首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic strategies that reduce or block pathogen transmission by mosquitoes are being investigated as a means to augment current control measures. Strategies of vector suppression and replacement are based upon intracellular Wolbachia bacteria, which occur naturally in many insect populations. Maternally inherited Wolbachia have evolved diverse mechanisms to manipulate host insect reproduction and promote infection invasion. One mechanism is cytoplasmic incompatibility (CI) through which Wolbachia promotes infection spread by effectively sterilizing uninfected females. In a prior field test, releases of Wolbachia-infected males were used to suppress a field population of Culex pipiens. An additional strategy would employ Wolbachia as a vehicle to drive desired transgenes into vector populations (population replacement). Wolbachia-based population suppression and population replacement strategies require an ability to generate artificial Wolbachia associations in mosquitoes. Here, we demonstrate a technique for transferring Wolbachia (transfection) in a medically important mosquito species: Aedes albopictus (Asian tiger mosquito). Microinjection was used to transfer embryo cytoplasm from a double-infected Ae. albopictus line into an aposymbiotic line. The resulting mosquito line is single-infected with the wAlbB Wolbachia type. The artificially generated infection type is not known to occur naturally and displays a new CI crossing type and the first known example of bidirectional CI in Aedes mosquitoes. We discuss the results in relation to applied mosquito control strategies and the evolution of Wolbachia infections in Ae. albopictus.  相似文献   

2.

Background

Introgressing anti-pathogen constructs into wild vector populations could reduce disease transmission. It is generally assumed that such introgression would require linking an anti-pathogen gene with a selfish genetic element or similar technologies. Yet none of the proposed transgenic anti-pathogen gene-drive mechanisms are likely to be implemented as public health measures in the near future. Thus, much attention now focuses instead on transgenic strategies aimed at mosquito population suppression, an approach generally perceived to be practical. By contrast, aiming to replace vector competent mosquito populations with vector incompetent populations by releasing mosquitoes carrying a single anti-pathogen gene without a gene-drive mechanism is widely considered impractical.

Methodology/Principal Findings

Here we use Skeeter Buster, a previously published stochastic, spatially explicit model of Aedes aegypti to investigate whether a number of approaches for releasing mosquitoes with only an anti-pathogen construct would be efficient and effective in the tropical city of Iquitos, Peru. To assess the performance of such releases using realistic release numbers, we compare the transient and long-term effects of this strategy with two other genetic control strategies that have been developed in Ae. aegypti: release of a strain with female-specific lethality, and a strain with both female-specific lethality and an anti-pathogen gene. We find that releasing mosquitoes carrying only an anti-pathogen construct can substantially decrease vector competence of a natural population, even at release ratios well below that required for the two currently feasible alternatives that rely on population reduction. Finally, although current genetic control strategies based on population reduction are compromised by immigration of wild-type mosquitoes, releasing mosquitoes carrying only an anti-pathogen gene is considerably more robust to such immigration.

Conclusions/Significance

Contrary to the widely held view that transgenic control programs aimed at population replacement require linking an anti-pathogen gene to selfish genetic elements, we find releasing mosquitoes in numbers much smaller than those considered necessary for transgenic population reduction can result in comparatively rapid and robust population replacement. In light of this non-intuitive result, directing efforts to improve rearing capacity and logistical support for implementing releases, and reducing the fitness costs of existing recombinant technologies, may provide a viable, alternative route to introgressing anti-pathogen transgenes under field conditions.  相似文献   

3.
Transgenic mosquitoes and malaria transmission   总被引:4,自引:0,他引:4  
As the malaria burden persists in most parts of the developing world, the concept of implementation of new strategies such as the use of genetically modified mosquitoes to control the disease continues to gain support. In Africa, which suffers most from malaria, mosquito vector populations are spread almost throughout the entire continent, and the parasite reservoir is big and continuously increasing. Moreover, malaria is transmitted by many species of anophelines with specific seasonal and geographical patterns. Therefore, a well designed, evolutionarily robust and publicly accepted plan aiming at population reduction or replacement is required. The task is twofold: to engineer mosquitoes with a genetic trait that confers resistance to malaria or causes population suppression; and, to drive the new trait through field populations. This review examines these two issues, and describes the groundwork that has been done towards understanding of the complex relation between the parasite and its vector.  相似文献   

4.
Population replacement strategies for controlling transmission of mosquito-borne diseases call for the introgression of antipathogen effector genes into vector populations. It is anticipated that these genes, if present at high enough frequencies, will impede transmission of the target pathogens and result in reduced human morbidity and mortality. Recent laboratory successes in the development of virus- and protozoan-resistant mosquito strains make urgent research of gene drive systems capable of moving effector genes into wild populations. A systematic approach to developing safe and effective gene drive systems that includes defining the requirements of the system, identifying naturally occurring or synthetic genetic mechanisms for gene spread upon which drive systems can be based and the successful adaptation of a mechanism to a drive system, should mitigate concerns about using genetically engineered mosquitoes for disease control.  相似文献   

5.
The generation of transgenic mosquitoes with a minimal fitness load is a prerequisite for the success of strategies for controlling mosquito-borne diseases using transgenic insects. It is important to assemble as much information as possible on this subject because realistic estimates of transgene fitness costs are essential for modeling and planning release strategies. Transgenic mosquitoes must have minimal fitness costs, because such costs would reduce the effectiveness of the genetic drive mechanisms that are used to introduce the transgenes into field mosquito populations. Several factors affect fitness of transgenic mosquitoes, including the potential negative effect of transgene products and insertional mutagenesis. Studies to assess fitness of transgenic mosquitoes in the field (as opposed to the laboratory) are still needed.  相似文献   

6.
Recently there have been significant advances in research on genetic strategies to control populations of disease-vectoring insects. Some of these strategies use the gene drive properties of selfish genetic elements to spread physically linked anti-pathogen genes into local vector populations. Because of the potential of these selfish elements to spread through populations, control approaches based on these strategies must be carefully evaluated to ensure a balance between the desirable spread of the refractoriness-conferring genetic cargo and the avoidance of potentially unwanted outcomes such as spread to non-target populations. There is also a need to develop better estimates of the economics of such releases. We present here an evaluation of two such strategies using a biologically realistic mathematical model that simulates the resident Aedes aegypti mosquito population of Iquitos, Peru. One strategy uses the selfish element Medea, a non-limited element that could permanently spread over a large geographic area; the other strategy relies on Killer-Rescue genetic constructs, and has been predicted to have limited spatial and temporal spread. We simulate various operational approaches for deploying these genetic strategies, and quantify the optimal number of released transgenic mosquitoes needed to achieve definitive spread of Medea-linked genes and/or high frequencies of Killer-Rescue-associated elements. We show that for both strategies the most efficient approach for achieving spread of anti-pathogen genes within three years is generally to release adults of both sexes in multiple releases over time. Even though females in these releases should not transmit disease, there could be public concern over such releases, making the less efficient male-only release more practical. This study provides guidelines for operational approaches to population replacement genetic strategies, as well as illustrates the use of detailed spatial models to assist in safe and efficient implementation of such novel genetic strategies.  相似文献   

7.
Synthetic gene drive constructs could, in principle, provide the basis for highly efficient interventions to control disease vectors and other pest species. This efficiency derives in part from leveraging natural processes of dispersal and gene flow to spread the construct and its impacts from one population to another. However, sometimes (for example, with invasive species) only specific populations are in need of control, and impacts on non-target populations would be undesirable. Many gene drive designs use nucleases that recognise and cleave specific genomic sequences, and one way to restrict their spread would be to exploit sequence differences between target and non-target populations. In this paper we propose and model a series of low threshold double drive designs for population suppression, each consisting of two constructs, one imposing a reproductive load on the population and the other inserted into a differentiated locus and controlling the drive of the first. Simple deterministic, discrete-generation computer simulations are used to assess the alternative designs. We find that the simplest double drive designs are significantly more robust to pre-existing cleavage resistance at the differentiated locus than single drive designs, and that more complex designs incorporating sex ratio distortion can be more efficient still, even allowing for successful control when the differentiated locus is neutral and there is up to 50% pre-existing resistance in the target population. Similar designs can also be used for population replacement, with similar benefits. A population genomic analysis of CRISPR PAM sites in island and mainland populations of the malaria mosquito Anopheles gambiae indicates that the differentiation needed for our methods to work can exist in nature. Double drives should be considered when efficient but localised population genetic control is needed and there is some genetic differentiation between target and non-target populations.  相似文献   

8.
In this video, Jason Rasgon discusses population replacement strategies to control vector-borne diseases such as malaria and dengue. "Population replacement" is the replacement of wild vector populations (that are competent to transmit pathogens) with those that are not competent to transmit pathogens. There are several theoretical strategies to accomplish this. One is to exploit the maternally-inherited symbiotic bacteria Wolbachia pipientis. Wolbachia is a widespread reproductive parasite that spreads in a selfish manner at the extent of its host's fitness. Jason Rasgon discusses, in detail, the basic biology of this bacterial symbiont and various ways to use it for control of vector-borne diseases.  相似文献   

9.
Wolbachia symbionts hold theoretical promise as a way to drive transgenes into insect vector populations for disease prevention. For simplicity, current models of Wolbachia dynamics and spread ignore ecologically complex factors such as the age structure of vector populations and overlapping vector generations. We developed a model including these factors to assess their impact on the process of Wolbachia spread into populations of three mosquito species (Anopheles gambiae, Aedes aegypti and Culex pipiens). Depending on the mosquito species, Wolbachia parameters, released mosquito life stage and initial age structure of the target population, the number of Wolbachia-infected mosquitoes that we predict would need to be released ranged from less than the threshold calculated by the simple model to a 10-30-fold increase. Transgenic releases into age-structured populations, which is an expectation for wild mosquitoes, will be difficult and depending on the circumstances may not be economically or logistically feasible due to the large number of infected mosquitoes that must be released. Our results support the perspective that understanding ecological factors is critical for designing transgenic vector-borne disease control strategies.  相似文献   

10.
Approaches to Minimize Variation of Transgene Expression in Plants   总被引:7,自引:0,他引:7  
Genetic transformation of plants has become a widely used technology that serves multiple purposes in plant biology research. However, considerable variation of transgene expression is often observed within populations of transgenic plants transformed with the same transgene construct. This inter-transformant variation of transgene expression hampers proper evaluation of transgenes and might be most undesirable when high-throughput transgene screening is intended. The general plant transformation strategy today is to generate a sufficiently high number of transgenic plants to find some transformants with the desired level of expression. To reduce cost, labor and interpretational flaws, multiple efforts are being directed toward achieving stable expression of transgenes with an expected level of expression. Various factors are thought to contribute to transgene expression variation including the transgene copy number, RNA silencing, transgene insertion site and the employment of certain regulatory sequences to drive transgene expression. This review provides an update on current methodologies to minimize inter-individual variation of transgene expression in nuclear transformed plants.  相似文献   

11.
Gene drive systems have long been sought to modify mosquito populations and thus combat malaria and dengue. Powerful gene drive systems have been developed in laboratory experiments, but may never be used in practice unless they can be shown to be acceptable through rigorous field-based testing. Such testing is complicated by the anticipated difficulty in removing gene drive transgenes from nature. Here, we consider the inclusion of self-elimination mechanisms into the design of homing-based gene drive transgenes. This approach not only caused the excision of the gene drive transgene, but also generates a transgene-free allele resistant to further action by the gene drive. Strikingly, our models suggest that this mechanism, acting at a modest rate (10%) as part of a single-component system, would be sufficient to cause the rapid reversion of even the most robust homing-based gene drive transgenes, without the need for further remediation. Modelling also suggests that unlike gene drive transgenes themselves, self-eliminating transgene approaches are expected to tolerate substantial rates of failure. Thus, self-elimination technology may permit rigorous field-based testing of gene drives by establishing strict time limits on the existence of gene drive transgenes in nature, rendering them essentially biodegradable.This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases''.  相似文献   

12.
Strategies to minimize dengue transmission commonly rely on vector control, which aims to maintain Ae. aegypti density below a theoretical threshold. Mosquito abundance is traditionally estimated from mark-release-recapture (MRR) experiments, which lack proper analysis regarding accurate vector spatial distribution and population density. Recently proposed strategies to control vector-borne diseases involve replacing the susceptible wild population by genetically modified individuals’ refractory to the infection by the pathogen. Accurate measurements of mosquito abundance in time and space are required to optimize the success of such interventions. In this paper, we present a hierarchical probabilistic model for the estimation of population abundance and spatial distribution from typical mosquito MRR experiments, with direct application to the planning of these new control strategies. We perform a Bayesian analysis using the model and data from two MRR experiments performed in a neighborhood of Rio de Janeiro, Brazil, during both low- and high-dengue transmission seasons. The hierarchical model indicates that mosquito spatial distribution is clustered during the winter (0.99 mosquitoes/premise 95% CI: 0.80–1.23) and more homogeneous during the high abundance period (5.2 mosquitoes/premise 95% CI: 4.3–5.9). The hierarchical model also performed better than the commonly used Fisher-Ford’s method, when using simulated data. The proposed model provides a formal treatment of the sources of uncertainty associated with the estimation of mosquito abundance imposed by the sampling design. Our approach is useful in strategies such as population suppression or the displacement of wild vector populations by refractory Wolbachia-infected mosquitoes, since the invasion dynamics have been shown to follow threshold conditions dictated by mosquito abundance. The presence of spatially distributed abundance hotspots is also formally addressed under this modeling framework and its knowledge deemed crucial to predict the fate of transmission control strategies based on the replacement of vector populations.  相似文献   

13.
14.
Transposons are a class of selfish DNA elements that can mobilize within a genome. If mobilization is accompanied by an increase in copy number (replicative transposition), the transposon may sweep through a population until it is fixed in all of its interbreeding members. This introgression has been proposed as the basis for drive systems to move genes with desirable phenotypes into target species. One such application would be to use them to move a gene conferring resistance to malaria parasites throughout a population of vector mosquitos. We assessed the feasibility of using the piggyBac transposon as a gene-drive mechanism to distribute anti-malarial transgenes in populations of the malaria vector, Anopheles stephensi. We designed synthetic gene constructs that express the piggyBac transposase in the female germline using the control DNA of the An. stephensi nanos orthologous gene linked to marker genes to monitor inheritance. Two remobilization events were observed with a frequency of one every 23 generations, a rate far below what would be useful to drive anti-pathogen transgenes into wild mosquito populations. We discuss the possibility of optimizing this system and the impetus to do so.  相似文献   

15.
Insects carry out essential ecological functions, such as pollination, but also cause extensive damage to agricultural crops, and transmit human diseases such as malaria and dengue fever. Advances in insect transgenesis are making it increasingly feasible to engineer genes conferring desirable phenotypes, and gene drive systems are required to spread these genes into wild populations. Medea provides one solution, being able to spread into a population from very low initial frequencies through the action of a maternally-expressed toxin linked to a zygotically-expressed antidote. Several other toxin-antidote combinations are imaginable that distort the offspring ratio in favor of a desired transgene, or drive the population towards an all-male crash. We explore two such systems--Semele, which is capable of spreading a desired transgene into an isolated population in a confined manner; and Merea, which is capable of inducing a local population crash when located on the Z chromosome of a Lepidopteron pest.  相似文献   

16.
Genetically transformed insect pests provide significant opportunities to create strains for improved sterile insect technique and new strategies based on conditional lethality. A major concern for programs that rely on the release of transgenic insects is the stability of the transgene, and maintenance of consistent expression of genes of interest within the transgene. Transgene instability would influence the integrity of the transformant strain upon which the effectiveness of the biological control program depends. Loss or intra-genomic transgene movement would result in strain attributes important to the program being lost or diminished, and the mass-release of such insects could significantly exacerbate the insect pest problem. Instability resulting in intra-genomic movement may also be a prelude to inter-genomic transgene movement between species resulting in ecological risks. This is less of a concern for short-term releases, where transgenic insects are not expected to survive in the environment beyond two or three generations. Transgene movement may occur, however, into infectious agents during mass-rearing, and the potential for movement after release is a possibility for programs using many millions of insects. The primary methods of addressing potential transgene instability relate to an understanding of the vector system used for gene transfer, the potential for its mobilization by the same or a related vector system, and methods required to identify transformants and determine if unexpected transgene movement has occurred. Methods also exist for preventing transposon-mediated mobilization, by deleting or rearranging vector sequences required for transposition using recombination systems. Stability of transgene expression is also a critical concern, especially in terms of potential epigenetic interactions with host genomes resulting in gene silencing that have been observed in plants and fungi, and it must be determined if this or related phenomena can occur in insects.  相似文献   

17.
Maternally inherited rickettsial symbionts of the genus Wolbachia occur commonly in arthropods, often behaving as reproductive parasites by manipulating host reproduction to enhance the vertical transmission of infections. One manipulation is cytoplasmic incompatibility (CI), which causes a significant reduction in brood hatch and promotes the spread of the maternally inherited Wolbachia infection into the host population (i.e., cytoplasmic drive). Here, we have examined a Wolbachia superinfection in the mosquito Aedes albopictus and found the infection to be associated with both cytoplasmic incompatibility and increased host fecundity. Relative to uninfected females, infected females live longer, produce more eggs, and have higher hatching rates in compatible crosses. A model describing Wolbachia infection dynamics predicts that increased fecundity will accelerate cytoplasmic drive rates. To test this hypothesis, we used population cages to examine the rate at which Wolbachia invades an uninfected Ae. albopictus population. The observed cytoplasmic drive rates were consistent with model predictions for a CI-inducing Wolbachia infection that increases host fecundity. We discuss the relevance of these results to both the evolution of Wolbachia symbioses and proposed applied strategies for the use of Wolbachia infections to drive desired transgenes through natural populations (i.e., population replacement strategies).  相似文献   

18.
ABSTRACT: BACKGROUND: Mosquito transgenesis offers new promises for the genetic control of vector-borne infectious diseases such as malaria and dengue fever. Genetic control strategies require the release of large number of male mosquitoes into field populations, whether they are based on the use of sterile males (sterile insect technique, SIT) or on introducing genetic traits conferring refractoriness to disease transmission (population replacement). However, the current absence of high-throughput techniques for sorting different mosquito populations impairs the application of these control measures. METHODS: A method was developed to generate large mosquito populations of the desired sex and genotype. This method combines flow cytometry and the use of Anopheles gambiae transgenic lines that differentially express fluorescent markers in males and females. RESULTS: Fluorescence-assisted sorting allowed single-step isolation of homozygous transgenic mosquitoes from a mixed population. This method was also used to select wild-type males only with high efficiency and accuracy, a highly desirable tool for genetic control strategies where the release of transgenic individuals may be problematic. Importantly, sorted males showed normal mating ability compared to their unsorted brothers. CONCLUSIONS: The developed method will greatly facilitate both laboratory studies of mosquito vectorial capacity requiring high-throughput approaches and future field interventions in the fight against infectious disease vectors.  相似文献   

19.

Background

Replacement of wild-type mosquito populations with genetically modified versions is being explored as a potential strategy to control vector-borne diseases. Due to lower expected relative fitness of transgenic individuals, transgenes must be driven into populations for these scenarios to be successful. Several gene drive mechanisms exist in a theoretical sense but none are currently workable in mosquitoes. Even if strategies were workable, it would be very difficult to recall released transgenes in the event of unforeseen consequences. What is needed is a way to test transgenes in the field for feasibility, efficacy and safety prior to releasing an active drive mechanism.

Methodology/Principal Findings

We outline a method, termed Multi-locus assortment (MLA), to spread transgenes into vector populations by the release of genetically-modified mosquitoes carrying multiple stable transgene inserts. Simulations indicate that [1] insects do not have to carry transgenes at more than 4 loci, [2] transgenes can be maintained at high levels by sequential small releases, the frequency of which depends on the construct fitness cost, and [3] in the case of unforeseen negative non-target effects, transgenes can be eliminated from the population by halting transgenic releases and/or mass releases of wild-type insects. We also discuss potential methods to create MLA mosquito strains in the laboratory.

Conclusions/Significance

While not as efficient as active drive mechanisms, MLA has other advantages: [1] MLA strains can be constructed for some mosquito species with currently-available technology, [2] MLA will allow the ecological components of transgenic mosquito releases to be tested before actual gene drive mechanisms are ready to be deployed, [3] since MLA is not self-propagating, the risk of an accidental premature release into nature is minimized, and [4] in the case that active gene drive mechanisms prove impossible to develop, the MLA approach can be used as a back-up transgene dispersal mechanism for disease control efforts in some systems.  相似文献   

20.
The genetic structure in populations of the Chagas' disease vector Triatoma infestans was examined. Comparisons of the levels of genetic variability in populations of this species from areas with different periods since last insecticide treatment and from areas that never received treatment were also carried out. A total of 598 insects from 19 populations were typed for 10 polymorphic microsatellite loci. The average observed and expected heterozygosities ranged from 0.186 to 0.625 and from 0.173 to 0.787, respectively. Genetic drift and limited gene flow appear to have generated a substantial degree of genetic differentiation among the populations of T. infestans. Departures from Hardy-Weinberg expectations due to an excess of homozygotes suggested the presence of null alleles and population subdivision. Microgeographical analysis supports the existence of subdivision in T. infestans populations. Levels of genetic diversity in the majority of the populations of T. infestans from insecticide-treated localities were similar or higher than those detected in populations from areas without treatment. Since the populations of T. infestans are subdivided, a population bottleneck would result in independent genetic drift effects that could randomly preserve different combinations of alleles in each subpopulation. These events followed by a rapid population growth could have preserved high levels of genetic diversity. This study supports the hypothesis of vector population recovery from survivors of the insecticide-treated areas and therefore highlights the value of population genetic analyses in assessing the effectiveness of Chagas' disease vector control programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号