首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
We describe a log-linear method for analysis of case-parent-triad data, based on maximum likelihood with stratification on parental mating type. The method leads to estimates of association parameters, such as relative risks, for a single allele, and also to likelihood ratio chi2 tests (LRTs) of linkage disequilibrium. Hardy-Weinberg equilibrium need not be assumed. Our simulations suggest that the LRT has power similar to that of the chi2 "score" test proposed by Schaid and Sommer and that both can outperform the transmission/disequilibrium test (TDT), although the TDT can perform better under an additive model of inheritance. Because a restricted version of the LRT is asymptotically equivalent to the TDT, the proposed test can be regarded as a generalization of the TDT. The method that we describe generalizes easily to accommodate maternal effects on risk and, in fact, produces powerful and orthogonal tests of the contribution of fetal versus maternal genetic factors. We further generalize the model to allow for effects of parental imprinting. Imprinting effects can be fitted by a simple, iterative procedure that relies on the expectation-maximization algorithm and that uses standard statistical software for the maximization steps. Simulations reveal that LRT tests for detection of imprinting have very good operating characteristics. When a single allele is under study, the proposed method can yield powerful tests for detection of linkage disequilibrium and is applicable to a broader array of causal scenarios than is the TDT.  相似文献   

2.
Design and analysis methods are presented for studying the association of a candidate gene with a disease by using parental data in place of nonrelated controls. This alternative design eliminates spurious differences in allele frequencies between cases and nonrelated controls resulting from different ethnic origins and population stratification for these two groups. We present analysis methods which are based on two genetic relative risks: (1) the relative risk of disease for homozygotes with two copies of the candidate gene versus homozygotes without the candidate gene and (2) the relative risk for heterozygotes with one copy of the candidate gene versus homozygotes without the candidate gene. In addition to estimating the magnitude of these relative risks, likelihood methods allow specific hypotheses to be tested, namely, a test for overall association of the candidate gene with disease, as well as specific genetic hypotheses, such as dominant or recessive inheritance. Two likelihood methods are presented: (1) a likelihood method appropriate when Hardy-Weinberg equilibrium holds and (2) a likelihood method in which we condition on parental genotype data when Hardy-Weinberg equilibrium does not hold. The results for the relative efficiency of these two methods suggest that the conditional approach may at times be preferable, even when equilibrium holds. Sample-size and power calculations are presented for a multitiered design. The purpose of tier 1 is to detect the presence of an abnormal sequence for a postulated candidate gene among a small group of cases. The purpose of tier 2 is to test for association of the abnormal variant with disease, such as by the likelihood methods presented. The purpose of tier 3 is to confirm positive results from tier 2. Results indicate that required sample sizes are smaller when expression of disease is recessive, rather than dominant, and that, for recessive disease and large relative risks, necessary sample sizes may be feasible, even if only a small percentage of the disease can be attributed to the candidate gene.  相似文献   

3.
Recently, there have been many case-control studies proposed to test for association between haplotypes and disease, which require the Hardy-Weinberg equilibrium (HWE) assumption of haplotype frequencies. As such, haplotype inference of unphased genotypes and development of haplotype-based HWE tests are crucial prior to fine mapping. The goodness-of-fit test is a frequently-used method to test for HWE for multiple tightly-linked loci. However, its degrees of freedom dramatically increase with the increase of the number of loci, which may lack the test power. Therefore, in this paper, to improve the test power for haplotype-based HWE, we first write out two likelihood functions of the observed data based on the Niu''s model (NM) and inbreeding model (IM), respectively, which can cause the departure from HWE. Then, we use two expectation-maximization algorithms and one expectation-conditional-maximization algorithm to estimate the model parameters under the HWE, IM and NM models, respectively. Finally, we propose the likelihood ratio tests LRT and LRT for haplotype-based HWE under the NM and IM models, respectively. We simulate the HWE, Niu''s, inbreeding and population stratification models to assess the validity and compare the performance of these two LRT tests. The simulation results show that both of the tests control the type I error rates well in testing for haplotype-based HWE. If the NM model is true, then LRT is more powerful. While, if the true model is the IM model, then LRT has better performance in power. Under the population stratification model, LRT is still more powerful. To this end, LRT is generally recommended. Application of the proposed methods to a rheumatoid arthritis data set further illustrates their utility for real data analysis.  相似文献   

4.
Deng HW  Chen WM  Recker RR 《Genetics》2001,157(2):885-897
In association studies searching for genes underlying complex traits, the results are often inconsistent, and population admixture has been recognized qualitatively as one major potential cause. Hardy-Weinberg equilibrium (HWE) is often employed to test for population admixture; however, its power is generally unknown. Through analytical and simulation approaches, we quantify the power of the HWE test for population admixture and the effects of population admixture on increasing the type I error rate of association studies under various scenarios of population differentiation and admixture. We found that (1) the power of the HWE test for detecting population admixture is usually small; (2) population admixture seriously elevates type I error rate for detecting genes underlying complex traits, the extent of which depends on the degrees of population differentiation and admixture; (3) HWE testing for population admixture should be performed with random samples or only with controls at the candidate genes, or the test can be performed for combined samples of cases and controls at marker loci that are not linked to the disease; (4) testing HWE for population admixture generally reduces false positive association findings of genes underlying complex traits but the effect is small; and (5) with population admixture, a linkage disequilibrium method that employs cases only is more robust and yields many fewer false positive findings than conventional case-control analyses. Therefore, unless random samples are carefully selected from one homogeneous population, admixture is always a legitimate concern for positive findings in association studies except for the analyses that deliberately control population admixture.  相似文献   

5.
Chen J  Chatterjee N 《Human heredity》2007,63(3-4):196-204
In case-control studies, the assessment of the association between a binary disease outcome and a single nucleotide polymorphism (SNP) is often based on comparing the observed genotype distribution for the cases against that for the controls. In this article, we investigate an alternative analytic strategy in which the observed genotype frequencies of cases are compared against the expected genotype frequencies of controls assuming Hardy-Weinberg Equilibrium (HWE). Assuming HWE for controls, we derive closed-form expressions for maximum likelihood estimates of the genotype-specific disease odds ratio (OR) parameters and related variance-covariances. Based on these estimates and their variance-covariance structure, we then propose a two-degree-of-freedom test for disease-SNP association. We show that the proposed test can have substantially higher power than a variety of existing methods, especially when the true effect of the SNP is recessive. We also obtain analytic expressions for the bias of the OR estimates when the underlying HWE assumption is violated. We conclude that the novel test would be particularly useful for analyzing data from the initial 'screening' stages of contemporary multi-stage association studies.  相似文献   

6.
We present a class of likelihood-based score statistics that accommodate genotypes of both unrelated individuals and families, thereby combining the advantages of case-control and family-based designs. The likelihood extends the one proposed by Schaid and colleagues (Schaid and Sommer 1993, 1994; Schaid 1996; Schaid and Li 1997) to arbitrary family structures with arbitrary patterns of missing data and to dense sets of multiple markers. The score statistic comprises two component test statistics. The first component statistic, the nonfounder statistic, evaluates disequilibrium in the transmission of marker alleles from parents to offspring. This statistic, when applied to nuclear families, generalizes the transmission/disequilibrium test to arbitrary numbers of affected and unaffected siblings, with or without typed parents. The second component statistic, the founder statistic, compares observed or inferred marker genotypes in the family founders with those of controls or those of some reference population. The founder statistic generalizes the statistics commonly used for case-control data. The strengths of the approach include both the ability to assess, by comparison of nonfounder and founder statistics, the potential bias resulting from population stratification and the ability to accommodate arbitrary family structures, thus eliminating the need for many different ad hoc tests. A limitation of the approach is the potential power loss and/or bias resulting from inappropriate assumptions on the distribution of founder genotypes. The systematic likelihood-based framework provided here should be useful in the evaluation of both the relative merits of case-control and various family-based designs and the relative merits of different tests applied to the same design. It should also be useful for genotype-disease association studies done with the use of a dense set of multiple markers.  相似文献   

7.
Case‐control studies are primary study designs used in genetic association studies. Sasieni (Biometrics 1997, 53, 1253–1261) pointed out that the allelic chi‐square test used in genetic association studies is invalid when Hardy‐Weinberg equilibrium (HWE) is violated in a combined population. It is important to know how much type I error rate is deviated from the nominal level under violated HWE. We examine bounds of type I error rate of the allelic chi‐square test. We also investigate power of the goodness‐of‐fit test for HWE which can be used as a guideline for selecting an appropriate test between the allelic chi‐square test and the modified allelic chi‐square test, the latter of which was proposed for cases of violated HWE. In small samples, power is not large enough to detect the Wright's inbreeding model of small values of inbreeding coefficient. Therefore, when the null hypothesis of HWE is barely accepted, the modified test should be considered as an alternative method. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
9.
It is widely acknowledged that genome-wide association studies (GWAS) of complex human disease fail to explain a large portion of heritability, primarily due to lack of statistical power—a problem that is exacerbated when seeking detection of interactions of multiple genomic loci. An untapped source of information that is already widely available, and that is expected to grow in coming years, is population samples. Such samples contain genetic marker data for additional individuals, but not their relevant phenotypes. In this article we develop a highly efficient testing framework based on a constrained maximum-likelihood estimate in a case–control–population setting. We leverage the available population data and optional modeling assumptions, such as Hardy–Weinberg equilibrium (HWE) in the population and linkage equilibrium (LE) between distal loci, to substantially improve power of association and interaction tests. We demonstrate, via simulation and application to actual GWAS data sets, that our approach is substantially more powerful and robust than standard testing approaches that ignore or make naive use of the population sample. We report several novel and credible pairwise interactions, in bipolar disorder, coronary artery disease, Crohn’s disease, and rheumatoid arthritis.  相似文献   

10.
Deviations from Hardy-Weinberg equilibrium (HWE) can indicate inbreeding, population stratification, and even problems in genotyping. In samples of affected individuals, these deviations can also provide evidence for association. Tests of HWE are commonly performed using a simple chi2 goodness-of-fit test. We show that this chi2 test can have inflated type I error rates, even in relatively large samples (e.g., samples of 1,000 individuals that include approximately 100 copies of the minor allele). On the basis of previous work, we describe exact tests of HWE together with efficient computational methods for their implementation. Our methods adequately control type I error in large and small samples and are computationally efficient. They have been implemented in freely available code that will be useful for quality assessment of genotype data and for the detection of genetic association or population stratification in very large data sets.  相似文献   

11.
The central theme in case-control genetic association studies is to efficiently identify genetic markers associated with trait status. Powerful statistical methods are critical to accomplishing this goal. A popular method is the omnibus Pearson's chi-square test applied to genotype counts. To achieve increased power, tests based on an assumed trait model have been proposed. However, they are not robust to model misspecification. Much research has been carried out on enhancing robustness of such model-based tests. An analysis framework that tests the equality of allele frequency while allowing for different deviation from Hardy-Weinberg equilibrium (HWE) between cases and controls is proposed. The proposed method does not require specification of trait models nor HWE. It involves only 1 degree of freedom. The likelihood ratio statistic, score statistic, and Wald statistic associated with this framework are introduced. Their performance is evaluated by extensive computer simulation in comparison with existing methods.  相似文献   

12.
Much forensic inference based upon DNA evidence is made assuming that the Hardy-Weinberg equilibrium (HWE) is valid for the genetic loci being used. Several statistical tests to detect and measure deviation from HWE have been devised, each having advantages and limitations. The limitations become more obvious when testing for deviation within multiallelic DNA loci is attempted. Here we present an exact test for HWE in the biallelic case, based on the ratio of weighted likelihoods under the null and alternative hypotheses, the Bayes factor. This test does not depend on asymptotic results and minimizes a linear combination of type I and type II errors. By ordering the sample space using the Bayes factor, we also define a significance (evidence) index, P value, using the weighted likelihood under the null hypothesis. We compare it to the conditional exact test for the case of sample size n = 10. Using the idea under the method of chi(2) partition, the test is used sequentially to test equilibrium in the multiple allele case and then applied to two short tandem repeat loci, using a real Caucasian data bank, showing its usefulness.  相似文献   

13.
The Haplotype Relative Risk (HRR) was first proposed [Falk et al., Ann Hum Genet 1987] to test for Linkage Disequilibrium (LD) between a marker and a putative disease locus using case-parent trios. Spurious association does not appear in such family-based studies under population admixture. In this paper, we extend the HRR to accommodate incomplete trios via the Expectation-Maximization (EM) algorithm [Dempster et al., J R Stat Soc Ser B, 1977]. In addition to triads and dyads (parent-offspring pair), the EM-HRR easily incorporates individuals with no parental genotype information available, which is excluded from the one parent Transmission/Disequilibrium Test (1-TDT) [Sun et al., Am J Epidemiol 1999]. Due to the data structure of EM-HRR, transmitted alleles are always available regardless of the number of missing parental genotypes. As a result of having a larger sample size, computer simulations reveal that the EM-HRR is more powerful in detecting LD than the 1-TDT in a population under Hardy-Weinberg Equilibirum (HWE). If admixture is not extreme, the EM-HRR remains more powerful. When a large degree of admixture exists, the EM-HRR performs better the 1-TDT when the association is strong, though not as well when the association is weak. We illustrate the proposed method with an application to the Framingham Heart Study.  相似文献   

14.
Refining genomic regions which have been identified by linkage analysis to contain a disease susceptibility locus has proven to be a challenging task. Detecting association between the disease and a genetic marker can significantly narrow down the candidate region. Since an adequate sample of families is already available from the genome scan, family-based association tests may be used to search for association. The use of haplotypes consisting of tightly linked markers can be more powerful for detecting association than the use of individual markers. An extension of the transmission/disequilibrium test to allow the simultaneous analysis of more than one marker locus is complicated by ambiguity of phase in some families of the sample. The present paper shows that a recently proposed method for the analysis of nuclear families with a single affected child can be viewed as a special application of a more general principle. This observation justifies several modifications, potentially increasing the power, as well as an extension of the method to allow the analysis of general nuclear families. Finally, the problem of missing parental genotypes is discussed.  相似文献   

15.
Hao K  Cawley S 《Human heredity》2007,63(3-4):219-228
BACKGROUND: Current biotechnologies are able to achieve high accuracy and call rates. Concerns are raised on how differential performance on various genotypes may bias association tests. Quantitatively, we define differential dropout rate as the ratio of no-call rate among heterozygotes and homozygotes. METHODS: The hazard ofdifferential dropout is examined for population- and family-based association tests through a simulation study. Also, we investigate detection approaches such as Hardy-Weinberg Equilibrium (HWE) and testing for correlation between sample call rate and sample heterozygosity. Finally, we analyze two public datasets and evaluate the magnitudes of differential dropout. RESULTS: In case-control settings, differential dropout has negligible effect on power and odds ratio (OR) estimation. However, the impact on family-based tests range from minor to severe depending on the disease parameters. Such impact is more prominent when disease allele frequency is relatively low (e.g., 5%), where a differential dropout rate of 2.5 can dramatically bias OR estimation and reduce power even at a decent 98% overall call rate and moderate effect size (e.g., OR(true) = 2.11). Both of the two public datasets follow HWE; however, HapMap data carries detectable differential dropout that may endanger family-based studies. CONCLUSIONS: Case-control approach appears to be robust to differential dropout; however, family-based association tests can be heavily biased. Both of the public genotype data show high call rate, but differential dropout is detected in HapMap data. We suggest researchers carefully control this potential confounder even using data of high accuracy and high overall call rate.  相似文献   

16.
Detecting departures from Hardy-Weinberg equilibrium (HWE) of marker-genotype frequencies is a crucial first step in almost all human genetic analyses. When a sample is stratified by multiple ethnic groups, it is important to allow the marker-allele frequencies to differ over the strata. In this situation, it is common to test for HWE by using an exact test within each stratum and then using the minimum P value as a global test. This approach does not account for multiple testing, and, because it does not combine information over strata, it does not have optimal power. Several approximate methods to combine information over strata have been proposed, but most of them sum over strata a measure of departure from HWE; if the departures are in different directions, then summing can diminish the overall evidence of departure from HWE. An exact stratified test is more appealing because it uses the probability of genotype configurations across the strata as evidence for global departures from HWE. We developed an exact stratified test for HWE for diallelic markers, such as single-nucleotide polymorphisms (SNPs), and an exact test for homogeneity of Hardy-Weinberg disequilibrium. By applying our methods to data from Perlegen and HapMap--a combined total of more than five million SNP genotypes, with three to four strata and strata sizes ranging from 23 to 60 subjects--we illustrate that the exact stratified test provides more-robust and more-powerful results than those obtained by either the minimum of exact test P values over strata or approximate stratified tests that sum measures of departure from HWE. Hence, our new methods should be useful for samples composed of multiple ethnic groups.  相似文献   

17.
OBJECTIVES: The question of interest is estimating the relationship between haplotypes and an outcome measure, based upon unphased genotypes. The outcome of interest might be predicting the presence of disease in a logistic model, predicting a numeric drug response in a linear model, or predicting survival time in a parametric survival model with censoring. Explanatory variables may include phased haplotype design variables, environmental variables, or interactions between them. METHODS: We extend existing generalized linear haplotype models to parametric survival outcomes. To improve the stability of model variance estimates, a profile likelihood solution is proposed. An adjustment for population stratification is also considered. Here we investigate data sampled from known 'strata' (e.g., gender or ethnicity) that influence haplotype prior probabilities and thus the regression model weights. Differing linear model variance estimates, and the effect of stratification and departures from Hardy-Weinberg Equilibrium (HWE) on parameter estimates, are compared and contrasted via simulation. RESULTS: From simulations, we observed an improvement in statistical power when using a solution to profile likelihood equations. We also saw that stratification had little impact on estimates. Haplotypes that are not in HWE had a negative impact on power to test hypotheses. Finally, profile likelihood solutions for haplotypes deviating from HWE had improved power and confidence interval coverage of regression model coefficients.  相似文献   

18.
In the study of complex traits, the utility of linkage analysis and single marker association tests can be limited for researchers attempting to elucidate the complex interplay between a gene and environmental covariates. For these purposes, tests of gene-environment interactions are needed. In addition, recent studies have indicated that haplotypes, which are specific combinations of nucleotides on the same chromosome, may be more suitable as the unit of analysis for statistical tests than single genetic markers. The difficulty with this approach is that, in standard laboratory genotyping, haplotypes are often not directly observable. Instead, unphased marker phenotypes are collected. In this article, we present a method for estimating and testing haplotype-environment interactions when linkage phase is potentially ambiguous. The method builds on the work of Schaid et al. [2002] and is applicable to any trait that can be placed in the generalized linear model framework. Simulations were run to illustrate the salient features of the method. In addition, the method was used to test for haplotype-smoking exposure interaction with data from the Childhood Asthma Management Program.  相似文献   

19.
Hardy-Weinberg equilibrium (HWE) is a useful indicator of genotype frequencies within a population and whether they are based on a valid definition of alleles and a randomly mating sample. HWE assumes a stable population of adequate size without selective pressures and is used in human genetic studies as a guide to data quality by comparing observed genotype frequencies to those expected within a population. The calculation of genetic associations in case-control studies assume that the population is "in HWE." Canine breed populations deviate away from many of the criteria for HWE, and if genetic markers are not in HWE, conventional statistical analysis cannot be performed. To date, little attention has been paid as to whether genetic markers in dog breeds are distributed in compliance to HWE. In this study, 109 single-nucleotide polymorphisms (SNPs) were genotyped from 13 genes in a cohort of 894 dogs encompassing 33 breeds. Analysis of the entire cohort of dogs revealed a significant deviation away from HWE for all SNPs tested (P < 0.00001); analysis of the cohort stratified by breed and subbreed indicated that the majority of the markers complied with HWE expectation. This suggests that canine case-control association studies will be valid if performed within defined breeds.  相似文献   

20.
Once genetic linkage has been identified for a complex disease, the next step is often association analysis, in which single-nucleotide polymorphisms (SNPs) within the linkage region are genotyped and tested for association with the disease. If a SNP shows evidence of association, it is useful to know whether the linkage result can be explained, in part or in full, by the candidate SNP. We propose a novel approach that quantifies the degree of linkage disequilibrium (LD) between the candidate SNP and the putative disease locus through joint modeling of linkage and association. We describe a simple likelihood of the marker data conditional on the trait data for a sample of affected sib pairs, with disease penetrances and disease-SNP haplotype frequencies as parameters. We estimate model parameters by maximum likelihood and propose two likelihood-ratio tests to characterize the relationship of the candidate SNP and the disease locus. The first test assesses whether the candidate SNP and the disease locus are in linkage equilibrium so that the SNP plays no causal role in the linkage signal. The second test assesses whether the candidate SNP and the disease locus are in complete LD so that the SNP or a marker in complete LD with it may account fully for the linkage signal. Our method also yields a genetic model that includes parameter estimates for disease-SNP haplotype frequencies and the degree of disease-SNP LD. Our method provides a new tool for detecting linkage and association and can be extended to study designs that include unaffected family members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号