共查询到20条相似文献,搜索用时 9 毫秒
1.
Bacteriophage terminases package DNA through the portal ring of a procapsid during phage maturation. We have probed the mechanism of the phage T4 large terminase subunit gp17 by analyzing linear DNAs that are translocated in vitro. Duplex DNAs of random sequence from 20 to 500 bp were efficiently packaged. Dye and short, single-stranded end extensions were tolerated, whereas 20-base extensions, hairpin ends, 20-bp DNA-RNA hybrid, and 4-kb dsRNA substrates were not packaged. Molecules 60 bp long with 10 mismatched bases were translocated; substrates with 20 mismatched bases, a related D-loop structure, or ones with 20-base single-strand regions were not. A single nick in 100- or 200-bp duplexes, irrespective of location, reduced translocation efficiency, but a singly nicked 500-bp molecule was packaged as effectively as an unnicked control. A fluorescence-correlation-spectroscopy-based assay further showed that a 100-bp nicked substrate did not remain stably bound by the terminase-prohead. Taken together, two unbroken DNA strands seem important for packaging, consistent with a proposed torsional compression translocation mechanism. 相似文献
2.
Bacteriophage DNA packaging results from an ATP-driven translocation of concatemeric DNA into the prohead by the phage terminase complexed with the portal vertex dodecamer of the prohead. Functional domains of the bacteriophage T4 terminase and portal gene 20 product (gp20) were determined by mutant analysis and sequence localization within the structural genes. Interaction regions of the portal vertex and large terminase subunit (gp17) were determined by genetic (terminase-portal intergenic suppressor mutations), biochemical (column retention of gp17 and inhibition of in vitro DNA packaging by gp20 peptides), and immunological (co-immunoprecipitation of polymerized gp20 peptide and gp17) studies. The specificity of the interaction was tested by means of a phage T4 HOC (highly antigenicoutercapsid protein) display system in which wild-type, cs20, and scrambled portal peptide sequences were displayed on the HOC protein of phage T4. Binding affinities of these recombinant phages as determined by the retention of these phages by a His-tag immobilized gp17 column, and by co-immunoprecipitation with purified terminase supported the specific nature of the portal protein and terminase interaction sites. In further support of specificity, a gp20 peptide corresponding to a portion of the identified site inhibited packaging whereas the scrambled sequence peptide did not block DNA packaging in vitro.The portal interaction site is localized to 28 residues in the central portion of the linear sequence of gp20 (524 residues). As judged by two pairs of intergenic portal-terminase suppressor mutations, two separate regions of the terminase large subunit gp17 (central and COOH-terminal) interact through hydrophobic contacts at the portal site. Although the terminase apparently interacts with this gp20 portal peptide, polyclonal antibody against the portal peptide appears unable to access it in the native structure, suggesting intimate association of gp20 and gp17 possibly internalizes terminase regions within the portal in the packasome complex. Both similarities and differences are seen in comparison to analogous sites which have been identified in phages T3 and lambda. 相似文献
3.
The terminase of bacteriophage lambda. Functional domains for cosB binding and multimer assembly 总被引:7,自引:0,他引:7
Terminase is a protein complex involved in lambda DNA packaging. The subunits of terminase, gpNul and gpA, are the products of genes Nul and A. The actions of terminase include DNA binding, prohead binding and DNA nicking. Phage 21 is a lambdoid phage that also makes a terminase, encoded by genes 1 and 2. The terminases of 21 and lambda are not interchangeable. This specificity involves two actions of terminase; DNA binding and prohead binding. In addition, the subunits of lambda terminase will not form functional multimers with the subunits of 21 terminase. lambda-21 hybrid phages can be produced as a result of recombination. We describe here lambda-21 hybrid phages that have hybrid terminase genes. The packaging specificities of the hybrids and the structure of their genes were compared in order to identify functional domains of terminase. The packaging specificities were determined in vivo by complementation tests and helper packaging experiments. Restriction enzyme site mapping and sequencing located the sites at which recombination occurred to produce the hybrid phages. lambda-21 hybrid 51 carries the lambda A gene, and a hybrid 1/Nul gene. The crossover that produced this phage occurred near the middle of the 1 and Nul genes. The amino-terminal portion of the hybrid protein is homologous to gp1 and the carboxy-terminal portion is homologous to gpNul. It binds to 21 DNA and forms functional multimers with gpA, providing evidence that the amino-terminal portion of gpNul is involved in DNA binding and the carboxy-terminal portion of gpNul is involved in the interaction with gpA. lambda-21 hybrid 54 has a hybrid 2/A gene. The amino terminus of the hybrid protein of lambda-21 hybrid 54 is homologous with gp2. This protein forms functional multimers only with gp1, providing evidence that the amino terminus of gpA is involved in the interaction with gpNul. These studies identify three functional domains of terminase. 相似文献
4.
Terminase is a multifunctional protein complex involved in DNA packaging during bacteriophage lambda assembly. Terminase is made of gpNul and gpA, the products of the phage lambda Nu1 and A genes. Early during DNA packaging terminase binds to lambda DNA to form a complex called complex I. Terminase is required for the binding of proheads by complex I to form a DNA: terminase: prohead complex known as complex II. Terminase remains associated with the DNA during encapsidation. The other known role for terminase in packaging is the production of staggered nicks in the DNA thereby generating the cohesive ends. Lambdoid phage 21 has cohesive ends identical to those of lambda. The head genes of lambda and 21 show partial sequence homology and are analogous in structure, function and position. The terminases of lambda and 21 are not interchangeable. At least two actions of terminase are involved in this specificity: (1) DNA binding; (2) prohead binding. The 1 and 2 genes at the left end of the 21 chromosome were identified as coding for the 21 terminase. gp1 and gp2 are analogous to gpNu1 and gpA, respectively. We have isolated a phage, lambda-21 hybrid 33, which is the product of a crossover between lambda and 21 within the terminase genes. Lambda-21 hybrid 33 DNA and terminase have phage 21 packaging specificity, as determined by complementation and helper packaging studies. The terminase of lambda-21 hybrid 33 requires lambda proheads for packaging. We have determined the position at which the crossover between lambda DNA and 21 DNA occurred to produce the hybrid phage. Lambda-21 hybrid 33 carries the phage 21 1 gene and a hybrid phage 2/A gene. Sequencing of lambda-21 hybrid 33 DNA shows that it encodes a protein that is homologous at the carboxy terminus with the 38 amino acids of the carboxy terminus of lambda gpA; the remainder of the protein is homologous to gp2. The results of these studies define a specificity domain for prohead binding at the carboxy terminus of gpA. 相似文献
5.
The Nu1 subunit of bacteriophage lambda terminase 总被引:5,自引:0,他引:5
The maturation and packaging of bacteriophage lambda DNA are catalyzed by the phage terminase enzyme. Terminase is composed of two protein subunits, gpNu1 and gpA. The holoenzyme is multifunctional in vitro; it binds to and cleaves lambda DNA at the cos site (where cos represents cohesive-end site), packages DNA into lambda proheads, and is also a DNA-dependent ATPase. The genes of the two subunits have been cloned separately into powerful expression vectors which allow for very high levels of protein overproduction. The gpNu1 protein has been purified to homogeneity and has a monomeric molecular weight of 21,200, in close agreement with the Mr of 20,444 expected from its amino acid sequence. Both gel filtration and sedimentation velocity centrifugation indicate that the native gpNu1 protein exists as a Mr greater than 500,000 aggregate. The sequence of the first 20 amino acids and the overall composition both match those predicted by the nucleotide sequence of the Nu1 gene. Purified gpNu1 is able to complement gpA-containing extracts in both lambda DNA packaging and cos cleavage assays. The Nu1 gene amino acid sequence predicts DNA binding by the protein, and gpNu1 does show specific binding to lambda DNA by filter binding assays. Also, as predicted from its sequence, gpNu1 exhibits ATPase activity; but in contrast to the holoenzyme, this activity is DNA-independent. 相似文献
6.
The bacteriophage T4 genome encodes most of its own enzymes for dNTP synthesis, which form a complex in infected Escherichia coli. The T4 thymidylate synthase (TS) and the T4 deoxycytidylate deaminase (CD) catalyze sequential reactions and are physically linked within this complex [McGaughey, K. M., Wheeler, L. J., Moore, J. T., Maley, G. F. , Maley, F., and Mathews, C. K. (1996) J. Biol. Chem. 271, 23037-23042]. From the crystal structure of T4TS [Finer-Moore, J. S., Maley, G. F., Maley, F., Montfort, W. R., and Stroud, R. M. (1994) Biochemistry 33, 15459-15468], it appears that three regions corresponding to insertions relative to E. coli TS lie on one side of the enzyme surface. We have investigated the residual activity of T4TS in response to complete deletion or substitution mutagenesis of these insertions. Two deletions generated in the small domain (residues 70-103) reduced the TS activity to 0.2% and 0.7% of the wild-type activity, with the latter able to complement growth of a thyA- E. coli strain in the absence of thymidine. By insertion of exogenous sequences variable in length and in sequence into these deletion mutants, enzyme activity increased to 44% that of the wild type. Restoration of the TS activity depended mostly on the hydrophobicity of the inserted residues. The sites of insertions also displayed distinct permissiveness for accommodating the exogenous insertions. Deletions and substitutions near the C-terminus resulted in complete inactivation of the T4TS. Proteolysis experiments revealed that the modified surface loops of the small domain were still accessible and flexible for protein-protein interactions. We have used ELISA to detect a physical association between T4TS and T4CD and compared the binding affinity of WT T4TS for two purified insertion mutants of T4CD. The results obtained showed that the native sequences of the small domain inserts are not required for T4TS/T4CD complex formation. 相似文献
7.
The bacteriophage lambda terminase. Partial purification and preliminary characterization of properties 总被引:14,自引:0,他引:14
The maturation of bacteriophage lambda DNA and its packaging into preformed heads to produce infectious phage is under the control of the two leftmost genes on the lambda chromosome, i.e., Nu1 and A. Based on its ability to complement lambda A- phage-infected cell extracts for packaging of lambda DNA in vitro, a single protein, designated terminase (ter) has been extensively purified using adsorption, ion exchange, and affinity column chromatography. The final preparation represents an approximately 60,000-fold purification over the activity found in crude extracts and is about 30 to 80% homogeneous as judged by visualizing the protein after electrophoresis in sodium dodecyl sulfate-polyacrylamide gel. In addition to packaging, terminase can also catalyze the endonucleolytic cleavage of lambda cohesive-end site DNA; both of these reactions require ATP. In some preparations, certain terminase fractions of extreme purity require protein factors present in extracts of uninfected Escherichia coli in order to catalyze the cohesive-end site cleavage reaction. On ion exchange columns purified terminase co-chromatographs with a DNA-dependent ATPase activity, hydrolyzing ATP to ADP and Pi in the presence of any of several types of DNA tested including those of non-lambda origin. The molecular weight of the native enzyme is 117,000 and appears to be a hetero-oligomer composed of 2 nonidentical subunits. The most likely composition of terminase is one gpA (gene product of A), Mr = 74,000 and two gpNu1, Mr = 21,000. 相似文献
8.
The assembly intermediates of the Salmonella bacteriophage P22 are well defined but the molecular interactions between the subunits that participate in its assembly are not. The first stable intermediate in the assembly of the P22 virion is the procapsid, a preformed protein shell into which the viral genome is packaged. The procapsid consists of an icosahedrally symmetric shell of 415 molecules of coat protein, a dodecameric ring of portal protein at one of the icosahedral vertices through which the DNA enters, and approximately 250 molecules of scaffolding protein in the interior. Scaffolding protein is required for assembly of the procapsid but is not present in the mature virion. In order to define regions of scaffolding protein that contribute to the different aspects of its function, truncation mutants of the scaffolding protein were expressed during infection with scaffolding deficient phage P22, and the products of assembly were analyzed. Scaffolding protein amino acids 1-20 are not essential, since a mutant missing them is able to fully complement scaffolding deficient phage. Mutants lacking 57 N-terminal amino acids support the assembly of DNA containing virion-like particles; however, these particles have at least three differences from wild-type virions: (i) a less than normal complement of the gene 16 protein, which is required for DNA injection from the virion, (ii) a fraction of the truncated scaffolding protein was retained within the virions, and (iii) the encapsidated DNA molecule is shorter than the wild-type genome. Procapsids assembled in the presence of a scaffolding protein mutant consisting of only the C-terminal 75 amino acids contained the portal protein, but procapsids assembled with the C-terminal 66 did not, suggesting portal recruitment function for the region about 75 amino acids from the C terminus. Finally, scaffolding protein amino acids 280 through 294 constitute its minimal coat protein binding site. 相似文献
9.
The functional origin of bacteriophage f1 DNA replication. Its signals and domains 总被引:26,自引:0,他引:26
The origin of DNA replication of bacteriophage f1 functions as a signal, not only for initiation of viral strand synthesis, but also for its termination. Viral (plus) strand synthesis initiates and terminates at a specific site (plus origin) that is recognized and nicked by the viral gene II protein. Mutational analysis of the 5' side (upstream) of the origin of plus strand replication of phage f1 led us to postulate the existence of a set of overlapping functional domains. These included ones for strand nicking, and initiation and termination of DNA synthesis. Mutational analysis of the 3' side (downstream) of the origin has verified the existence of these domains and determined their extent. The results indicate that the f1 "functional origin" can be divided into two domains: (1) a "core region", about 40 nucleotides long, that is absolutely required for plus strand synthesis and contains three distinct but partially overlapping signals, (a) the gene II protein recognition sequence, which is necessary both for plus strand initiation and termination, (b) the termination signal, which extends for eight more nucleotides on the 5' side of the gene II protein recognition sequence, (c) the initiation signal that extends for about ten more nucleotides on the 3' side of the gene II protein recognition sequence; (2) a "secondary region", 100 nucleotides long, required exclusively for plus strand initiation. Disruption of the secondary region does not completely abolish the functionality of the f1 origin but does drastically reduce it (1% residual biological activity). We discuss a possible explanation of the fact that this region can be interrupted (e.g. f1, M13 cloning vectors) by large insertions of foreign DNA without significantly affecting replication. 相似文献
10.
Processive action of terminase during sequential packaging of bacteriophage lambda chromosomes 总被引:7,自引:0,他引:7
Bacteriophage lambda chromosomes are packaged in a polarized, sequential fashion from a multimeric DNA substrate. Mature chromosomes are generated when terminase introduces staggered nicks in the cohesive end sites (cos sites) bounding a chromosome. Packaging is polarized, to the initial and terminal cos sites for packaging a chromosome can be defined. To initiate packaging, terminase binds to cos at cosB, and subsequently cuts at cosN. To terminate packaging of a chromosome, a functional cosB is not required at the terminal cos. To explain this finding, it was proposed earlier that terminase scans for the terminal cosN, rather than any subsequent cosB, during packaging. In the work described here we performed helper packaging experiments to see whether processive action of terminase occurs during sequential packaging of lambda chromosomes. The helper packaging experiments involve trilysogens; strains carrying three prophages in tandem. Infection by a hetero-immune helper phage results in packaging of the repressed prophage chromosomes, since the prophage structure is analogous to the normal DNA substrate. Two chromosomes can be packaged from between the three cos sites of the prophages of a trilysogen. Both chromosomes are packaged even when the central cos is cosB-. Our interpretation of these data is that terminase is brought to the central cos by packaging; following cleavage of the central cos, the terminase remains bound to the distal chromosome; and terminase acts to begin packaging of the distal chromosome. The frequency at which terminase reads across the central cos to initiate packaging of the distal chromosome is in the range from 0.3 to 0.5 in our experiments. Reading across cos was found not to be greatly dependent on the state of cosB, indicating that cosB binding is only needed for packaging the first chromosome in a packaging series. A multilysogen was constructed in which the initial cos was cos+ and the distal cos sites were all cosB-. The initial and downstream chromosomes were found to be packaged. This result indicates that terminase that is brought to the central cos by packaging is not only able to initiate packaging of a downstream chromosome, but can also scan and terminate packaging of the downstream chromosome. A model is presented in which processive action of terminase is the basis for sequential packaging of lambda chromosomes. 相似文献
11.
Functional bacteriophage T4 deoxynucleotide kinase and α-glucosyl transferase mRNAs can be isolated from polysomes extracted from cells 8 min after infection. At least 55% of the 8-min deoxynucleotide kinase mRNA is associated with polysomes and is released from the cell membrane by deoxyribonuclease (DNase) treatment (soluble mRNA). Approximately 20% of the kinase mRNA remains tightly bound to membrane after DNase treatment (membrane mRNA) and 25% of the kinase mRNA is routinely lost during fractionation. The membrane-bound kinase mRNA is about three times as stable in vitro as the soluble kinase mRNA. Soluble kinase mRNA (14.5S) is found associated with as few as one ribosome and as many as 22 ribosomes; however, 14.5S α-glucosyl transferase mRNA is found predominantly in six ribosome polysomes. The size of the α-glucosyl transferase mRNA is heterogenous, ranging between 14.5 and 20S. The larger α-glucosyl transferase mRNAs are never found on small polysomes but appear only in polysomes containing at least nine ribosomes (18S α-glucosyl transferase mRNA). Maximum-size α-glucosyl transferase mRNA (approximately 20S) appears on polysomes containing at least 14 ribosomes. The relationships between decay of T4 mRNA and polysome size and the location of ribosome loading sites on the 20S α-glucosyl transferase message are also discussed. 相似文献
12.
A bacterial protein requirement for the bacteriophage lambda terminase reaction. 总被引:4,自引:3,他引:4 下载免费PDF全文
The bacteriophage lambda terminase enzyme cleaves the cohesive-end sites of lambda DNA to yield the protruding 5'-termini of the mature molecule. In vitro, this endonucleolytic event requires a protein factor which has been isolated and purified from extracts of uninfected E. coli. The terminase host factor (THF) is a heat stable basic protein of M.W. approximately 22,000. The integration host factor (IHF) protein of E. coli can efficiently substitute for THF in the terminase reaction; however, THF can be demonstrated to be physically present in, and isolated with full biological activity from extracts of cells defective or deficient in IHF. 相似文献
13.
The Nul subunit of bacteriophage lambda terminase binds to specific sites in cos DNA. 总被引:12,自引:1,他引:12
The maturation and packaging of bacteriophage lambda DNA are under the control of the multifunctional viral terminase enzyme, which is composed of the protein products of Nu1 and A, the two most leftward genes of the phage chromosome. Terminase binds selectively to the cohesive end site (cos) of multimeric replicating lambda DNA and introduces staggered nicks to regenerate the 12-base single-stranded cohesive ends of the mature phage genome. The purified gpNu1 subunit of terminase forms specific complexes with cos lambda DNA. DNase I footprinting experiments showed that gpNu1 bound to three distinct regions near the extreme left end of the lambda chromosome. These regions coincided with two 16-base-pair sequences (CTGTCGTTTCCTTTCT) that were in inverted orientation, as well as a truncated version of this sequence. Bear et al. (J. Virol. 52:966-972,1984) isolated a mutant phage which contained a CG to TA transition at the 10th position of the rightmost 16-base-pair sequence, and this phage (termed lambda cos 154) exhibits a defect in DNA maturation when it replicates in Escherichia coli which is deficient in integration host factor. Footprinting experiments with cos 154 DNA showed that gpNu1 could not bind to the site which contained the mutation but could protect the other two sites. Since the DNA-packaging specificity of terminase resides in the gpNu1 subunit, these studies suggest that terminase uses these three sites as recognition sequences for specific binding to cos lambda. 相似文献
14.
Callum Smits Maria Chechik Oleg V Kovalevskiy Mikhail B Shevtsov Andrew W Foster Juan C Alonso Alfred A Antson 《EMBO reports》2009,10(6):592-598
The DNA‐packaging motor in tailed bacteriophages requires nuclease activity to ensure that the genome is packaged correctly. This nuclease activity is tightly regulated as the enzyme is inactive for the duration of DNA translocation. Here, we report the X‐ray structure of the large terminase nuclease domain from bacteriophage SPP1. Similarity with the RNase H family endonucleases allowed interactions with the DNA to be predicted. A structure‐based alignment with the distantly related T4 gp17 terminase shows the conservation of an extended β‐sheet and an auxiliary β‐hairpin that are not found in other RNase H family proteins. The model with DNA suggests that the β‐hairpin partly blocks the active site, and in vivo activity assays show that the nuclease domain is not functional in the absence of the ATPase domain. Here, we propose that the nuclease activity is regulated by movement of the β‐hairpin, altering active site access and the orientation of catalytically essential residues. 相似文献
15.
Double-stranded DNA packaging in bacteriophages is apparently driven by the most powerful molecular motor ever measured. Although it is widely accepted that a translocating ATPase powers the DNA packaging machine, the identity of the ATPase that generates this driving force is unknown. Evidence suggests that the large terminase protein gp17, which possesses two consensus ATP binding motifs and an ATPase activity, is a strong candidate for the translocating ATPase in bacteriophage T4. This hypothesis was tested by a PCR-directed combinatorial mutagenesis approach in which mutant libraries consisting of all possible codon combinations were constructed at the signature residues of the ATP binding motifs. The impact on gp17 function of each randomly selected mutant was evaluated by phenotypic analysis following recombinational transfer into the viral genome. The precise mutation giving rise to a particular phenotype was determined by DNA sequencing. The data showed that the N-terminal ATP binding site I (SRQLGKT(161-167)), but not the ATP binding site II (TAAVEGKS(299-306)), is critical for gp17 function. Even conservative substitutions such as G165A, K166R, and T167A were not tolerated at the GKT signature residues, which are predicted to interact with the ATP substrate. Biochemical analyses of the mutants showed a complete loss of in vitro DNA packaging activity but not the terminase (DNA-cutting) activity. The purified K166G mutant showed a loss of gp17-ATPase activity. The data, for the first time, implicated a specific ATPase center in the viral dsDNA packaging. 相似文献
16.
Phage T4 terminase is a two-subunit enzyme that binds to the prohead portal protein and cuts and packages a headful of concatameric DNA. To characterize the T4 terminase large subunit, gp17 (70 kDa), gene 17 was cloned and expressed as a chitin-binding fusion protein. Following cleavage and release of gp17 from chitin, two additional column steps completed purification. The purification yielded (i) homogeneous soluble gp17 highly active in in vitro DNA packaging ( approximately 10% efficiency, >10(8) phage/ml of extract); (ii) gp17 lacking endonuclease and contaminating protease activities; and (iii) a DNA-independent ATPase activity stimulated >100-fold by the terminase small subunit, gp16 (18 kDa), and modestly by portal gp20 and single-stranded binding protein gp32 multimers. Analyses revealed a preparation of highly active and slightly active gp17 forms, and the latter could be removed by immunoprecipitation using antiserum raised against a denatured form of the gp17 protein, leaving a terminase with the increased specific activity (approximately 400 ATPs/gp17 monomer/min) required for DNA packaging. Analysis of gp17 complexes separated from gp16 on glycerol gradients showed that a prolonged enhanced ATPase activity persisted after exposure to gp16, suggesting that constant interaction of the two proteins may not be required during packaging. 相似文献
17.
The DNA packaging enzyme of bacteriophage lambda, terminase, is a heteromultimer composed of a small subunit, gpNu1, and a large subunit, gpA, products of the Nu1 and A genes, respectively. The role of terminase in the initial stages of packaging involving the site-specific binding and cutting of the DNA has been well characterized. While it is believed that terminase plays an active role in later post-cleavage stages of packaging, such as the translocation of DNA into the head shell, this has not been demonstrated. Accordingly, we undertook a generalized mutagenesis of lambda's A gene and found ten lethal mutations, nine of which cause post-cleavage packaging defects. All were located in the amino-terminal two-thirds of gpA, separate from the carboxy-terminal region where mutations affecting the protein's endonuclease activity have been found. The mutants fall into five groups according to their packaging phenotypes: (1) two mutants package part of the lambda chromosome, (2) one mutant packages the entire chromosome, but very slowly compared to wild-type, (3) two mutants do not package any DNA, (4) four mutants, though inviable, package the entire lambda chromosome, and (5) one mutant may be defective in both early and late stages of DNA packaging. These results indicate that gpA is actively involved in late stages of packaging, including DNA translocation, and that this enzyme contains separate functional domains for its early and late packaging activities. 相似文献
18.
Shcherbakov V Granovsky I Plugina L Shcherbakova T Sizova S Pyatkov K Shlyapnikov M Shubina O 《Genetics》2002,162(2):543-556
A model system for studying double-strand-break (DSB)-induced genetic recombination in vivo based on the ets1 segCDelta strain of bacteriophage T4 was developed. The ets1, a 66-bp DNA fragment of phage T2L containing the cleavage site for the T4 SegC site-specific endonuclease, was inserted into the proximal part of the T4 rIIB gene. Under segC(+) conditions, the ets1 behaves as a recombination hotspot. Crosses of the ets1 against rII markers located to the left and to the right of ets1 gave similar results, thus demonstrating the equal and symmetrical initiation of recombination by either part of the broken chromosome. Frequency/distance relationships were studied in a series of two- and three-factor crosses with other rIIB and rIIA mutants (all segC(+)) separated from ets1 by 12-2100 bp. The observed relationships were readily interpretable in terms of the modified splice/patch coupling model. The advantages of this localized or focused recombination over that distributed along the chromosome, as a model for studying the recombination-replication pathway in T4 in vivo, are discussed. 相似文献
19.
The terminase enzyme of bacteriophage lambda is a hetero-oligomeric protein which catalyzes the site-specific endonucleolytic cleavage of lambda DNA and its packaging into phage proheads; it is composed of the products of the lambda Nul and A genes. We have developed a simple method to select mutations in the terminase genes carried on a high-copy-number plasmid, based on the ability of wild-type terminase to kill recA strains of Escherichia coli. Sixty-three different spontaneous mutations and 13 linker insertion mutations were isolated by this method and analyzed. Extracts of cells transformed by mutant plasmids displayed variable degrees of reduction in the activity of one or both terminase subunits as assayed by in vitro lambda DNA packaging. A method of genetically mapping plasmid-borne mutations in the A gene by measuring their ability to rescue various lambda Aam phages showed that the A mutations were fairly evenly distributed across the gene. Mutant A genes were also subcloned into overproducing plasmid constructs, and it was determined that more than half of them directed the synthesis of normal amounts of full-length A protein. Three of the A gene mutants displayed dramatically reduced in vitro packaging activity only when immature (uncut) lambda DNA was used as the substrate; therefore, these mutations may lie in the endonuclease domain of terminase. Interestingly, the putative endonuclease mutations mapped in two distinct locations in the A gene separated by a least 400 bp. 相似文献
20.
Nemecek D Lander GC Johnson JE Casjens SR Thomas GJ 《Journal of molecular biology》2008,383(3):494-501
Morphogenesis of bacteriophage P22 involves the packaging of double-stranded DNA into a preassembled procapsid. DNA is translocated by a powerful virally encoded molecular motor called terminase, which comprises large (gp2, 499 residues) and small (gp3, 162 residues) subunits. While gp2 contains the phosphohydrolase and endonuclease activities of terminase, the function of gp3 may be to regulate specific and nonspecific modes of DNA recognition as well as the enzymatic activities of gp2. Electron microscopy shows that wild-type gp3 self-assembles into a stable and monodisperse nonameric ring. A three-dimensional reconstruction at 18 Å resolution provides the first glimpse of P22 terminase architecture and implies two distinct modes of interaction with DNA—involving a central channel of 20 Å diameter and radial spikes separated by 34 Å. Electromobility shift assays indicate that the gp3 ring binds double-stranded DNA nonspecifically in vitro via electrostatic interactions between the positively charged C-terminus of gp3 (residues 143-152) and phosphates of the DNA backbone. Raman spectra show that nonameric rings formed by subunits truncated at residue 142 retain the subunit fold despite the loss of DNA-binding activity. Difference density maps between gp3 rings containing full-length and C-terminally truncated subunits are consistent with localization of residues 143-152 along the central channel of the nonameric ring. The results suggest a plausible molecular mechanism for gp3 function in DNA recognition and translocation. 相似文献