首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Thirteen thermohilic genera and 19 species in addition to one variety of each of M. pulchella and H.grisea were collected from wheat and broad-bean straw composts at 45 °C. In wheat and broad-bean, all thermophilic fungi were completely checked between 4–9 days, and 1–8 days composting when the temperature ranged between 58 ° and 67 °C, and 58 ° and 70 °C respectively, and reappeared, represented by P. duponti, M. albomyces, T. lanuginosus and S. thermophile, after 9 or 10 days composting when the temperature decreased to 51.5 °–54 °C. Wheat and broad-bean straw composts were analyzed biochemically to follow the changes in ethanol and diastase soluble, hemicellulose, cellulose and lignin fractions during composting.  相似文献   

2.
Polysaccharidases adsorbed on commercial amylodextrins were added to environmentally controlled composts of straw plus poultry manure. After 5 days of composting at 48°C, microbial enzyme activities and numbers of bacteria were higher in the treated compost than in the control. During the next phase at 80°C, between days 5 and 6, more C and N were solubilized in the treated compost. After introducing a microbial inoculum on day 6, and maintaining the substrate at 48°C, colonization by bacteria was faster in the treated compost and consequently, more fibre was degraded. Differences between composts in yields of Agaricus bisporus after 5 weeks of cropping were not significant (P=0.05).The authors are with INRA, Station de Recherches sur les Champignons, BP 81, 33883 Villenave d'Ornon, France  相似文献   

3.
Incorporation of dried leaves of Azadirachta indica, Cannabis sativa, Eucalyptus tereticornis and Ricinus communis at 3 kg per 100 kg of dry wheat straw prior to composting had several effects. When compared with controls, treated composts exhibited a higher temperature during composting, a higher nitrogen content and a neutral pH. The treatments resulted in enhanced populations of thermophilic fungi and mesophilic antibiotic-producing fungi, but reduced numbers of mesophilic competitor/pathogenic moulds. Populations of the mycophagous nematode, Aphelenchoides composticola were reduced below economic injury level in dried leaf treated composts. Compost obtained from C. sativa and R. communis treatments were more rapidly colonised by the mushroom mycelium (Agaricus bisporus) than that from any other treatment. When compared with compost treated with carbofuran R. communis, C. sativa and A. indica treatments significantly increased mushroom yield by 19.4, 8.1 and 6.5% and by 108.5, 88.7 and 85.9% when compared with the control. Yield from the E. tereticornis treatment was also higher than the control but lower than that of the nematicide treatment.  相似文献   

4.
The changes in thermophilic fungi and biochemical characteristics, during windrow and bunker stages of phase I and phase II composts, were compared in this investigation. Composts prepared by the two phase I systems differed in a number of key parameters including mean straw length, population of Scytalidium thermophilum, dry matter, conductivity, nitrogen dry matter, ammonia, fibre content and ash. S. thermophilum populations in phase I composts were significantly higher in windrow compared to bunker‐composted materials as a result of the larger high temperature (65‐80°C) core in bunker treatment, which inhibited microbial activity. Assessment of the composts for loss of matter during composting has revealed that the bunker system can conserve fresh matter better than the windrow production system, possibly due to lower microbial activities during bunker composting. The productivity of the phase II composts prepared from windrow and bunker systems was compared in trials using commercial growers.  相似文献   

5.
Blanco  M.-J.  Almendros  G. 《Plant and Soil》1997,196(1):15-25
Chemical maturity parameters in addition to plant growth limiting factors have been monitored in the course of a 2-month composting experiment. Wheat straw with 5% dry w horse manure was adjusted to C/N= 45 with urea. The pile was rotated and homogeneous samples were taken every four days. The most intense changes in straw fractions occurred in the first 20 days of composting, as suggested by wet chemical analyses, thermogravimetry and 13C NMR spectrometry. Nevertheless, plant response to compost application gave significant changes at between 20–60 days that were not clearly reflected by the above techniques. Glasshouse experiments with a soil treated with compost samples taken at the successive transformation stages suggested no linear correlation between composting time and the potential of compost in improving plant yield. In the samples taken after 20 days in the conditions studied, referred to as postmature composts, the ryegrass yield did not depend on most of the organic matter characteristics, but closely paralleled the concentration of available nitrogen and – to lesser extent – phosphorous in the compost. The probable immobilization of these elements in the course of composting was also suggested by plant response experiments with different doses of compost and the addition or not of mineral solution.  相似文献   

6.
The production of three extracellular enzymes during the solubilisation of ball-milled wheat straw by seven actinomycete strains, was examined. A general correlation was observed between the production of extracellular enzymes (xylanases, endoglucanases and peroxidases) and the formation of the solubilised lignocellulose intermediate product (APPL), with the thermophilic actinomycete Thermomonospora fusca BD25 exhibiting greatest extracellular enzyme activity and highest APPL production. Production of all three enzymes; endoxylanase, endoglucanase and peroxidase, and lignocellulose solubilisation, occured during primary growth with maximum activity at the end of the exponential phase (48–96 h). The inducibility and stability of extracellular enzymes from T. fusca were further characterised. When xylan replaced ball-milled wheat straw as the growth substrate, reduced enzyme activities were observed (28–96% reduction in enzyme activities), whereas carboxymethylcellulose was found to be a poor inducer of all three enzyme activities (80–100% reduction in enzyme activities). The pH and temperature optima for extracellular enzyme activities from T. fusca was found to be pH 7.0–8.0 and 60°C, respectively. Analysis of concentrated crude supernatant from T. fusca by native polyacrylamide gel electrophoresis revealed the existence of two non-haem peroxidases. The stability of the extracellular lignocellulose-degrading enzymes for T. fusca suggest their suitability for future biotechnological processes such as biobleaching.  相似文献   

7.
The effects of temperature on rates of mineralization of [14C]lignocellulose were investigated in water and sediment from a thermally impacted stream and from a nearby unimpacted swamp at the Savannah River Plant, South Carolina. The temperature optimum for lignocellulose mineralization remained near 35°C at the unimpacted site throughout the sampling period from November 1986 to May 1987. The temperature optimum for lignocellulose mineralization in the thermally impacted stream was near 45°C when thermal effluents from a nuclear reactor were released to the stream, and was near 35°C when the reactor was not operating. Microbial populations capable of rapidly degrading lignocellulose at higher temperatures (45–55°C) developed between 9 and 27 days under conditions of thermal stress, indicating that under favorable conditions thermophilic microorganisms became dominant components of the microbiota. Removal of thermal stress for periods of 75 days or less resulted in a collapse of the thermophilic degrading population.  相似文献   

8.
The modified sulfite oxidation method was adapted for estimation of the overall oxygen transfer rate in a pressure oscillating, solid-state fermenter. At 4.5 atm and 30 °C, the oxygen transfer rate reached 717 mmol kg–1 initial dry matter h–1 in this system against 37 mmol kg–1 initial dry matter h–1 in a static tray fermenter. At 30 °C and 3 atm, Azotobacter vinelandii grew on wheat straw and reached 4.7×1010 c.f.u. g–1 substrate dry matter after 36 h, while only 8.2×109 c.f.u. g–1 substrate dry matter was obtained in a static tray system.  相似文献   

9.
Rotary drum composting of vegetable waste and tree leaves   总被引:2,自引:0,他引:2  
High rate composting studies on institutional waste, i.e. vegetable wastes, tree leaves, etc., were conducted on a demonstration-scale (3.5 m3) rotary drum composter by evaluating changes in some physico-chemical and biological parameters. During composting, higher temperature (60–70 °C) at inlet zone and (50–60 °C) at middle zone were achieved which resulted in high degradation in the drum. As a result, all parameters including TOC, C/N ratio, CO2 evolution and coliforms were decreased significantly within few days of composting. Within a week period, quality compost with total nitrogen (2.6%) and final total phosphorus (6 g/kg) was achieved; but relatively higher final values of fecal coliforms and CO2 evolution, suggested further maturation. Thus, two conventional composting methods namely windrow (M1) and vermicomposting (M2) tried for maturation of primary stabilized compost. By examining these methods, it was suggested that M2 was found suitable in delivering fine grained, better quality matured compost within 20 days of maturation period.  相似文献   

10.
The effect of low temperature on the protein metabolism of wheat primary leaves was examined. In seedlings transferred from 25 to 5 °C, total soluble protein accumulation, in vivo protein synthesis and breakdown, in vitro protein breakdown, and SDS-PAGE profiles of proteinases in gelatine-containing gels were analysed. Leaf protein content increased within a 7-d period (70 % over the initial value) in plants exposed to 5 °C. The fast protein accumulation observed on days 0 – 2 was mainly attributed to a decreased breakdown. In further days, parallelly to a slowdown in the rate of protein accumulation, the leaf proteolytic activity increased. The incubation temperature also had an influence on the proteolytic activity: Q 10 values for the 15 – 5 °C range were 80 – 200 % higher than those observed for the 25 – 15 °C range. On the other hand, the in vivo protein synthesis capacity, at either 25 or 55 °C, was not significantly modified in cold-treated plants. In addition to the enhanced activities of two serine-proteinases (previously found in control plants by SDS-PAGE analysis), cold-treated plants displayed a new proteinase, which had not been detected so far.  相似文献   

11.
The thermophilic fungus,Humicola sp isolated from soil, secreted extracellular -galactosidase in a medium cotaining wheat bran extract and yeast extract. Maximum enzyme production was found in a medium containing 5% wheat bran extract as a carbon source and 0.5% beef extract as a carbon and nitrogen source. Enzyme secretion was strongly inhibited by the presence of Cu2+, Ni2+ and Hg2+ (1mM) in the fermentation medium. Production of enzyme under stationary conditions resulted in 10-fold higher activity than under shaking conditions. The temperature range for production of the enzyme was 37° C to 55°C, with maximum activity (5.54 U ml–1) at 45°C. Optimum pH and temperature for enzyme activity were 5.0 and 60° C respectively. One hundred per cent of the original activity was retained after heating the enzyme at 60°C for 1 h. At 5mM Hg2+ strongly inhibited enzyme activity. TheK m andV max forp-nitrophenyl--d-galactopyranoside were 60M and 33.6 mol min–1 mg–1, respectively, while for raffinose those values were 10.52 mM and 1.8 mol min–1 mg–1, respectively.  相似文献   

12.
Summary In laboratory and semi-industrial scale experiments the influence of the substrate water content, temperature, and incubation time on the progress of solid state fermentation of straw colonized by white rot fungi was investigated. The parameters used to evaluate the fermentation process were degradation of total organic matter and lignin, in vitro digestibility, the content of water soluble substances in the substrate and the pH.The degradation of total organic matter was species specific. Only Trametes hirsuta enhanced the degradation at elevated temperature (30 °C). With Abortiporus biennis, Ganoderma applanatum, and Pleurotus serotinus, elevated temperature had and adverse effect. Prolonged incubation only improved degradation of straw by the relatively slowgrowing fungi Ganoderma applanatum, Lenzites betulina, and Pleurotus sajor caju.Elevated temperature and prolonged incubation shifted the relative degradation rates in favour of total organic matter degradation. With Ganoderma applanatum, Pleurotus ostreatus, and Pleurotus serotinus lignin degradation, even on an absolute scale, was less at 30 °C than at 22 °C.In general, the in vitro digestibility also decreased, when the incubation time and temperature were raised. With Ganoderma applanatum the in vitro digestibility dropped below the value of the sterile straw control.Solid state fermentation of straw was at an optimum at a medium water content of 75 ml/25 g of substrate. However, most of the fungi tested could digest straw over a wide range of water content. At higher water contents (125–150 ml/25 g of substrate) an increased production of aerial mycelium was observed.In semi-industrial batch experiments (40 kg) with Abortiporus biennis the in vitro digestibility dropped below the reference value for sterile straw during the first 19 days of incubation. Later, the in vitro digestibility again rose and reached its optimum after about 60 days. The in vitro digestibility in the semi-industrial experiments was always lower than in the laboratory experiments (+9% and +25%, respectively).In long term experiments (2.5 kg batches, 8 months of incubation) very different values for the in vitro digestibility were found, and these depended on the fungus used (Abortiporus biennis, +16%; Pleurotus ostreatus, +4%; and Ganoderma applanatum, –27%).  相似文献   

13.
Thermophilic green sulfur bacteria of the genus Chlorobium were isolated from certain acidic high sulfide New Zealand hot springs. Cells were Gram-negative nonmotile rods of variable length and contained bacteriochlorophyll c and chlorosomes. Cultures of thermophilic chlorobia grew only under anaerobic, phototrophic conditions, either photoautotrophically or photoheterotrophically. The optimum growth temperature for the strains of thermophilic green sulfur bacteria isolated was 47–48°C with generation times of about 2 h being observed. The upper temperature limit for growth was about 52°C. Thiosulfate was a major electron donor for photoautotrophic growth while sulfide alone was only poorly used. N2 fixation was observed at 48°C and cell suspensions readily reduced acetylene to ethylene. The G+C content of DNA from strains of thermophilic chlorobia was 56.5–58.2 mol% and the organisms positioned phylogenetically within the green sulfur bacterial branch of the domain Bacteria. The new phototrophs are described as a new species of the genus Chlorobium, Chlorobium tepidum.This paper is dedicated to Professor Norbert Pfennig on the occasion of his 65th birthday  相似文献   

14.
The effects of carbachol (CCh) on the frequency (f) of the miniature endplate potentials were tested at temperatures between 5 and 30°C. Higher CCh concentrations, 1 × 10–5 and 5 × 10–6 M, reduced the f to 60% and the temperature dependence was negligible. However, an inverse temperature dependence was found when low concentrations 3 × 10–7 and 6 × 10–7 M were applied. The depression of f was 40–50% in 5–10°C but only 10–20% of the control in the 25 and 30°C. During application of CCh, the new steady of f was reached at temperatures between 5 and 30°C within 17–20 min (Q10 = 1.07). Much greater temperature dependence of recovery was observed during washing out CCh (Q10 = 1.6). The temperature-independence of the steady state effects of CCh, good agreement with Langmuir adsorption-desorption theory and non-steady kinetics indicate that physical rather than receptor-mediated events are responsible for the depression of f.  相似文献   

15.
A new thermophilic strain of Bacillus SPS-0 which produces thermostable xylanases was isolated from a hot spring in Portugal. Xylanase production was 50 nkat/ml in the presence of wheat bran arabinoxylan. The temperature and pH for optimum activity were 75°C and 6–9, respectively. The hydrolysis patterns demonstrated that crude xylanases yield mainly xylose and xylobiose from xylan, whereas xylose and arabinose were produced from destarched wheat bran. An increase in xylose release was observed when SPS-0 xylanase was supplemented by a ferulic acid esterase. © Rapid Science Ltd. 1998  相似文献   

16.
Summary Effects of temperature and seedling age on survival of perennial ryegrass (Lolium perenne L.) seedlings grown on sand-wheat wholemeal cultures of different isolates ofFusarium spp. (9 isolates),Pythium spp. (9 isolates), andChaetomium spp. (1 isolate) are reported. Some isolates were virulent over the whole range of temperatures tested (7.5–27.5°C). The virulence of others depended on temperature. Most isolates were less virulent at intermediate temperatures (12.5–22.5°C) than at higher or lower temperatures. At 25°C ryegrass seedlings were susceptible to fungal attack for only a limited period after germination commenced. This period differed for different fungi, but for most isolates tested, seedlings were resistant after 2–3 days.  相似文献   

17.
Livestock manures contain numerous microorganisms which can infect humans and/or animals, such as Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., and Mycobacterium avium subsp. paratuberculosis (Mycobacterium paratuberculosis). The effects of commonly used manure treatments on the persistence of these pathogens have rarely been compared. The objective of this study was to compare the persistence of artificially inoculated M. paratuberculosis, as well as other naturally occurring pathogens, during the treatment of dairy manure under conditions that simulate three commonly used manure management methods: thermophilic composting at 55°C, manure packing at 25°C (or low-temperature composting), and liquid lagoon storage. Straw and sawdust amendments used for composting and packing were also compared. Manure was obtained from a large Ohio free-stall dairy herd and was inoculated with M. paratuberculosis at 106 CFU/g in the final mixes. For compost and pack treatments, this manure was amended with sawdust or straw to provide an optimal moisture content (60%) for composting for 56 days. To simulate liquid storage, water was added to the manure (to simulate liquid flushing and storage) and the slurry was placed in triplicate covered 4-liter Erlenmeyer flasks, incubated under ambient conditions for 175 days. The treatments were sampled on days 0, 3, 7, 14, 28, and 56 for the detection of pathogens. The persistence of M. paratuberculosis was also assessed by a PCR hybridization assay. After 56 days of composting, from 45 to 60% of the carbon in the compost treatments was converted to CO2, while no significant change in carbon content was observed in the liquid slurry. Escherichia coli, Salmonella, and Listeria were all detected in the manure and all of the treatments on day 0. After 3 days of composting at 55°C, none of these organisms were detectable. In liquid manure and pack treatments, some of these microorganisms were detectable up to 28 days. M. paratuberculosis was detected by standard culture only on day 0 in all the treatments, but was undetectable in any treatment at 3 and 7 days. On days 14, 28, and 56, M. paratuberculosis was detected in the liquid storage treatment but remained undetectable in the compost and pack treatments. However, M. paratuberculosis DNA was detectable through day 56 in all treatments and up to day 175 in liquid storage treatments. Taken together, the results indicate that high-temperature composting is more effective than pack storage or liquid storage of manure in reducing these pathogens in dairy manure. Therefore, thermophilic composting is recommended for treatment of manures destined for pathogen-sensitive environments such as those for vegetable production, residential gardening, or application to rapidly draining fields.  相似文献   

18.
The effects of different straw types and organic and inorganic nitrogen (N) sources on the chemical composition and odor concentration (OC) of mushroom composting emissions, compost parameters, and mushroom yield were examined using bench-scale and large-scale (windrows and aerated tunnels) composting systems. There were close correlations between the butanol or combined H2S+dimethyl sulfide (DMS) concentration and OC of air samples taken from different composting ingredients (r=0.83 and 0.76–0.87, P<0.01, for loge-transformed data). Differences in N availability, in terms of NH3 and N losses during composting, were found between different N sources. Materials in which the N was less available (chipboard and digester wastes, cocoa shells, ammonium sulfate) produced lower mushroom yields than materials in which the N was more readily available (poultry manure, urea, brewers' grains, hop and molasses wastes, cocoa meal). Replacement of poultry manure with the other N sources at 50–100% or wheat straw with rape, bean, or linseed straw in aerated tunnel or windrow composts reduced the OC and emissions of odorous sulfur-containing compounds, but also reduced yield. Urea and cocoa meal may be suitable for “low odor” prewetting of straw, with addition of poultry manure immediately before aerated tunnel composting. Rape straw in compost reduces the formation of anaerobic zones and resulting odorous emissions, since it maintains its structure and porosity better than wheat straw. Journal of Industrial Microbiology & Biotechnology (2002) 29, 99–110 doi:10.1038/sj.jim.7000292 Received 08 January 2002/ Accepted in revised form 20 June 2002  相似文献   

19.
Chaetomium thermophile var.dissitum, isolated from an experimental urban refuse compost, had the following growth characteristics: Minimum temperature, 27±1°C; optimum, 45–50°C; maximum, 57±1°C; pH optimum 5.5–6.0.A number of carbohydrates could be used for growth, but cellulase formation measured with carboxymethylcellulose as substrate was initiated only on cellulose or xylan. With cellulose as the carbon source, cellulase accumulation in the culture filtrate followed closely that of growth, when the temperature was varied. pH optimum for the cellulase system was 5.0.The optimum temperature for cellulase activity with carboxymethylcellulose as substrate varied between 77°C with 1/2 h incubation time and 58°C with 10 h incubation time.With cotton as substrate, the optimum temperature was 58°C regardless of incubation time. Carboxymethylcellulose had a higher stabilizing effect on the enzyme than cotton. The temperature stability of the cellulase was highest at pH 6.0.  相似文献   

20.
Summary A strain ofFusarium moniliforme, previously used for microbial protein production, excreted lactase (-D-galactosidase, EC.3.2.1 23) when cultivated either in a whey liquid medium or on a wheat bran solid medium. The enzyme produced in both media had pH and temperature optima of 4–5 and 50–60°C respectively and was particularly suitable for processing acid whey.In the whey culture, maximum lactase yield was observed after 95 h of growth at 30°C and whey lactose concentration of 9%. The addition of ammonium, potassium and sodium ions to the growth medium considerably enhanced lactase production. A maximum enzyme yield corresponding to hydrolysis of 3 nmoles o-nitrophenyl--D-galactopyranoside sec–1 ml–1 of growth medium, at pH 5 and 60°C, was obtained.In the wheat bran culture, the maximum enzyme yield was obtained after 140 h of growth at 28–30°C. A marked increase in the enzyme production was observed when nitrate or phosphate was added to the growth medium. Also, the addition of certain agricultural by-products (molasses, whey) enhanced lactase production. The observed maximum yield corresponding to the hydrolysis of 182 nmoles of ONPG sec–1 g–1 of wheat bran, at pH 5 and 60°C, is comparable to that reported for certain microorganisms used commercially for lactase production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号