly with both ionization states of GSH (pH 7-10) whilst BIT and MIT appeared only to interact when the glutamyl-nitrogen of GSH was charged (pH 8.5).  相似文献   

18.
Exercise is known to induce the oxidation of blood low-molecular-weight (LMW) thiols such as reduced glutathione (GSH). We previously reported that full-marathon running induced a decrease in human plasma levels of protein-bound sulfhydryl groups (p-SHs). Moderate exercise, a 30-min running at the intensity of the individual ventilatory threshold, performed by untrained healthy females caused a significant decrease in erythrocyte levels of p-SHs (mostly hemoglobin cysteine residues) and LMW thiols, but their levels returned to each baseline by 2 h. No significant change in plasma LMW thiols was observed. However, plasma levels of p-SHs significantly decreased after running and remained unchanged after 24 h. These results suggest that moderate exercise causes the oxidation of blood thiols, especially protein-bound thiols.  相似文献   

19.
The effect of externally applied L-cysteine and glutathione (GSH) on ATP sulphurylase and adenosine 5'-phosphosulphate reductase (APR), two key enzymes of assimilatory sulphate reduction, was examined in Arabidopsis thaliana root cultures. Addition of increasing L-cysteine to the nutrient solution increased internal cysteine, gamma-glutamylcysteine and GSH concentrations, and decreased APR mRNA, protein and extractable activity. An effect on APR could already be detected at 0.2 mm L-cysteine, whereas ATP sulphurylase was significantly affected only at 2 mm L-cysteine. APR mRNA, protein and activity were also decreased by GSH at 0.2 mm and higher concentrations. In the presence of L-buthionine-S, R-sulphoximine (BSO), an inhibitor of GSH synthesis, 0.2 mm L-cysteine had no effect on APR activity, indicating that GSH formed from cysteine was the regulating substance. Simultaneous addition of BSO and 0.5 mm GSH to the culture medium decreased APR mRNA, enzyme protein and activity. ATP sulphurylase activity was not affected by this treatment. Tracer experiments using (35)SO(4)(2-) in the presence of 0.5 mm L-cysteine or GSH showed that both thiols decreased sulphate uptake, APR activity and the flux of label into cysteine, GSH and protein, but had no effect on the activity of all other enzymes of assimilatory sulphate reduction and serine acetyltransferase. These results are consistent with the hypothesis that thiols regulate the flux through sulphate assimilation at the uptake and the APR step. Analysis of radioactive labelling indicates that the flux control coefficient of APR is more than 0.5 for the intracellular pathway of sulphate assimilation. This analysis also shows that the uptake of external sulphate is inhibited by GSH to a greater extent than the flux through the pathway, and that the flux control coefficient of APR for the pathway, including the transport step, is proportionately less, with a significant share of the control exerted by the transport step.  相似文献   

20.
The concentration of acid-soluble thiols other than reduced glutathione (SH - GSH) increases in the roots of zinc-sensitive and zinc-tolerant Silene vulgaris (Moench) Garcke after exposure to zinc for 1 to 3 d. The concentration of SH - GSH in the roots is higher in the sensitive plants than in the tolerant ones, both at equal external zinc concentrations and at zinc concentrations causing the same level of root-length growth inhibition. High performance liquid chromatography analyses show that the increase in the concentration of SH - GSH is not only due to the production of phytochelatins, but is also due to an increase in the concentration of cysteine and the production of nonidentified thiols. The cysteine concentration increases equally in the roots of sensitive and tolerant plants. The accumulation of phytochelatins is higher in the roots of the sensitive plants, whereas the chain length distribution of phytochelatins is the same in sensitive and tolerant plants. It is concluded that increased zinc tolerance in S. vulgaris is not due to increased production of phytochelatins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号