首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Signals and cues are extensively used in social interactions across diverse communication systems. Here, we extend an existing theoretical framework to explore investment by emitters and perceivers in the fidelity with which cues and signals associated with the former are detected by the latter. Traits of the emitter that improve cue or signal fidelity without adding information are termed ‘amplifiers’. We assume that each party can invest in improving fidelity but that it is increasingly costly the more fidelity is improved. Our model predicts that evolution of amplifier traits of a pre‐existing cue occurs over a broader range of circumstances than evolution of signalling in situations where the emitter offered no pre‐existing cue to the perceiver. It further predicts that the greater the intrinsic informational value of a cue, the more likely it is that the perceiver (and not the emitter) will invest in the fidelity of detecting that cue. A consequence of this predicted asymmetry is that true communication with reciprocal adaptations in emitters and perceivers to improve signal fidelity is likely to occur predominantly for traits of intermediate reliability. The corollary is that uncertainty of the perceiver will then be a key feature of communication. Uncertainty can arise because perceivers misinterpret signals or do not perceive them correctly, but here we argue that uncertainty is more fundamentally at the root of communication because traits that are intrinsically highly informative will induce only the perceiver and not the emitter to invest in improved fidelity of perception of that trait.  相似文献   

2.
3.
4.
In mammalian cells sphingosine-1-phosphate (S1P) is a well-established messenger molecule that participates in a wide range of signalling pathways. The objective of the work reported here was to investigate the extent to which phosphorylated long-chain sphingoid bases, such as sphingosine-1-phosphate and phytosphingosine-1-phosphate (phytoS1P) are used in plant cell signalling. To do this, we manipulated Arabidopsis genes capable of metabolizing these messenger molecules. We show that Sphingosine kinase1 (SPHK1) encodes an enzyme that phosphorylates sphingosine, phytosphingosine and other sphingoid long-chain bases. The stomata of SPHK1-KD Arabidopsis plants were less sensitive, whereas the stomata of SPHK1-OE plants were more sensitive, than wild type to ABA. The rate of germination of SPHK1-KD was enhanced, whereas the converse was true for SPHK1-OE seed. Reducing expression of either the putative Arabidopsis S1P phosphatase (SPPASE) or the DPL1 gene, which encodes an enzyme with S1P lyase activity, individually, had no effect on guard-cell ABA signalling; however, stomatal responses to ABA in SPPASEDPL1 RNAi plants were compromised. Reducing the expression of DPL1 had no effect on germination; however, germination of SPPASE RNAi seeds was more sensitive to applied ABA. We also found evidence that expression of SPHK1 and SPPASE were coordinately regulated, and discuss how this might contribute to robustness in guard-cell signalling. In summary, our data establish SPHK1 as a component in two separate plant signalling systems, opening the possibility that phosphorylated long-chain sphingoid bases such as S1P and phytoS1P are ubiquitous messengers in plants.  相似文献   

5.
Ethylene signalling regulates plant growth and development. However, its roles in salt stress response are less known. Here we studied functions of EIN2, a central membrane protein of ethylene signalling, and its interacting protein ECIP1 in salt stress responses. Mutation of EIN2 led to extreme salt sensitivity as revealed by phenotypic and physiological changes, and overexpression of C-terminus of EIN2 suppressed salt sensitivity in ein2-5, indicating that EIN2 is required for salt tolerance. Downstream components EIN3 and EIL1 are also essential for salt tolerance because ein3-1eil1-1 double mutant showed extreme salt-sensitive phenotype. A MA3 domain-containing protein ECIP1 was further identified to interact with EIN2 in yeast two-hybrid assay and GST pull-down assay. Loss-of-function of ECIP1 resulted in enhanced ethylene response but altered salt response during seed germination and plant growth. Double mutant analysis revealed that ein2-1 was epistatic to ecip1, and ecip1 mutation partially suppressed ethylene-insensitivity of etr2-1 and ein4-1. These studies strengthen that interactions between ECIP1 and EIN2 or ethylene receptors regulate ethylene response and stress response.  相似文献   

6.
Statistics provided by GLOBOCAN list gastric cancer as the sixth most common, with a mortality ranking of third highest for the year 2020. In China, a herb called Rabdosia rubescens (Hemsl.) H.Hara, has been used by local residents for the treatment of digestive tract cancer for hundreds of years. Oridonin, the main ingredient of the herb, has a curative effect for gastric cancer, but the mechanism has not been previously clarified. This study mainly aimed to investigate the role of TNF-alpha/Androgen receptor/TGF-beta signalling pathway axis in mediating the proliferation inhibition of oridonin on gastric cancer SGC-7901 cells. MTT assay, cell morphology observation assay and fluorescence assay were adopted to study the efficacy of oridonin on cell proliferation. The network pharmacology was used to predict the pathway axis regulated by oridonin. Western blot assay was adopted to verify the TNF-α/Androgen receptor/TGF-β signalling pathway axis regulation on gastric cancer by oridonin. The results showed Oridonin could inhibit the proliferation of gastric cancer cells, change cell morphology and cause cell nuclear fragmentation. A total of 11signaling pathways were annotated by the network pharmacology, among them, Tumour necrosis factor alpha (TNF-α) signalling pathway, androgen receptor (AR) signalling pathway and transforming growth factor (TGF-β) signalling pathway account for the largest proportion. Oridonin can regulate the protein expression of the three signalling pathways, which is consistent with the results predicted by network pharmacology. These findings indicated that oridonin can inhibit the proliferation of gastric cancer SGC-7901 cells by regulating the TNF-α /AR /TGF-β signalling pathway axis.  相似文献   

7.
8.
Developmental biologists distinguish between mosaic embryos, in which the removal of a cell or group of cells results in a defective adult, andregulative embryos, in which the adult appears normal in spite of such removal. I suggest that the mosaic/regulative distinction is best viewed by contrastingwithin-cell signals(i.e., a cell can develop autonomously, perhaps on the basis of instructions derived from the mother) againstbetween-cell signals (i.e., development, and the origin of form and shape, is based on intercellular communication). This distinction is not rigid; the same embryo can make use of both within-cell and between-cell signals. During evolution, signalling between cells is likely to have become advantageous as organisms increased in size. However, the fact that an embryo displays regulative behaviour may be an automatic consequence of the way it develops rather than an evolved adaptation.  相似文献   

9.
Some animals give specific calls when they discover food or detect a particular type of predator. Companions respond with food-searching behaviour or by adopting appropriate escape responses. These signals thus seem to denote objects in the environment, but this specific mechanism has only been demonstrated for monkey alarm calls. We manipulated whether fowl (Gallus gallus) had recently found a small quantity of preferred food and then tested for a specific interaction between this event and their subsequent response to playback of food calls. In one treatment, food calls thus potentially provided information about the immediate environment, while in the other the putative message was redundant with individual experience. Food calls evoked substrate searching, but only if the hens had not recently discovered food. An identical manipulation had no effect on responses to an acoustically matched control call. These results show that chicken food calls are representational signals: they stimulate retrieval of information about a class of external events. This is the first such demonstration for any non-primate species. Representational signalling is hence more taxonomically widespread than has previously been thought, suggesting that it may be the product of common social factors, rather than an attribute of a particular phylogenetic lineage.  相似文献   

10.
Diabetes mellitus in pregnancy has been known to affect the embryonic development of various systems, including cardiovascular and nervous systems. However, whether this disease could have a negative impact on embryonic respiratory system remains controversial. In this study, we demonstrated that pregestational diabetes mellitus (PGDM)-induced defects in lung development in mice are mainly characterized by the changes in the morphological structure of the lung. Immunostaining and Western blotting showed that proliferation increased and apoptosis decreased in PGDM. Hyperglycaemia caused pulmonary tissue fibrationas manifested by an increase in Masson staining and decorin expression in PGDM lungs, and the immunofluorescent pro-SPC+ type II pulmonary epithelial cell number was decreased. The alteration of pulmonary epithelial cell differentiation might be due to hyperglycaemia-activated Wnt signalling and suppressed GATA6 expression in PGDM mouse lung tissues and MLE-12 cells. The treatment of MLE-12 cells with high glucose in the presence/absence of XAV939 or su5402 further proved that hyperglycaemia suppressed the expression of GATA6 and pro-SPC by activating Wnt signalling and induced the expression of decorin, α-SMA and TGF-β by activating Fgf signalling. Therefore, in this study, we revealed that hyperglycemia induced dysfunctional pulmonary cell apoptosis and proliferation, as well as pulmonary myofibroblast hyperplasia, which contributed to the formation of aberrant structure of alveolar walls. Furthermore, the hyperglycaemia also inhibited the differentiation of pulmonary epithelial cells through the canonical Wnt and Fgf signalling, and the alteration of Fgf and Wnt signalling activated TGF-β, which would promote the AECII EMT process.  相似文献   

11.
12.
L-glutamate, the major excitatory neurotransmitter, also has a role in non-neuronal tissues and modulates immune responses. Whether NMDA receptor (NMDAR) signalling is involved in T-cell development is unknown. In this study, we show that mouse thymocytes expressed an array of glutamate receptors, including NMDARs subunits. Sustained calcium (Ca2+) signals and caspase-3 activation in thymocytes were induced by interaction with antigen-pulsed dendritic cells (DCs) and were inhibited by NMDAR antagonists MK801 and memantine. NMDARs were transiently activated, triggered the sustained Ca2+ signal and were corecruited with the PDZ-domain adaptor postsynaptic density (PSD)-95 to thymocyte-DC contact zones. Although T-cell receptor (TCR) activation was sufficient for relocalization of NMDAR and PSD-95 at the contact zone, NMDAR could be activated only in a synaptic context. In these T-DC contacts, thymocyte activation occurred in the absence of exogenous glutamate, indicating that DCs could be a physiological source of glutamate. DCs expressed glutamate, glutamate-specific vesicular glutamate transporters and were capable of fast glutamate release through a Ca2+-dependent mechanism. We suggest that glutamate released by DCs could elicit focal responses through NMDAR-signalling in T cells undergoing apoptosis. Thus, synapses between T and DCs could provide a functional platform for coupling TCR activation and NMDAR signalling, which might reflect on T-cell development and modulation of the immune response.  相似文献   

13.
Plants generate rhythmic metabolism during the repetitive day/night cycle. The circadian clock produces internal biological rhythms to synchronize numerous metabolic processes such that they occur at the required time of day. Metabolism conversely influences clock function by controlling circadian period and phase and the expression of core‐clock genes. Here, we show that AKIN10, a catalytic subunit of the evolutionarily conserved key energy sensor sucrose non‐fermenting 1 (Snf1)‐related kinase 1 (SnRK1) complex, plays an important role in the circadian clock. Elevated AKIN10 expression led to delayed peak expression of the circadian clock evening‐element GIGANTEA (GI) under diurnal conditions. Moreover, it lengthened clock period specifically under light conditions. Genetic analysis showed that the clock regulator TIME FOR COFFEE (TIC) is required for this effect of AKIN10. Taken together, we propose that AKIN10 conditionally works in a circadian clock input pathway to the circadian oscillator.  相似文献   

14.
Phosphatidic acid (PA) and phosphoinositides are metabolically interconverted lipid second messengers that have central roles in many growth factor (GF)‐stimulated signalling pathways. Yet, little is known about the mechanisms that coordinate their production and downstream signalling. Here we show that the phosphatidylinositol (PI)‐transfer protein Nir2 translocates from the Golgi complex to the plasma membrane in response to GF stimulation. This translocation is triggered by PA formation and is mediated by its C‐terminal region that binds PA in vitro. We further show that depletion of Nir2 substantially reduces the PI(4,5)P2 levels at the plasma membrane and concomitantly GF‐stimulated PI(3,4,5)P3 production. Finally, we show that Nir2 positively regulates the MAPK and PI3K/AKT pathways. We propose that Nir2 through its PA‐binding capability and PI‐transfer activity can couple PA to phosphoinositide signalling, and possibly coordinates their local lipid metabolism and downstream signalling.  相似文献   

15.
The activity of Wnt and Notch signalling is central to many cell fate decisions during development and to the maintenance and differentiation of stem cell populations in homeostasis. While classical views refer to these pathways as independent signal transduction devices that co-operate in different systems, recent work has revealed intricate connections between their components. These observations suggest that rather than operating as two separate pathways, elements of Wnt and Notch signalling configure an integrated molecular device whose main function is to regulate transitions between cell states in development and homeostasis. Here, we propose a general framework for the structure and function of the interactions between these signalling systems that is focused on the notion of 'transition states', i.e. intermediates that arise during cell fate decision processes. These intermediates act as checkpoints in cell fate decision processes and are characterised by the mixed molecular identities of the states involved in these processes.  相似文献   

16.
Modular assembly of genes and the evolution of new functions   总被引:1,自引:1,他引:0  
Patthy L 《Genetica》2003,118(2-3):217-231
Modular assembly of novel genes from existing genes has long been thought to be an important source of evolutionary novelty. Thanks to major advances in genomic studies it has now become clear that this mechanism contributed significantly to the evolution of novel biological functions in different evolutionary lineages. Analyses of completely sequenced bacterial, archaeal and eukaryotic genomes has revealed that modular assembly of novel constituents of various eukaryotic intracellular signalling pathways played a major role in the evolution of eukaryotes. Comparison of the genomes of single-celled eukaryotes, multicellular plants and animals has also shown that the evolution of multicellularity was accompanied by the assembly of numerous novel extracellular matrix proteins and extracellular signalling proteins that are absolutely essential for multicellularity. There is now strong evidence that exon-shuffling played a general role in the assembly of the modular proteins involved in extracellular communications of metazoa. Although some of these proteins seem to be shared by all major groups of metazoa, others are restricted to certain evolutionary lineages. The genomic features of the chordates appear to have favoured intronic recombination as evidenced by the fact that exon-shuffling continued to be a major source of evolutionary novelty during vertebrate evolution.  相似文献   

17.
Chloroplasts perform essential signalling functions in light acclimation and various stress responses in plants. Research on chloroplast signalling has provided fundamental information concerning the diversity of cellular responses to changing environmental conditions. Evidence has also accumulated indicating that different cell types possess specialized roles in regulation of leaf development and stress acclimation when challenged by environmental cues. Leaf veins are flanked by a layer of elongated chloroplast-containing bundle sheath cells, which due to their central position hold the potential to control the flux of information inside the leaves. Indeed, a specific role for bundle sheath cells in plant acclimation to various light regimes is currently emerging. Moreover, perception of light stress initiates systemic signals that spread through the vasculature to confer stress resistance in non-exposed parts of the plant. Such long-distance signalling functions are related to unique characteristics of reactive oxygen species and their detoxification in bundle sheath cells. Novel techniques for analysis of distinct tissue types, together with Arabidopsis thaliana mutants with vasculature-specific phenotypes, have proven instrumental in dissection of structural hierarchy among regulatory processes in leaves. This review emphasizes the current knowledge concerning the role of vascular bundle sheath cells in light-dependent acclimation processes of C3 plants.  相似文献   

18.
19.
Growing cells adjust their division time with biomass accumulation to maintain growth homeostasis. Size control mechanisms, such as the size checkpoint, provide an inherent coupling of growth and division by gating certain cell cycle transitions based on cell size. We describe genetic manipulations that decouple cell division from cell size, leading to the loss of growth homeostasis, with cells becoming progressively smaller or progressively larger until arresting. This was achieved by modulating glucose influx independently of external glucose. Division rate followed glucose influx, while volume growth was largely defined by external glucose. Therefore, the coordination of size and division observed in wild‐type cells reflects tuning of two parallel processes, which is only refined by an inherent feedback‐dependent coupling. We present a class of size control models explaining the observed breakdowns of growth homeostasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号