首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Dunlop  R G Larkins 《FEBS letters》1985,193(2):231-235
The cellular location at which exogenous phosphatidic acid is hydrolysed in cultured neonatal rat islets was examined. Phosphatidate phosphohydrolase activity could be demonstrated in both whole cell sonicates and isolated plasma membranes. In the whole cell fraction phosphatidic acid hydrolysis to diacylglycerol was stimulated 43% by the presence of Mg2+. The activity present in isolated membranes was totally dependent on the presence of Mg2+ and was increased in plasma membranes from glucose-stimulated islets. Following exposure of islets to low glucose concentrations, raising the Ca2+ concentration from 150 nM to 40 microM in the presence of Mg2+ did not affect the formation of diacylglycerol in whole cell fractions or plasma membranes. These results indicate the presence within the islet of membrane-bound phosphatidate phosphohydrolase activity and demonstrate its activation by glucose.  相似文献   

2.
Incubating the particle-free supernatant of rat liver with alkaline phosphatase decreased the activity of phosphatidate phosphohydrolase by 21-29%. When the particle-free supernatant was incubated with various combinations of Mg2+, ATP, cyclic AMP and cyclic AMP-dependent protein kinase this failed to alter significantly phosphatidate phosphohydrolase activity under the conditions employed. The incubation of hepatocytes in monolayer culture with 0.5 mM-8-(4-chlorophenylthio)adenosine 3',5'-monophosphate increased the total activity of phosphatidate phosphohydrolase as measured in vitro. This also decreased the proportion of the phosphohydrolase that was associated with the membrane fraction of the cells and increased that in the cytosolic fraction. Adding 1 mM-oleate to the hepatocytes promoted the translocation of phosphatidate phosphohydrolase from the cytosol to the membrane-associated compartment. Oleate overcame the effect of the cyclic AMP analogue in favouring the cytosolic distribution of the phosphohydrolase. These results are discussed in relation to the interaction of hormonal balance and substrate supply in controlling the synthesis of phosphatidylcholine and triacylglycerol in the liver in stress and in diabetes. It is proposed that the cytosolic phosphatidate phosphohydrolase activity represents a reservoir of potential activity that becomes expressed when the enzyme translocates to the membranes on which the synthesis of glycerolipids occurs.  相似文献   

3.
Reconstitution of purified rabbit kidney Na,K-ATPase in phosphatidylcholine/phosphatidic acid liposomes resulted in the absence of ATP in a time-, temperature- and protein-dependent formation of inorganic phosphate. This formation of inorganic phosphate could be attributed to a phosphatidate phosphohydrolase activity present in the Na,K-ATPase preparation. A close interaction of the enzyme with the substrate phosphatidic acid was important, since no or little Pi production was observed under any of the following conditions: without reconstitution, after reconstitution in the absence of phosphatidic acid, with low concentrations of detergent or at low lipid/protein ratios. The hydrolysis of phosphatidic acid was not influenced by the Na,K-ATPase inhibitor ouabain but was completely inhibited by the P-type ATPase inhibitor vanadate. Besides Pi diacylglycerol was also formed, confirming that a phosphatidate hydrolase activity was involved. Since the phosphatidate phosphohydrolase activity was rather heat- and N-ethylmaleimide-insensitive, we conclude that the phosphatidic acid hydrolysis was not due to Na,K-ATPase itself but to a membrane-bound phosphatidate phosphohydrolase, present as an impurity in the purified rabbit kidney Na,K-ATPase preparations.  相似文献   

4.
Rat hepatocytes were incubated in monolayer culture for 8 h. Glucagon (10nM) increased the total phosphatidate phosphohydrolase activity by 1.7-fold. This effect was abolished by adding cycloheximide, actinomycin D or 500 pM-insulin to the incubations. The glucagon-induced increase was synergistic with that produced by an optimum concentration of 100 nM-dexamethasone. Theophylline (1mM) potentiated the effect of glucagon, but it did not affect the dexamethasone-induced increase in the phosphohydrolase activity. The relative proportion of the phosphohydrolase activity associated with membranes was decreased by glucagon when 0.15 mM-oleate was added 15 min before the end of the incubations to translocate the phosphohydrolase from the cytosol. This glucagon effect was not seen at 0.5 mM-oleate. Since glucagon also increased the total phosphohydrolase activity, the membrane-associated activity was maintained at 0.15 mM-oleate and was increased at 0.5 mM-oleate. This activity at both oleate concentrations was also increased in incubations that contained dexamethasone, particularly in the presence of glucagon. Insulin increased the relative proportion of phosphatidate phosphohydrolase that was associated with membranes at 0.15 mM-oleate, but not at 0.5 mM-oleate. It also decreased the absolute phosphohydrolase activity on the membranes at both oleate concentrations in incubations that also contained glucagon and dexamethasone. None of the hormonal combinations significantly altered the total glycerol phosphate acyltransferase activity. However, glucagon significantly increased the microsomal activities, and insulin had the opposite effect. Glucagon also decreased the mitochondrial acyltransferase activity. There was a highly significant correlation between the total phosphatidate phosphohydrolase activity and the synthesis of neutral lipids from glycerol phosphate and 0.5 mM-oleate in homogenates of cells from all of the hormonal combinations. Phosphatidate phosphohydrolase activity is increased in the long term by glucocorticoids and also by glucagon through cyclic AMP. In the short term, glucagon increases the concentration of fatty acid required to translocate the cytosolic reservoir of activity to the membranes on which phosphatidate is synthesized. Insulin opposes the combined actions of glucagon and glucocorticoids. The long-term events explain the large increases in the phosphohydrolase activity that occur in vivo in a variety of stress conditions. The expression of this activity depends on increases in the net availability of fatty acids and their CoA esters in the liver.  相似文献   

5.
Glycerolipid synthesis was studied in isolated hepatocytes by using 177 microM [14C]oleate and 1 mM [3H]glycerol. Chlorpromazine (25-400 microM) inhibited the synthesis of phosphatidylcholine and triacylglycerol. This was accompanied by an average increase of 12-fold in the accumulation of the labelled precursors in phosphatidate at 200 microM chlorpromazine and a decrease in the conversion of phosphatidate to diacylglycerol of 76%. These results indicate that part of the inhibition of the synthesis of phosphatidylcholine and triacylglycerol occurs at the level of phosphatidate phosphohydrolase. The relative rate of triacylglycerol synthesis at different concentrations of chlorpromazine was approximately proportional to the rate of conversion of phosphatidate to diacylglycerol. Phosphatidylcholine synthesis increased at higher rates of conversion of phosphatidate to diacylglycerol, but it was relatively independent of the latter rate when this was inhibited by more than about 30% with chlorpromazine. The addition of oleate to the hepatocytes caused a translocation of phosphatidate phosphohydrolase from the cytosol to the membrane-associated compartment. Chlorpromazine had the opposite effect and displaced the phosphohydrolase from the membranes in the presence or absence of oleate. There was a highly significant correlation between the activity of phosphatidate phosphohydrolase that was associated with the membranes of the hepatocytes and the calculated conversion of [3H]phosphatidate to diacylglycerol. Chlorpromazine also antagonized the association of the phosphohydrolase with microsomal membranes when cell-free preparations were incubated with combinations of oleate and spermine. Furthermore, it inhibited the transfer of the soluble phosphohydrolase to microsomal membranes that were labelled with [14C]phosphatidate and thereby decreased diacylglycerol production. It is concluded that part of the action of chlorpromazine in inhibiting the synthesis of triacylglycerol and phosphatidylcholine occurs because it prevents the interaction of the soluble phosphatidate phosphohydrolase with the membranes on which glycerolipid synthesis occurs. This in turn prevents the conversion of phosphatidate to diacylglycerol.  相似文献   

6.
A Mg 2+-independent and N-ethylmaleimide-insensitive phosphatidate phosphohydrolase (PAP-2) has been identified in the plasma membrane of cells and it has been purified. The enzyme is a multi-functional phosphohydrolase that can dephosphorylate phosphatidate, lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate and these substrates are competitive inhibitors of the reaction. The action of PAP-2 could terminate signalling by these bioactive lipids and at the same time generates compounds such as diacylglycerol, sphingosine and ceramide which are also potent signalling molecules. In relation to phosphatidate metabolism, sphingosine (or sphingosine l-phosphate) stimulates phospholipase D and thus the formation of phosphatidate. At the same time sphingosine inhibits PAP-2 activity thus further increasing phosphatidate concentrations. By contrast, ceramides inhibit the activation of phospholipase D by a wide variety of agonists and increase the dephosphorylation of phosphatidate,lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate. These actions demonstrate ‘cross-talk’ between the glycerolipid and sphingolipid signalling pathways and the involvement of PAP-2 in modifying the balance of the bioactive lipids generated by these pathways during cell activation,  相似文献   

7.
The effect of polyamines (spermine, spermidine and putrescine) on the Mg2+-dependent phosphatidate phosphohydrolase was investigated. Phosphatidate phosphohydrolase activity was measured in the presence of aqueous dispersed phosphatidate as substrate, and the release of inorganic phosphate was taken as a measure of phosphatidate phosphohydrolase activity. In the presence of various polyamines there was activation of the Mg2+-dependent phosphatidate phosphohydrolase activity. Under this condition, the Km of enzyme towards phosphatidase decreased from 1.6 x 10(-4) to 9.8 x 10(-5) M and the Mg2+ requirement decreased from 5 to 0.5 mM. These polyvalent cations did not replace Mg2+, but potentiate the phosphohydrolase activity in the presence of Mg2+. The activation of Mg2+-dependent phosphatidate phosphohydrolase activity by polyamines was observed in the presence of 3-sn-phosphatidylcholine, suggesting that these modulators of phosphatidate phosphohydrolase activity may be acting through different mechanisms. These studies demonstrate that polyamines may be important regulators of Mg2+-dependent phosphatidate phosphohydrolase activity in adipose tissue.  相似文献   

8.
The superoxide-generating neutrophil NADPH oxidase can be activated in cell-free reconstitution systems by several agonists, most notably arachidonic acid and the detergent sodium dodecyl sulfate. In this study, we show that both phosphatidic acids and diacylglycerols can serve separately as potent, physiologic activators of NADPH oxidase in a cell-free system. Stimulation of superoxide generation by these lipids was dependent upon both Mg(2+) and agonist concentration. Activation of NADPH oxidase by phosphatidic acids did not appear to require their conversion to corresponding diacylglycerols by phosphatidate phosphohydrolase, since diacylglycerols were much slower than phosphatidic acids to activate the system and required the presence of ATP. Stimulation of the oxidase by dioctanoylglycerol proved to be by a means other than the activation of protein kinase C. Instead, dioctanoylglycerol was converted to dioctanoylphosphatidic acid by an endogenous diacylglycerol kinase present in the cell-free reaction system. This conversion was sensitive to the diacylglycerol kinase inhibitor R59949 and explains the markedly slower kinetics of activation and the novel ATP requirement seen with dioctanoylglycerol. The level of dioctanoylphosphatidic acid formed was suboptimal for NADPH oxidase activation but could synergize with the unmetabolized dioctanoylglycerol to activate superoxide generation.  相似文献   

9.
The translocation of phosphatidate phosphohydrolase between the cytosol and the microsomal membranes was investigated by using a cell-free system from rat liver. Linoleate, alpha-linolenate, arachidonate and eicosapentenoate promoted the translocation to membranes with a similar potency to that of oleate. The phosphohydrolase that associated with the membranes in the presence of [14C]oleate or 1mM-spermine coincided on Percoll gradients with the peak of rotenone-insensitive NADH-cytochrome c reductase, and in the former case with a peak of 14C. Microsomal membranes were enriched with the phosphohydrolase activity by incubation with [14C]oleate or spermine and then incubated with albumin. The phosphohydrolase activity was displaced from the membranes by albumin, and this paralleled the removal of [14C]oleate from the membranes when this acid was present. Chlorpromazine also displaced phosphatidate phosphohydrolase from the membranes, but it did not displace [14C]oleate. The effects of spermine in promoting the association of the phosphohydrolase with the membranes was inhibited by ATP, GTP, CTP, AMP and phosphate. ATP at the same concentration did not antagonize the translocating effect of oleate. From these results and previous work, it was concluded that the binding of long-chain fatty acids and their CoA esters to the endoplasmic reticulum acts as a signal for more phosphatidate phosphohydrolase to associate with these membranes and thereby to enhance the synthesis of glycerolipids, especially triacylglycerol. The translocation of the phosphohydrolase probably depends on the increased negative charge on the membranes, which could also be donated by the accumulation of phosphatidate. Chlorpromazine could oppose the translocation by donating a positive charge to the membranes.  相似文献   

10.
Neutrophil inhibitory factor (NIF), a 41-kD glycoprotein isolated from the canine hookworm, inhibits CD11b/CD18-dependent neutrophil adhesion by binding to CD11b. We studied the effects of NIF on neutrophil-dependent endothelial cell injury using bovine pulmonary microvessel endothelial cells grown on microporous filters. Endothelial injury was determined as an increase in the transendothelial 125I-albumin clearance rate (a measure of transendothelial permeability). Layering of neutrophils on the endothelial cell monolayer (ratio of 10 neutrophils: 1 endothelial cell) followed by activation of neutrophils with 500 nM of phorbol 12-myristate 13-acetate (PMA) increased transendothelial permeability of albumin by 3- to 4-fold over control monolayers. Pretreatment of neutrophils with NIF at concentrations of 100 nM and above prevented the increased permeability. Pretreatment of neutrophils with the anti-CD18 monoclonal antibody (mAb) IB4 similarly prevented the increase of permeability. Pretreatment of neutrophils with OKM-1, a control isotype-matched mAb directed against an irrelevant epitope on CD11b mAb, did not affect the neutrophil-dependent increase in permeability. NIF reduced the adhesion of neutrophils at concentrations of ≥100 nM and this effect was abolished by an anti-NIF polyclonal Ab. However, NIF did not prevent the generation of superoxide anions following PMA-induced activation of neutrophils layered on endothelial cell. These findings indicate that NIF inhibits the neutrophil-dependent endothelial injury by preventing CD11b/CD18-mediated neutrophil adhesion, but without altering the oxidant generating capacity of neutrophils interacting with the endothelial cell monolayer. J. Cell. Physiol. 171:212–216, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Assays for two distinct phosphatidate phosphohydrolase activities were established based upon a differential inhibition by N-ethylmaleimide (NEM). The activity that is insensitive to this reagent in rat liver is predominantly in the plasma membrane fraction, whereas the NEM-sensitive activity is in the cytosolic and microsomal fractions. The NEM-insensitive activity is further distinguished from the NEM-sensitive phosphohydrolase by: (a) being relatively stable to heat; (b) not being inhibited by phenylglyoxal, butane-2,3-dione, cyclohexane-1,2-dione, 2,4-dinitrofluorobenzene, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole, and diethyl pyrocarbonate; (c) being inhibited by NaF and phosphatidylcholine; and (d) not being stimulated by Mg2+. The NEM-insensitive activity was specific for phosphatidate. Both phosphohydrolase activities could be inhibited by chlorpromazine, propranolol, sphingosine, and spermine. The NEM-sensitive phosphatidate phosphohydrolase activity was increased by incubating hepatocytes for 12 h with glucagon and dexamethasone, and this effect was antagonized by insulin. The NEM-sensitive phosphohydrolase is concluded to be involved in glycerolipid synthesis. The activity of the NEM-insensitive phosphohydrolase was not altered by preincubation of rat hepatocytes in the short or long term with vasopressin, glucagon, insulin, triiodothyronine, or dexamethasone, but it might be modulated indirectly by sphingosine. The NEM-insensitive enzyme of the plasma membranes could be involved in signal transduction via the agonist-stimulated degradation of phosphatidylcholine through the phospholipase D pathway.  相似文献   

12.
Rat hepatocytes were incubated in monolayer culture in modified Leibovitz L-15 medium containing either 10% (v/v) newborn-calf serum or 0.2% (w/v) fatty-acid-poor bovine serum albumin. The addition of 100 nM-dexamethasone increased the activities of both phosphatidate phosphohydrolase and tyrosine aminotransferase by about 3.5-fold after 8h, and these activities continued to rise until at least 24h. Incubating the hepatocytes in the albumin-containing medium with 10 microM- or 100 microM-8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate increased the activities of the phosphohydrolase and aminotransferase by 2.6- and 3.4-fold respectively after 8h. These increases were blocked by actinomycin D. The increases in the activities that were produced by the cyclic AMP analogue and dexamethasone were independent and approximately additive. Insulin when added alone did not alter the phosphohydrolase activity, but it increased the aminotransferase activity by 34%. The dexamethasone-induced increase in the phosphohydrolase activity was completely blocked by 7-144 microM-insulin, whereas that of the aminotransferase was only partly suppressed. Insulin had no significant Effects on the increases in the activities of phosphatidate phosphohydrolase and tyrosine aminotransferase that were produced by the cyclic AMP analogue, but this may be because the analogue is fairly resistant to degradation by the phosphodiesterase. The activity of glycerol kinase was not significantly changed by incubating the hepatocytes with insulin, dexamethasone and the cyclic AMP analogue alone or in combinations. It is proposed that high concentrations of cyclic AMP and glucocorticoids increase the total activity of phosphatidate phosphohydrolase in the liver and provide it with an increased capacity for synthesizing triacylglycerols and very-low-density lipoproteins, which is expressed when the availability of fatty acids is high. There appears to be a co-ordinated hormonal control of triacyglycerol synthesis and gluconeogenesis in diabetes and in metabolic stress to enable the liver to supply other organs with energy.  相似文献   

13.
Hydrolysis of exogenous phosphatidylcholine (PtdCho) to 1,2-diacylglycerol by rat liver plasma membranes was stimulated by oleate concentrations as low as 0.1 mM. In the presence of 75 mM ethanol, the fatty acid also enhanced phosphatidylethanol (PtdEtOH) formation from PtdCho. These effects were also observed with linoleate and arachidonate, but not with saturated fatty acids or detergents, and were minimal in microsomes or mitochondria. Release of [3H]choline from exogenous Ptd[3H]Cho was stimulated by oleate, whereas phosphoryl[3H]choline formation was inhibited. Oleate and other unsaturated, but not saturated, fatty acids also stimulated the conversion of exogenous [14C]phosphatidic acid to [14C]diacylglycerol. These data are consistent with stimulatory effects of these fatty acids on both phospholipase D and phosphatidate phosphohydrolase in liver plasma membranes. The stimulatory effect of guanosine 5'-O-[3-thio]triphosphate) (20 microM) on PtdEtOH and diacylglycerol formation from PtdCho was enhanced by low concentrations of oleate. Phospholipase A2 also stimulated PtdEtOH and diacylglycerol formation from exogenous PtdCho. It is proposed that unsaturated fatty acids may play a physiological role in the regulation of diacylglycerol production through activation of phospholipase D and phosphatidate phosphohydrolase.  相似文献   

14.
Neuropeptide Y (NPY) elevates the permeability of cultured rat aortic endothelial cells (RAECs) in monolayer cultures under hypoxic conditions (5% O(2)) possibly by binding to the NPY Y(3) receptor. The present study evaluated the effects of NPY compared to vascular endothelial growth factor (VEGF). RAECs were cultured on the upper chamber base of a double-chamber culture system, FITC-labeled albumin was introduced into the chamber, and permeation into the lower chamber was measured. Treatment was with 3 x 10(-7) M NPY or 10(-7) g/ml VEGF for 2 h along with specific inhibitors. The VEGF receptor-2 tyrosine kinase inhibitor tyrphostin SU-1498 and the protein kinase C inhibitor bis-indolylmaleimide I (GF-109203X) suppressed the VEGF-induced increase in monolayer permeability but not that caused by NPY. Furthermore, although the action of NPY was blocked in a concentration-dependent manner by phospholipase C inhibitor 1-(6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl)-1H-pyrrole-2,5-dione (U-73122), it was less sensitive than VEGF. However, the effects of both NPY and VEGF on the permeability of the RAEC monolayer were blocked with equal concentration dependence by STI571 (imatinib mesylate), which is an inhibitor of Abl tyrosine kinase in the nucleus and/or cytoplasm. The myosin light-chain kinase inhibitor 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine HCl (ML-9) suppressed both NPY- and VEGF-induced increment in permeability by approximately 70%, whereas the calmodulin-dependent kinase inhibitor DY-9760e could decrease to below the baseline. These results indicate that the NPY Y(3)-receptor subtype is specifically linked to the effects of STI571 on endothelial cells, and that NPY, a sympathetic coneurotransmitter, may increase vascular permeability in association with altered intracellular or nuclear signal transduction.  相似文献   

15.
Diperoxovanadate (DPV), a potent tyrosine kinase activator and protein tyrosine phosphatase inhibitor, was utilized to explore bovine pulmonary artery endothelial cell barrier regulation. DPV produced dose-dependent decreases in transendothelial electrical resistance (TER) and increases in permeability to albumin, which were preceded by brief increases in TER (peak TER effect at 10-15 min). The significant and sustained DPV-mediated TER reductions were primarily the result of decreased intercellular resistance, rather than decreased resistance between the cell and the extracellular matrix, and were reduced by pretreatment with the tyrosine kinase inhibitor genistein but not by inhibition of p42/p44 mitogen-activating protein kinases. Immunofluorescent analysis after DPV challenge revealed dramatic F-actin polymerization and stress-fiber assembly and increased colocalization of tyrosine phosphoproteins with F-actin in a circumferential pattern at the cell periphery, changes that were abolished by genistein. The phosphorylation of focal adhesion and adherens junction proteins on tyrosine residues was confirmed in immunoprecipitates of focal adhesion kinase and cadherin-associated proteins in which dramatic dose-dependent tyrosine phosphorylation was observed after DPV stimulation. We speculate that DPV enhances endothelial cell monolayer integrity via focal adhesion plaque phosphorylation and produces subsequent monolayer destabilization of adherens junctions initiated by adherens junction protein tyrosine phosphorylation catalyzed by p60(src) or Src-related tyrosine kinases.  相似文献   

16.
We compared the thrombin-activated responses in human umbilical vein endothelial cells (HUVECs) and a HUVEC-derived cell line, ECV304. Thrombin induced a 40-50% decrease in transendothelial monolayer electrical resistance and a twofold increase in 125I-albumin permeability in HUVECs, whereas it failed to alter the endothelial barrier function in ECV304 cells. Thrombin produced a brisk intracellular Ca2+ concentration transient and phosphorylation of 20-kDa myosin light chain in HUVECs but not in ECV304 cells. Thrombin-induced phosphoinositide hydrolysis was comparable in ECV304 cells and HUVECs, indicating the activation of thrombin receptors in both cell types. La3+ reduced both the thrombin-induced decrease in endothelial monolayer electrical resistance and the increase in 125I-albumin permeability in HUVECs. Because the absence of Ca2+ signaling could explain the impairment in the permeability response in ECV304 cells, we studied the effect of increasing intracellular Ca2+ concentration in ECV304 cells with thapsigargin. Exposure of ECV304 cells to thapsigargin caused decreased endothelial monolayer electrical resistance and increased 125I-albumin permeability. These results indicate that Ca2+ influx and activation of Ca2+-dependent signaling pathways are important determinants of the thrombin-induced increase in endothelial permeability.  相似文献   

17.
Phosphatidic acid (PA) is a cytokine in a variety of cell types, and an intermediary in cell activation. It is produced from membrane phospholipids by either lysophosphatidate acyl-CoA:acyltransferase (lyso-PA AT) or phospholipase D. Interleukin-1 (IL-1) stimulation of human mesangial cells (HMC) induced activation of lyso-PA AT, and synthesis of new PA species with significant increase in PA mass. These PA species were enriched in long-chain unsaturated acyl side chains (C18:1, C18:2, C20:5, and C22:6) in both the sn-2 and sn-1 positions, and stimulated the action of the lyso-PA AT as a positive feedback mechanism. Gas-liquid chromatography and mass spectrometry demonstrate that the acyl composition of phosphatidic acid does not resemble that of the major phospholipid fractions of this preparation and therefore is not the product of phospholipase D. The PA species were rapidly converted to 1,2-sn-diacylglycerols by phosphatidate phosphohydrolase, which also was activated by IL-1 via a separate mechanism involving a pertussis-sensitive G-protein. The activities of lyso-PA AT and phosphatidate phosphohydrolase were associated with plasma membrane enriched and refined microsomal fractions. IL-1 stimulation of a murine T cell (thymoma) line, EL-4, also caused stimulation of lyso-PA AT, resulting in PA formation. EL-4 mutants with defective IL-1 receptors did not demonstrate stimulation of lyso-PA AT, showing the necessity of intact IL-1 receptors for activation of this enzyme. We conclude that PA is a significant signaling intermediary for IL-1 via activation of lyso-PA AT and a G-protein, which activates phosphatidate phosphohydrolase. This system suggests a novel mechanism whereby a low intensity signal may be translated into cellular activation.  相似文献   

18.
Endothelial barrier dysfunction contributes to morbidity in sepsis. We tested the hypothesis that raising the intracellular ascorbate concentration protects the endothelial barrier from septic insult by inhibiting protein phosphatase type 2A. Monolayer cultures of microvascular endothelial cells were incubated with ascorbate, dehydroascorbic acid (DHAA), the NADPH oxidase inhibitors apocynin and diphenyliodonium, or the PP2A inhibitor okadaic acid and then were exposed to septic insult (lipopolysaccharide and interferon-γ). Under standard culture conditions that depleted intracellular ascorbate, septic insult stimulated oxidant production and PP2A activity, dephosphorylated phosphoserine and phosphothreonine residues in the tight junction-associated protein occludin, decreased the abundance of occludin at cell borders, and increased monolayer permeability to albumin. NADPH oxidase inhibitors prevented PP2A activation and monolayer leak, showing that these changes required reactive oxygen species. Okadaic acid, at a concentration that inhibited PP2A activity and monolayer leak, prevented occludin dephosphorylation and redistribution, implicating PP2A in the response of occludin to septic insult. Incubation with ascorbate or DHAA raised intracellular ascorbate concentrations and mitigated the effects of septic insult. In conclusion, ascorbate acts within microvascular endothelial cells to inhibit septic stimulation of oxidant production by NADPH oxidase and thereby prevents PP2A activation, PP2A-dependent dephosphorylation and redistribution of occludin, and disruption of the endothelial barrier.  相似文献   

19.
Phosphatidylinositol 3'-kinase (PI 3'-kinase) plays an important role in the migration of hepatocytes, endothelial cells and neoplastic cells to agonists which activate cellular tyrosine kinases. We examined the PI 3'-kinase-dependent chemotactic responses of neutrophilic leukocytes induced by phosphatidic acid (PA) in order to clarify mechanisms by which the enzyme potentially influences cellular migration. Western analysis of immunoprecipitates indicated that PA induced the tyrosine phosphorylation of three distinct proteins involved in functional activation which co-immunoprecipitated in PA-stimulated cells. These proteins were identified as lyn, syk and the 85 kDa regulatory subunit of PI 3'-kinase. Chemotactic responses to PA but not to several other neutrophil agonists were inhibited by the PI 3'-kinase inhibitors wortmannin and LY294002. Chemotactic inhibition resulted from upstream inhibition of calcium mobilization. Chelation of extracellular calcium by ethylene glycol-bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA) did not affect the PA-induced chemotaxis, whereas chelation of intracellular calcium by 1, 2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) attenuated this response. Thus, changes in intracellular Ca(2+) levels that can be effected by Ca(2+) mobilized from intracellular stores in the absence of Ca(2+) influx regulate PA-induced chemotaxis. Furthermore, PI 3'-kinase inhibition blunted the agonist-dependent generation of inositol 1,4,5-trisphosphate (IP(3)), suggesting that PI 3'-kinase exerted its effects on calcium mobilization from intracellular sources by mediating activation of phospholipase C (PLC) in PA-stimulated cells. Moreover, the PI 3'-kinase inhibitor LY294002 also inhibited phosphorylation of syk in PA-stimulated cells. We, therefore, propose that products of PI 3'-kinase confined to the inner leaflet of the plasma membrane play a role in activation of syk, calcium mobilization and induction of chemotactic migration.  相似文献   

20.
The effects of oleate, spermine and chlorpromazine were assayed in the presence or absence of 0.15 M KCl on the translocation of phosphatidate phosphohydrolase activity from cytosol to endoplasmic reticulum membranes in liver homogenates obtained from rats aged 1, 30, 60, 180 and 360 days. Marked age-associated decreases in phosphatidate phosphohydrolase distribution onto the membranes were demonstrated under nearly all conditions. In liver homogenates taken from 1-day-old rats and incubated with 0.15 M KCl, most of the enzyme was active (associated with the membranes). Physiological salt concentration (0.15 M KCl) produced a 2-fold increase of oleate-induced translocation of phosphatidate phosphohydrolase activity in liver homogenates from 1-day-old rats; it had no effect on those from 60-day-old rats, and produced a notable decline in liver homogenates obtained from 180- and 360-day-old rats. The promoting effect of spermine on oleate-induced translocation of this enzyme activity was higher in younger rats when incubated in the absence of 0.15 M KCl. Chlorpromazine did not show its usual antagonizing effect on oleate-induced translocation of phosphatidate phosphohydrolase when added to homogenates taken from 1-day-old rats. The antagonizing effect was slightly apparent in liver homogenates from 30-day-old rats and was more pronounced in those from 60-day-old rats in which the values diminished to one-half and to one-third either in the presence or absence of 0.15 M KCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号