首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the appearance of various electron transport functions were followed during greening of etiolated cucumber cotyledons. Appearance of dichlorodimethoxy-p-benzoquinone, dimethyl quinone, tetramethyl-p-phenylenediamine, dichlorophenol indophenol and ferricyanide Hill reactions were observed after 8h of greening. However, photoreduction of methyl viologen (MV) and nicotinamide adenine dinucleotide phosphate (NADP) was observed from 2h of greening. Variable fluorescence, which is a direct indication of water-splitting function, was observed from 2h of greening in cotyledons, thylakoid membranes and photosystem II (PSII) particles. The decrease in variable fluorescence in the presence of MV (due to rapid reoxidation of Q-) observed from early stages of greening confirmed the photoreduction of MV by PSII. The early development of water-splitting function was further confirmed by the abolition of variable fluorescence in thylakoid membranes and PSII particles by heat treatment and concomittant loss of light dependent oxygen uptake in the presence of MV in heat treated chloroplasts. However, the photoreduction of MV and NADP was insensitive to intersystem electron transport inhibitors, dichlorophenyl dimethylurea or dibromomethyl isopropyl-p-benzoquinone till 8h of greening. Though the oxidation of intersystem electron carrier cytochrome f was observed from early stages of greening, the reduction of cytochrome f was not observed till 8h of greening. All these observations confirm that during early stages of greening MV and NADP are photoreduced by PSII without the involvement of intersystem electron carriers or the collaboration of PSI. Since these observations are at variance with the currently prevalent concept (Z-Scheme) of the photosynthetic generation of reducing power, which requires definite collaboration of the two photosystems, an alternate electron flow pathway is proposed.  相似文献   

2.
Chloroplasts were isolated from primary needles of 1-year-old seedlings and from secondary needles of a 20-year-old pine tree in a natural stand. In autumn the electron transport capacities of PSII, PSI and PS (II + I) decreased and the electron transport between PSII and PSI became inhibited in October in the 20-year-old tree. This inhibition lasted until May the following year. The partial reactions of PSI and PSII still showed low but fairly constant rates during the whole winter seedlings. Seasonal changes in the electron transport properties of 1-year-old showed the same general trends as observed in the 20-year-old tree, but the changes were less pronounced. However, in snow-covered seedlings the PSI-mediated electron transport and the electron transport from H2O to NADP increased during the late winter when the seedlings were still covered by snow. The total chlorophyll content of the needles decreased in autumn and winter. Low temperature fluorescence ratios of F692/F680 and F726/F680 indicated more severe destruction of the chlorophyll a antennae closely associated with the two photosystems than of the light harvesting chlorophyll a/b complex. In this case, too, the changes were more pronounced in the 20-year-old tree than in the 1-year-old seedlings. The chlorophyll/P700 ratios indicated a more marked reduction in the reaction centre molecules during autumn than in the antennae chlorophyll molecules. The changes in electron transport and low temperature fluorescence properties which occurred during autumn and winter were mainly reversed during spring.  相似文献   

3.
The inhibitory effect of Al3+on photosystem II (PSII) electron transport was investigated using several biophysical and biochemical techniques such as oxygen evolution, chlorophyll fluorescence induction and emission, SDS-polyacrylamide and native green gel electrophoresis, and FTIR spectroscopy. In order to understand the mechanism of its inhibitory action, we have analyzed the interaction of this toxic cation with proteins subunits of PSII submembrane fractions isolated from spinach. Our results show that Al 3+, especially above 3 mM, strongly inhibits oxygen evolution and affects the advancement of the S states of the Mn4O5Ca cluster. This inhibition was due to the release of the extrinsic polypeptides and the disorganization of the Mn4O5Ca cluster associated with the oxygen evolving complex (OEC) of PSII. This fact was accompanied by a significant decline of maximum quantum yield of PSII (Fv/Fm) together with a strong damping of the chlorophyll a fluorescence induction. The energy transfer from light harvesting antenna to reaction centers of PSII was impaired following the alteration of the light harvesting complex of photosystem II (LHCII). The latter result was revealed by the drop of chlorophyll fluorescence emission spectra at low temperature (77 K), increase of F0 and confirmed by the native green gel electrophoresis. FTIR measurements indicated that the interaction of Al 3+ with the intrinsic and extrinsic polypeptides of PSII induces major alterations of the protein secondary structure leading to conformational changes. This was reflected by a major reduction of α-helix with an increase of β-sheet and random coil structures in Al 3+-PSII complexes. These structural changes are closely related with the functional alteration of PSII activity revealed by the inhibition of the electron transport chain of PSII.  相似文献   

4.
Photosynthesis-related proteins and PSII functions of Jatropha curcas seedlings under cold stress were studied using proteomic and chlorophyll fluorescence approaches. The results of chlorophyll fluorescence measurement indicated that electron transport flux per reaction center (ETo/RC) and performance index (PIABS) were relatively sensitive to low temperature, especially at early stage of cold stress. The increase in O–J phase and decrease in J–I phase of chlorophyll fluorescence transient indicated a protection mechanism of J.   curcas to photoinhibition at early stage of cold stress. Eight photosynthesis-related proteins significantly changed during cold stress were identified using liquid chromatography MS/MS. Results of correlation analyses between photosynthesis-related proteins and chlorophyll fluorescence parameters indicated that (1) ATP synthase and Rieske FeS protein were significantly correlated with electron transport of reaction center in PSII; (2) precursor for 33-kDa protein was positively correlated with fluorescence quenching of the O–J and J–I phases and PIABS during cold stress, which implies that it might be related to multiple process in PSII; (3) contrary correlations were found between FJ − Fo and two enzymes in the Calvin cycle, and the relations between these proteins and PSII function were unclear. The combined study using proteomic approaches and chlorophyll fluorescence measurements indicated that the early-stage (0–12 h) acclimation of PSII and the late-stage (after 24 h) H2O2 scavenging might be involved in the cold response mechanisms of J.   curcas seedlings.  相似文献   

5.
We investigated the function of chlorophyll a/b binding antenna proteins Chlorophyll Protein 26 (CP26) and CP24 in light harvesting and regulation of photosynthesis by isolating Arabidopsis thaliana knockout lines that completely lacked one or both of these proteins. All three mutant lines had a decreased efficiency of energy transfer from trimeric light-harvesting complex II (LHCII) to the reaction center of photosystem II (PSII) due to the physical disconnection of LHCII from PSII and formation of PSII reaction center depleted domains in grana partitions. Photosynthesis was affected in plants lacking CP24 but not in plants lacking CP26: the former mutant had decreased electron transport rates, a lower DeltapH gradient across the grana membranes, reduced capacity for nonphotochemical quenching, and limited growth. Furthermore, the PSII particles of these plants were organized in unusual two-dimensional arrays in the grana membranes. Surprisingly, overall electron transport, nonphotochemical quenching, and growth of the double mutant were restored to wild type. Fluorescence induction kinetics and electron transport measurements at selected steps of the photosynthetic chain suggested that limitation in electron transport was due to restricted electron transport between Q(A) and Q(B), which retards plastoquinone diffusion. We conclude that CP24 absence alters PSII organization and consequently limits plastoquinone diffusion.  相似文献   

6.
缺铁对大豆叶片光合作用和光系统Ⅱ功能的影响   总被引:2,自引:0,他引:2  
通过气体交换和叶绿素荧光测定研究了缺铁对大豆叶片碳同化和光系统Ⅱ的影响。缺铁条件下大豆光合速率(Pn)大幅下降;最大光化学效率(po)下降幅度较小;荧光诱导动力学曲线发生明显的变化,其中电子传递活性明显下降,K相(VK)相对荧光产量提高。缺铁大豆的天线转化效率(Fv'/Fm')、光化学猝灭系数(qP)和光系统Ⅱ实际光化学效率(ΦPSⅡ)降低,而非光化学猝灭(NPQ)则明显增加。此外,缺铁大豆的光后荧光上升增强。据此,认为铁缺乏伤害了光系统Ⅱ复合物供体侧和受体侧的电子传递;缺铁条件下光系统I环式电子传递的增强可能在维持激发能耗散和ATP供给方面起一定作用。  相似文献   

7.
Wang D  Portis AR 《Plant physiology》2007,144(4):1742-1752
A transient rise in chlorophyll fluorescence after turning off actinic light reflects nonphotochemical reduction of the plastoquinone (PQ) pool. This process is dependent on the activity of the chloroplast NAD(P)H dehydrogenase (NDH) complex, which mediates electron flow from stromal reductants to the PQ pool. In this study, we characterized an Arabidopsis (Arabidopsis thaliana) T-DNA insertion mutant pifi (for postillumination chlorophyll fluorescence increase), which possesses an intact NDH complex, but lacks the NDH-dependent chlorophyll fluorescence increase after turning off actinic light. The nuclear gene PIFI (At3g15840) containing the T-DNA insertion encodes a chloroplast-targeted protein localized in the stroma and is annotated as a protein of unknown function. The pifi mutant exhibited a lower capacity for nonphotochemical quenching, but similar CO(2) assimilation rates, photosystem II (PSII) quantum efficiencies (PhiPSII), and reduction levels of the primary electron acceptor of PSII (1 - qL) as compared with the wild type. The pifi mutant grows normally under optimal conditions, but exhibits greater sensitivity to photoinhibition and long-term mild heat stress than wild-type plants, which is consistent with lower capacity of nonphotochemical quenching. We conclude that PIFI is a novel component essential for NDH-mediated nonphotochemical reduction of the PQ pool in chlororespiratory electron transport.  相似文献   

8.
White RA  Hoober JK 《Plant physiology》1994,106(2):583-590
Initiation of thylakoid membrane assembly was examined in degreened cells of Chlamydomonas reinhardtii y1 cells depleted of thylakoid membranes and photosynthetic activity by growth in the dark for 3 to 4 d. Photoreductive activities of photosystem II (PSII) and photosystem I (PSI) increased with no apparent lag when degreened cells were exposed to light at 38[deg]C. However, fluorescence transients induced by actinic light, which reflect the functional state of PSII, changed only slightly during the first 2 h of greening. When these cells were treated with 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) or saturating light, fluorescence increased commensurate with the cellular content of chlorophyll. In similar experiments with greening cells of C. reinhardtii CC-2341 (ac-u-g-2.3), a PSI-minus strain, fluorescence increased with chlorophyll without treatment with DCMU. These data suggested that fluorescence of initial PSII centers in greening y1 cells was quenched by activity of PSI. Continuous monitoring of fluorescence in the presence or absence of DCMU showed that assembly of quenched PSII centers occurred within seconds after exposure of y1 cells to light. These results are consistent with initial assembly of PSI and PSII within localized domains, where their proximity allows efficient energy coupling.  相似文献   

9.
A relative decrease of the high temperature part (above 60°C) of the chlorophyll fluorescence temperature curve during 3 h to 10 h greening period of barley (Hordeum vulgare L.) leaves was found to be concomitant to a decrease of Chl alb ratio and to a gradual increase of LHCP/core ratio found by electrophoresis and the ratio of granal to total length of thylakoid membranes. It is suggested that the high temperature part of the fluorescence temperature curve depends inversely on the relative amount of LHC II in thylakoid membranes.Abbreviations Chl a(b) chlorophyll a(b) - CPa chlorophyll a protein complex of PS II - CP1 P700 chlorophyll a protein complex of PS I - FP free pigments - FTC fluorescence temperature curve - F(T30) fluorescence intensity at 30°C - LHC II light harvesting complex II - LHCP light harvesting chlorophyll protein - LHCP3 (LHCPm) monomeric form of LHC II - LHCPo oligomeric form of LHC II complex - M1 first maximum of FTC - M2 second maximum (region) of FTC - PAA polyacrylamide - PAR photosynthetically active radiation - PS I(II) Photosystem I(II) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

10.
Lu  C; Zhang  J 《Journal of experimental botany》1998,49(327):1671-1679
Analyses of CO2 exchange and chlorophyll fluorescence were carried out to assess photosynthetic performance during senescence of maize leaves. Senescent leaves displayed a significant decrease in CO2 assimilatory capacity accompanied by a decrease in stomatal conductance and an increase in intercellular CO2 concentration. The analyses of fluorescence quenching under steady-state photosynthesis showed that senescence resulted in an increase in non-photochemical quenching and a decrease in photo-chemical quenching. It also resulted in a decrease in the efficiency of excitation energy capture by open PSII reaction centres and the quantum yield of PSII electron transport, but had very little effect on the maximal efficiency of PSII photochemistry. The results determined from the fast fluorescence induction kinetics indicated an increase in the proportion of QB-non-reducing PSII reaction centres and a decrease in the rate of QA reduction in senescent leaves. Theoretical analyses of fluorescence parameters under steady-state photosynthesis suggest that the increase in the non-photochemical quenching was due to an increase in the rate constant to thermal dissipation of excitation energy by PSII and that the decrease in the quantum yield of PSII electron transport was associated with a decrease in the rate constant of PSII photochemistry. Based on these results, it is suggested that the decrease in the quantum yield of PSII electron transport in senescent leaves was down-regulated by an increase in the proportion of QB-non-reducing PSII reaction centres and in the non-photochemical quenching. The photosynthetic electron transport would thus match the decreased demand for ATP and NADPH in carbon assimilation which was inhibited significantly in senescent leaves.Key words: Chlorophyll fluorescence, gas exchange, maize (Zea mays L.), photochemical and non-photochemical quenching, photosystem II photochemistry.   相似文献   

11.
The after effects of a short exposure of intact barley leaves to moderately elevated temperature (40°C, 5 min) on the induction transients and the irradiance dependencies of photosynthesis and chlorophyll fluorescence are presented. This mild heat treatment strongly reduced the oscillations in the rate of photosynthesis and in the yield of chlorophyll fluorescence. However, only a 25% irreversible inhibition of maximum photosynthetic capacity of photosystem II (PSII) measured by oxygen evolution was produced and the intrinsic quantum yield of PSII measured by the chlorophyll fluorescence ratio (Fm‐ Fo)/Fm decreased by only 15%. In contrast, the above treatment increased radiationless dissipation processes in PSII by a factor of two. In heat‐treated leaves, photosynthesis was not saturated even by strong light. Both ΔpH‐dependent quenching of excitons in PSII (including formation of zeaxanthin) and state 1/state 2 transition were found to be stimulated. Heat exposure enhanced the control of PSII activity by PSI, as evidenced by a significant increase in the quenching effect of far‐red light on the maximum yield of chlorophyll fluorescence. It was deduced that after mild heat treatment, the photosynthetic apparatus in leaves lacks the precise coordinating control of electron transport and carbon metabolism owing to the inability of PSII to support electron transport at a level adequate for carbon metabolism. This effect was not related to the small irreversible thermal damage to PSII, but was rather due to a significant increase in non‐photochemical quenching of excitation energy.  相似文献   

12.
Fluorescence imaging was used to diagnose early stages of the strain-specific interactions between tobacco mosaic virus (strain PV230) and chloroplasts following infection of tobacco leaves (Nicotiana tabacum cv Xanthi). The earliest indication of interaction in tissues that ultimately become chlorotic was a reduction in chlorophyll fluorescence, and there was little fluorescence quenching compared with adjacent healthy tissues. Subsequently, fluorescence increased but remained unquenched. In the late stages fluorescence declined again in chlorotic regions as the chloroticmosaic symptoms developed. These in vivo data showing altered fluorescence yields confirm strain-specific interaction of virus coat protein with photosystem II (PSII) components in vitro, leading to photoinhibition and photooxidation of chlorophyll in infected cells and the development of visible chlorotic-mosaic symptoms. Although mechanisms leading to the low, unquenched fluorescence condition are not known, the intermediate high, unquenched fluorescence condition is consistent with impaired PSII electron transport as measured in vitro. Fluorescence lesions appear more rapidly and develop more extensively in high light, consistent with the faster and larger extent of symptom formation in high-light-grown leaves than in low-light-grown leaves.  相似文献   

13.
追施氮肥时期对冬小麦旗叶叶绿素荧光特性的影响   总被引:28,自引:1,他引:27  
在大田条件下,研究了不同追氮时期对小麦旗叶叶绿素荧光特性、光合速率及籽粒产量的影响.结果表明,拔节期追肥较起身期或挑旗期追肥,改善了小麦旗叶PSⅡ的活性(Fv/Fo)、光化学最大效率(Fv/Fm)、光化学猝灭系数(qP)、实际量子产量(ΦPSⅡ)及光合速率,降低了籽粒灌浆中前期非辐射能量耗散,有利于叶片所吸收的光能较充分地用于光合作用,提高了籽粒灌浆后期非辐射能量的耗散,减缓了叶片光抑制程度和衰老进程.拔节期追肥可显著增加穗粒数和千粒重,提高产量.  相似文献   

14.
Chlorophyll fluorescence methods were applied to probe in vivo photosystem II (PSII) function in Chlamydomonas reinhardtii grown in sulfur-depleted media under aerobic conditions. The rates of oxygen evolution and     dark reduction decreased during a 24-h incubation in sulfur-deficient medium, while the respiration rate increased. The analysis of chlorophyll fluorescence induction curves suggests that electron transport was perturbed on both the acceptor and donor sides of PSII. Light-induced violaxanthin de-epoxidation and non-photochemical fluorescence quenching were suppressed, owing to dark accumulation of zeaxanthin. Also sulfur-deprived cells showed elevated concentrations of violaxanthin and lutein. Sulfur deprivation stimulated a pronounced (three- to four-fold) increase in chlorophyll a fluorescence intensity (parameters Fo and Fm), probably due to greater light absorption by carotenoids and changes in the excitation energy transfer and deactivation in PSII of C. reinhardtii .  相似文献   

15.
The change of chlorophyll fluorescence parameters in froze leaves of 3 leaf-age seedlings were examined using two winter barley cultivars (Chumai 1 and Mo 103) differing in cold tolerance to investigate physiological response to low temperature as affected by cold acclimation (under 3/1 degrees C, day/night for 5 days before freezing treatment) and irradiation size (high irradiance: 380+/-25 micromol m(-2)s(-1) and low irradiance: 60+/-25 micromol m(-2)s(-1)) during recovery. The results showed that non-lethal freezing shock (exposed to -8 degrees C for 18 h) did not obviously affect maximum quantum efficiency in photosystem II (PSII), but dramatically increased non-photochemical quenching and reduced effective quantum yield in PSII. Cold acclimation significantly improved stability of photosynthetic function of leaves after freezing stress through buffering excessive energy and alleviating photoinhibition during recovery, indicating it increased recovery ability of barley plants from freezing injury. High irradiance was quite harmful to the stability of PSII in barley plants during recovery from freezing injury. The electron transport rate of PSII varied with cold-acclimation, irradiance and genotype. Cold acclimation caused significant increase in electron transport rate of PSII for relatively tolerant cultivar Mo 103, but not for relatively sensitive cultivar Chumai 1. It can be concluded that some chlorophyll fluorescence parameters during recovery from freezing shock may be used as the indicators in identification and evaluation of cold tolerance in barley.  相似文献   

16.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The Delta rbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between Q(A) and Q(B), whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of Delta rbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 'dark rise' in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in Delta rbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the Delta rbcL mutant under growth conditions. This protective capacity was rapidly exceeded in Delta rbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   

17.
The OJDIP rise in chlorophyll fluorescence during induction at different light intensities was mathematically modeled using 24 master equations describing electron transport through photosystem II (PSII) plus ordinary differential equations for electron budgets in plastoquinone, cytochrome f, plastocyanin, photosystem I, and ferredoxin. A novel feature of the model is consideration of electron in- and outflow budgets resulting in changes in redox states of Tyrosine Z, P680, and QA as sole bases for changes in fluorescence yield during the transient. Ad hoc contributions by transmembrane electric fields, protein conformational changes, or other putative quenching species were unnecessary to account for primary features of the phenomenon, except a peculiar slowdown of intra-PSII electron transport during induction at low light intensities. The lower than F m post-flash fluorescence yield F f was related to oxidized tyrosine Z. The transient J peak was associated with equal rates of electron arrival to and departure from QA and requires that electron transfer from QA ? to QB be slower than that from QA ? to QB ?. Strong quenching by oxidized P680 caused the dip D. Reduced plastoquinone, a competitive product inhibitor of PSII, blocked electron transport proportionally with its concentration. Electron transport rate indicated by fluorescence quenching was faster than the rate indicated by O2 evolution, because oxidized donor side carriers quench fluorescence but do not transport electrons. The thermal phase of the fluorescence rise beyond the J phase was caused by a progressive increase in the fraction of PSII with reduced QA and reduced donor side.  相似文献   

18.
The heat sensitivity of photochemical processes was evaluated in the common bean (Phaseolus vulgaris) cultivars A222, A320, and Carioca grown under well-watered conditions during the entire plant cycle (control treatment) or subjected to a temporal moderate water deficit at the preflowering stage (PWD). The responses of chlorophyll fluorescence to temperature were evaluated in leaf discs excised from control and PWD plants seven days after the complete recovery of plant shoot hydration. Heat treatment was done in the dark (5 min) at the ambient CO2 concentration. Chlorophyll fluorescence was assessed under both dark and light conditions at 25, 35, and 45°C. In the dark, a decline of the potential quantum efficiency of photosystem II (PSII) and an increase in minimum chlorophyll fluorescence were observed in all genotypes at 45°C, but these responses were affected by PWD. In the light, the apparent electron transport rate and the effective quantum efficiency of PSII were reduced by heat stress (45°C), but no change due to PWD was demonstrated. Interestingly, only the A222 cultivar subjected to PWD showed a significant increase in nonphotochemical fluorescence quenching at 45°C. The common bean cultivars had different photochemical sensitivities to heat stress altered by a previous water deficit period. Increased thermal tolerance due to PWD was genotype-dependent and associated with an increase in potential quantum efficiency of PSII at high temperature. Under such conditions, the genotype responsive to PWD treatment enhanced its protective capacity against excessive light energy via increased nonphotochemical quenching.  相似文献   

19.
20.
Chloroplasts of the CD3 wheat mutant were deficient primarily in chlorophyll of light harvesting pigment proteins (LHPP) 1 and 2 and CP1a. The reduced level of protein associated with chlorophyll of LHPP1 and LHPP2 and the reduced level of low molecular weight polypeptides between 23 and 29 kilodaltons confirmed that the CD3 mutant was deficient in the LHPP complex. The high fluorescence emission ratio at 740 (F740) to 686 nanometers (F686) observed from chloroplasts of normal wheat following light induced phosphorylation of the LHPP complex was not noted from mutant chloroplasts. The long wavelength peak fluorescence emission (F740) was shifted to a shorter wavelength peak (F725) and was reduced in intensity compared to that of normal wheat thylakoids. The ratio of variable fluorescence to maximum fluorescence, a measure of PSII photochemical efficiency, was the same for the normal wheat and mutant leaves. The ratios of uncoupled photosystem I/photosystem II electron transport rates for mutant and normal wheat chloroplasts were similar at saturating light suggesting that absorbed excitation energy was distributed to the two photosystem reaction centers of the mutant in a similar manner as in the normal wheat. Proteins of the LHPP complex were differentially phosphorylated by action of a membrane protein kinase when both normal wheat and CD3 mutant thylakoids were irradiated without an electron transport chain acceptor. Even though the F740/F686 ratio was low in mutant thylakoids, the phosphorylation of the 27-kilodalton LHPP polypeptide was consistent with the mutant being in a state II condition. The data gave rise to the suggestion that the F740/F686 ratio might not indicate excitation energy distribution to the two photosystems in the mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号