首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tripeptidyl peptidase I (TPP-I), also named ceroid lipofuscinosis 2 protease (CLN2p), is a serine carboxyl lysosomal protease involved in neurodegenerative diseases, and has both tripeptidyl amino- and endo- peptidase activities under different pH conditions. We developed fluorescence resonance energy transfer (FRET) peptides using tryptophan (W) as the fluorophore to study TPP-I hydrolytic properties based on previous detailed substrate specificity study (Tian Y. et al., J. Biol. Chem. 2006, 281:6559–72). Tripeptidyl amino peptidase activity is enhanced by the presence of amino acids in the prime side and the peptide NH2-RWFFIQ-EDDnp is so far the best substrate described for TPP-I. The hydrolytic parameters of this peptide and its analogues indicated that the S4 subsite of TPP-I is occluded and there is an electrostatic interaction of the positively charged substrate N-terminus amino group and a negative locus in the region of the enzyme active site. KCl activated TPP-I in contrast to the inhibition by Ca2+ and NaCl. Solvent kinetic isotope effects (SKIEs) show the importance of the free N-terminus amino group of the substrates, whose absence results in a more complex solvent-dependent enzyme: substrate interaction and catalytic process. Like pure TPP-I, rat spleen and kidney homogenates cleaved NH2-RWFFIQ-EDDnp only at FF bond and is not inhibited by pepstatin, E-64, EDTA or PMSF. The selectivity of NH2-RWFFIQ-EDDnp to TPP-I was also demonstrated by the 400 times higher kcat/KM compared to generally used substrate, NH2-AAF-MCA and by its resistance to hydrolysis by cathepsin D that is present in high levels in kidneys.  相似文献   

2.
Tripeptidyl peptidase I (TTP-I), also known as CLN2, a member of the family of serine-carboxyl proteinases (S53), plays a crucial role in lysosomal protein degradation and a deficiency in this enzyme leads to fatal neurodegenerative disease. Recombinant human TPP-I and its mutants were analyzed in order to clarify the biochemical role of TPP-I and its mechanism of activity. Ser280, Glu77, and Asp81 were identified as the catalytic residues based on mutational analyses, inhibition studies, and sequence similarities with other family members. TPP-I hydrolyzed most effectively the peptide Ala-Arg-Phe*Nph-Arg-Leu (*, cleavage site) (k(cat)/K(m) = 2.94 microM(-1).s(-1)). The k(cat)/K(m) value for this substrate was 40 times higher than that for Ala-Ala-Phe-MCA. Coupled with other data, these results strongly suggest that the substrate-binding cleft of TPP-I is composed of only six subsites (S(3)-S(3)'). TPP-I prefers bulky and hydrophobic amino acid residues at the P(1) position and Ala, Arg, or Asp at the P(2) position. Hydrophilic interactions at the S(2) subsite are necessary for TPP-I, and this feature is unique among serine-carboxyl proteinases. TPP-I might have evolved from an ancestral gene in order to cleave, in cooperation with cathepsins, useless proteins in the lysosomal compartment.  相似文献   

3.
Four strains of acid-tolerant and protein-using bacteria were isolated from compost. Two of them, Gram-negative strains MB8 and MB11, were identified as a new genus close to Stenotrophomonas species MB8 and Burkholderia species MB11, respectively. Both bacteria produced extracellular carboxyl proteases (CP) in acid-casein-starch medium. The enzymes, termed CP MB8 and CP MB11, purified through ion exchange and gel filtration chromatographies had molecular weights of 61,000 (CP MB8) and 36,000 (CP MB11) as estimated by SDS-PAGE, and showed optimum activities with hemoglobin as a substrate at pH 3.5 (CP MB8) and pH 3.7 (CP MB11) at 55 degrees C. Both of the enzymes were not inhibited by pepstatin, DAN, or EPNP. These results suggest that both enzymes are members of the pepstatin-insensitive carboxyl proteinase family (EC 3.4.23.33), except for a larger molecular weight of the CP MB8 enzyme.  相似文献   

4.
The microsomal fraction of rabbit liver contains an endopeptidase that cleaves synthetic peptides that mimic the amino acid sequences of the processing sites of many proproteins, including the vitamin K-dependent proteins. The endopeptidase (M(r) 69,000) was extracted from liver microsomes with 1% Lubrol and purified about 2,700-fold. The substrate employed for isolation and characterization of the enzyme was the decapeptide acetyl-Ala-Arg-Val-Arg-Arg-Ala-Asn-Ser-Phe-Leu (prothrombin peptide), in which hydrolysis occurred on the carboxyl side of the paired Arg-Arg residues. The purified enzyme, whose activity was enhanced 1.8-fold by 0.1 mM CoCl2, has a Km = 80 microM and Vmax = 21,000 nmol.min-1.mg-1 and a pH optimum of 8.7. Proteolytic cleavage of decapeptide substrates was dependent on an arginine residue at positions P1 and P4. The enzyme was completely inhibited by EDTA and 1,10-phenanthroline as well as by p-chloromercuriphenylsulfonic acid and Hg2+. Inhibitors of serine proteases and cysteine proteases had no effect. Based on the substrate preference, the endopeptidase appears to be a good candidate for the enzyme responsible for the precursor processing of the vitamin K-dependent proteins and a number of other proproteins that are synthesized via the secretory pathway in liver and other tissues.  相似文献   

5.
Porphyromonas gingivalis possesses a complex proteolytic system, which is essential for both its growth and evasion of host defense mechanisms. In this report we characterized, both at a protein and genomic level, a novel peptidase of this system with prolyl tripeptidyl peptidase activity. The enzyme was purified to homogeneity, and its enzymatic activity and biochemical properties were investigated. The amino acid sequence at the amino terminus and of internal peptide fragments enabled identification of the gene encoding this enzyme, which we refer to as PtpA for prolyl tripeptidyl peptidase A. The gene encodes an 82-kDa protein, which contains a GWSYGG motif, characteristic for members of the S9 prolyl oligopeptidase family of serine proteases. However, it does not share any structural similarity to other tripeptidyl peptidases, which belong to the subtilisin family. The production of prolyl tripeptidyl peptidase may contribute to the pathogenesis of periodontal tissue destruction through the mutual interaction of this enzyme, host and bacterial collagenases, and dipeptidyl peptidases in the degradation of collagen during the course of infection.  相似文献   

6.
Four strains of acid-tolerant and protein-using bacteria were isolated from compost. Two of them, Gram-negative strains MB8 and MB11, were identified as a new genus close to Stenotrophomonas species MB8 and Burkholderia species MB11, respectively. Both bacteria produced extracellular carboxyl proteases (CP) in acid-casein-starch medium. The enzymes, termed CP MB8 and CP MB11, purified through ion exchange and gel filtration chromatographies had molecular weights of 61,000 (CP MB8) and 36,000 (CP MB11) as estimated by SDS-PAGE, and showed optimum activities with hemoglobin as a substrate at pH 3.5 (CP MB8) and pH 3.7 (CP MB11) at 55°C. Both of the enzymes were not inhibited by pepstatin, DAN, or EPNP. These results suggest that both enzymes are members of the pepstatin-insensitive carboxyl proteinase family (EC 3.4.23.33), except for a larger molecular weight of the CP MB8 enzyme.  相似文献   

7.
Lysosomal serine and cysteine proteases are reported to play a role in collagen degradation. In this study, the activities of the lysosomal cysteine proteases cathepsin B and H, dipeptidyl peptidase I, and the serine protease tripeptidyl peptidase I and dipeptidyl peptidase II, all ascribed a role in collagen digestion, were compared with those of the aspartate protease cathepsin D, and lysosomal glycosidases in leukocytes from rheumatoid arthritis patients at different stages of the disease. In all patients the activities of cysteine protease cathepsin B, dipeptidyl peptidase I, aspartate protease cathepsin D, and two glycosidases were elevated, but the activities of the serine proteases tripeptidyl peptidase I, dipeptidyl peptidase II, and the cysteine protease cathepsin H was unchanged. The magnitude of the increased activity was correlated with the duration of the disease. Patients with long-standing RA (10 years or more) had higher cysteine protease activity in their leukocytes than did those with disease of shorter duration. This tendency suggests that elevated lysosomal cysteine protease activities, together with aspartate protease cathepsin D and lysosomal glycosidases (but not serine proteases), are associated with progression of rheumatoid arthritis.  相似文献   

8.
Dipeptidylcarboxypeptidase, endopeptidase, and carboxypeptidase activities of rat liver cathepsin B were investigated using soluble denatured protein substrates, reduced and S-(3-trimethylammonio)propylated proteins and their derivatives. It was found that the soluble denatured proteins were degraded mainly by the dipeptidylcarboxypeptidase activity and in a few cases by the endopeptidase and carboxypeptidase activities. The eipeptidylcarboxypeptidase activity showed broad substrate specificity with broad pH optimum at 4-6. A peptide having the alpha-carboxyl group amidated with methylamine could also be a good substrate for this activity. These results suggest that this activity is dependent not upon the dissociated alpha-carboxyl group at the P2' site but upon the hydrogen-bonding abilities of the alpha-imino moiety and the protonated or amidated alpha-carboxyl moiety at P2'. On the other hand, the endopeptidase and carboxypeptidase activities were observed in a few cases, suggesting that special amino acid sequences in the substrates are responsible for these activities. These activities showed sharp pH optima at 6 and seemed to prefer basic amino acid residues at P1 site. Therefore, we suppose that cathepsin B has a carboxyl group with a pKa of about 5.5 at the S1 subsite which more effectively interacts with a positive charge at the P1 site of the substrate at pH 6 than at pH 5. Based on these results, a model of the binding subsites of this enzyme is proposed.  相似文献   

9.
Proteases of the nematode Caenorhabditis elegans   总被引:3,自引:0,他引:3  
Crude homogenates of the soil nematode Caenorhabditis elegans exhibit strong proteolytic activity at acid pH. Several kinds of enzyme account for much of this activity: cathepsin D, a carboxyl protease which is inhibited by pepstatin and optimally active toward hemoglobin at pH 3; at least two isoelectrically distinct thiol proteases (cathepsins Ce1 and Ce2) which are inhibited by leupeptin and optimally active toward Z-Phe-Arg-7-amino-4-methylcoumarin amide at pH 5; and a thiol-independent leupeptin-insensitive protease (cathepsin Ce3) with optimal activity toward casein at pH 5.5. Cathepsin D is quantitatively most significant for digestion of macromolecular substrates in vitro, since proteolysis is inhibited greater than 95% by pepstatin. Cathepsin D and the leupeptin-sensitive proteases act synergistically, but the relative contribution of the leupeptin-sensitive proteases depends upon the protein substrate.  相似文献   

10.
Fibroblast activation protein (FAP) and dipeptidyl peptidase-4 (DPP-4) are highly homologous serine proteases of the prolyl peptidase family and therapeutic targets for cancer and diabetes, respectively. Both proteases display dipeptidyl peptidase activity, but FAP alone has endopeptidase activity. FAP Ala657, which corresponds to DPP-4 Asp663, is important for endopeptidase activity; however, its specific role remains unclear, and it is unknown whether conserved DPP-4 substrate binding residues support FAP endopeptidase activity. Using site-directed mutagenesis and kinetic analyses, we show here that Ala657 and five conserved active site residues (Arg123, Glu203, Glu204, Tyr656, and Asn704) promote FAP endopeptidase activity via distinct mechanisms of transition state stabilization (TSS). The conserved residues provide marked TSS energy for both endopeptidase and dipeptidyl peptidase substrates, and structural modeling supports their function in binding both substrates. Ala657 also stabilizes endopeptidase substrate binding and additionally dictates FAP reactivity with transition state inhibitors, allowing tight interaction with tetrahedral intermediate analogues but not acyl-enzyme analogues. Conversely, DPP-4 Asp663 stabilizes dipeptidyl peptidase substrate binding and permits tight interaction with both transition state analogues. Structural modeling suggests that FAP Ala657 and DPP-4 Asp663 confer their contrasting effects on TSS by modulating the conformation of conserved residues FAP Glu204 and DPP-4 Glu206. FAP therefore requires the combined function of Ala657 and the conserved residues for endopeptidase activity.  相似文献   

11.
A tripeptidyl peptidase I from Dictyostelium discoideum was purified 744-fold to near homogeneity. The enzyme is 214 kDa in size and is composed of two monomers with a M(r) of 107 kDa. It has two pH optima at pH 4.5 and 5.9 and is a serine peptidase with no aminopeptidase or dipeptidyl peptidase activity. The enzyme was relatively specific showing activity on ala-ala-phe-p-nitroaniline but also acted on substrates with proline in the P1 position in contrast to mammalian TPP I. The K(m) values of the enzyme at pH 4.5 for ala-ala-phe-, ala-phe-pro- and ala-ala-pro-p-nitroanilines were 27 microM, 437 microM and 888 microM, respectively. The enzyme is most abundant during the amoeba stage of the life cycle but is present in the early stages of development and may therefore have a dual role in the organism in mobilizing amino acids or in processing specific peptides or proteins.  相似文献   

12.
1. Specific proteases which inactivate the apo-proteins of many pyridoxal enzymes were found in skeletal muscle, liver and small intestine of rats. The protease from these three organs were purified and their properties were compared. 2. The purified proteases from liver and skeletal muscle appeared homogeneous on acrylamide gel electrophoresis. Two different proteases were separated from small intestine. A homogeneous, crystalline enzyme was obtained from the muscle layer while enzyme from the mucosa was partially purified. 3. They showed substrate specificity for pyridoxal enzymes. Their pH optima were in an alkaline region. They showed activity with the substrate of chymotrypsin, N-acetyl-L-tyrosine ethyl ester, but not with that of trypsin, p-toluenesulfonyl-L-arginine ethyl ester. They were inhibited by pyridoxal phosphate or pyridoxamine phosphate and seryl residues were involved in their active center. 4. The four enzymes differed in the following characters: (a) molecular weights; (b) patterns of elution from a CM-Sephadex column; (c) rates of inactivation of substrate enzymes; (d) rates of cleavage of N-acetyl-L-tyrosine ethyl ester; (e) reactivities with antiserum against the enzyme from the muscle layer of small intestine; (f) specific activities. 5. The amino acid composition and effect of chemical modifications of the crystalline enzyme from the muscle layer of small intestine were examined to elucidate its active sites and mode of action. Serine and histidine residues were found to be essential for protease activity. A tyrosine residue was also necessary for activity. Modifications of its sulfhydryl group, amino residues and carboxyl group had no effect on its activity.  相似文献   

13.
The specific accumulation of a hydrophobic protein, subunit c of ATP synthase, in lysosomes from the cells of patients with the late infantile form of NCL (LINCL) is caused by a defect in the CLN2 gene product, tripeptidyl peptidase I (TPP-I). The data here show that TPP-I is involved in the initial degradation of subunit c in lysosomes and suggest that its absence leads directly to the lysosomal accumulation of subunit c. The inclusion of a specific inhibitor of TPP-I, Ala-Ala-Phe-chloromethylketone (AAF-CMK), in the culture medium of normal fibroblasts induced the lysosomal accumulation of subunit c. In an in vitro incubation experiment the addition of AAF-CMK to mitochondrial-lysosomal fractions from normal cells inhibited the proteolysis of subunit c, but not the b-subunit of ATP synthase. The use of two antibodies that recognize the aminoterminal and the middle portion of subunit c revealed that the subunit underwent aminoterminal proteolysis, when TPP-I, purified from rat spleen, was added to the mitochondrial fractions. The addition of both purified TPP-I and the soluble lysosomal fractions, which contain various proteinases, to the mitochondrial fractions resulted in rapid degradation of the entire molecule of subunit c, whereas the degradation of subunit c was markedly delayed through the specific inhibition of TPP-I in lysosomal extracts by AAF-CMK. The stable subunit c in the mitochondrial-lysosomal fractions from cells of a patient with LINCL was degraded on incubation with purified TPP-I. The presence of TPP-I led to the sequential cleavage of tripeptides from the N-terminus of the peptide corresponding to the amino terminal sequence of subunit c.  相似文献   

14.
The prolyl peptidase that removes the tetra-peptide of pro-transglutaminase was purified from Streptomyces mobaraensis mycelia. The substrate specificity of the enzyme using synthetic peptide substrates showed proline-specific activity with not only tripeptidyl peptidase activity, but also tetrapeptidyl peptidase activity. However, the enzyme had no other exo- and endo-activities. This substrate specificity is different from proline specific peptidases so far reported. The enzyme gene was cloned, based on the direct N-terminal amino acid sequence of the purified enzyme, and the entire nucleotide sequence of the coding region was determined. The deduced amino acid sequence revealed an N-terminal signal peptide sequence (33 amino acids) followed by the mature protein comprising 444 amino acid residues. This enzyme shows no remarkable homology with enzymes belonging to the prolyl oligopeptidase family, but has about 65% identity with three tripeptidyl peptidases from Streptomyces lividans, Streptomyces coelicolor, and Streptomyces avermitilis. Based on its substrate specificity, a new name, "prolyl tri/tetra-peptidyl aminopeptidase," is proposed for the enzyme.  相似文献   

15.
The proteasome plays an essential role in the production of MHC class I-restricted antigenic peptides. Recent results have indicated that several peptidases, including tripeptidyl peptidase II and puromycin-sensitive aminopeptidase, could act downstream of the proteasome by trimming NH(2)-terminal extensions of antigenic peptide precursors liberated by the proteasome. In this study, we have developed a solid-phase peptidase assay that allowed us to efficiently purify and immobilize proteasome, tripeptidyl peptidase II, and puromycin-sensitive aminopeptidase. Whereas the first peptidase was active against small fluorogenic peptides, the latter two could also digest antigenic peptide precursors and could be used repeatedly with different precursors. Using three distinct antigenic peptide precursors, we found that tripeptidyl peptidase II never cleaved within the antigenic peptide sequence, suggesting that, aside from its proteolytic activities, it may also play a role in protecting antigenic peptides from complete hydrolysis in the cytosol. This method should be valuable for high throughput screenings of substrate specificity and potential inhibitors.  相似文献   

16.
Prolyl oligopeptidase, which is involved in memory disorders, is a member of a new family of serine peptidases. In addition to the peptidase domain, the enzyme contains a beta-propeller, which excludes large peptides from the active site. The enzyme is inhibited with thiol reagents, possibly by reacting with Cys-255 located close to the substrate binding site. This assumption was tested with the Cys-255 --> Thr, Cys-255 --> Ala, and Cys-255 --> Ser variants of prolyl oligopeptidase. In contrast to the wild type enzyme, the Cys-255 --> Thr variant was not inhibited with N-ethylmaleimide, indicating that Cys-255, of the 16 free cysteine residues, exclusively accounts for the enzyme inhibition. Unlike the wild type enzyme that showed a doubly bell-shaped pH rate profile, the modified enzyme displayed a single bell-shaped pH dependence with benzyloxycarbonyl-Gly-Pro-naphthylamide. It was the high pH form of the enzyme that virtually disappeared with all three enzyme variants. A substantial reduction was also observed in k(cat)/K(m) for the aminobenzoyl-Ser-Pro-Phe(NO(2))-Ala-OH substrate. The high pK(a) (9.77) of Cys-255 determined by titration with N-ethylmaleimide excluded the possibility that ionization of the thiol group was responsible for generation of the two active enzyme forms. The impaired activity of the enzyme variants could be rationalized in terms of weaker binding, which manifests itself in high K(m) for substrates and high K(i) for inhibitors, like benzyloxycarbonyl-Gly-Pro-OH and aminobenzoyl-Ser-d-Pro-Phe(NO(2))-Ala-OH. It was concluded that, besides selecting substrates by size, the beta-propeller domain containing Cys-255 remarkably contributed to catalysis of the peptidase domain.  相似文献   

17.
Prolipoprotein modification and processing enzymes in Escherichia coli   总被引:7,自引:0,他引:7  
Prolipoprotein signal peptidase, a unique endopeptidase which recognizes glycyl glyceride cysteine as a cleavage site, was characterized in an in vitro assay system using purified prolipoprotein as the substrate. This enzyme did not require phospholipids for its catalytic activity and was found to be localized in the inner cytoplasmic membrane of the Escherichia coli cell envelope. Globomycin inhibited this enzyme activity in vitro with a half-maximal inhibiting concentration of 0.76 nM. Nonionic detergent, such as Nikkol or Triton X-100, was required for the in vitro activity. The optimum pH and reaction temperature of prolipoprotein signal peptidase were pH 7.9 and 37-45 degrees C, respectively. Phosphatidylglycerol:prolipoprotein glyceryl transferase (glyceryl transferase) activity was measured using [2-3H]glycerol-labeled JE5505 cell envelope and [35S]cysteine-labeled MM18 cell envelope as the donor and acceptor of glyceryl moiety, respectively. 3H and 35S dual-labeled glyceryl cysteine was identified in the product of this enzymatic reaction. The optimal pH and reaction temperature for glyceryl transferase were pH 7.8 and 37 degrees C, respectively.  相似文献   

18.
A peptidase activity capable of excising in a single fragment the N-terminal extension of the precursor of collagen type III (p-N-collagen type III) was observed in calf tendon fibroblast culture medium. A new procedure was developed for detecting this peptidase (p-N-collagen type III peptidase). It is based on the use of 14C-labelled p-N-collagen type III obtained by carboxymethylation of the half-cystine residues with iodo-[14C]acetamide. The released labelled N-terminal extension is soluble in 27% (v/v) ethanol, whereas the uncleaved substrate and the collagen are precipitated under these conditions. The endopeptidase nature of p-N-collagen type III peptidase is supported by the similarity in molecular weight of the product of cleavage of p-N-collagen III by the enzyme to those obtained by cleavage with bacterial collagenase. An apparent Km of 0.3 X 10(-6)M was established. The pH optimum of p-N-collagen type III peptidase is similar to that of p-N-collagen type I peptidase, i.e. about 7.5. Both peptidases are inhibited by dithiothreitol and by Cu2+ and Zn2+, but not by other bivalent ions. p-N-collagen type III peptidase does not cleave p-N-collagen I or p-N-gelatin I. Partial purification of p-N-collagen type III peptidase from fibroblast culture medium was performed by sieve chromatography on Ultrogel AcA-34 to yield two peaks of activity, of mol.wts. 170000 and 100000. Part of the activity was retained on affinity chromatography on concanavalin A--Sepharose. Studied as a function of the age of the culture, p-N-collagen type III peptidase activity produced by tendon fibroblasts parallels that of p-N-collagen type I peptidase and collagen synthesis.  相似文献   

19.
The discovery of a potentially novel proline-specific peptidase from bovine serum is presented which is capable of cleaving the dipeptidyl peptidase IV (DPIV) substrate Gly-Pro-MCA. The enzyme was isolated and purified with the use of Phenyl Sepharose Hydrophobic Interaction, Sephacryl S-300 Gel Filtration, and Q-Sephacryl Anion Exchange, producing an overall purification factor of 257. SDS PAGE resulted in a monomeric molecular mass of 158kDa while size exclusion chromatography generated a native molecular mass of 328kDa. The enzyme remained active over a broad pH range with a distinct preference for a neutral pH range of 7-8.5. Chromatofocusing and isoelectric focusing (IEF) revealed the enzyme's isoelectric point to be 4.74. DPIV-like activity was not inhibited by serine protease inhibitors but was by the metallo-protease inhibitors, the phenanthrolines. The enzyme was also partially inhibited by bestatin. Substrate specificity studies proved that the enzyme is capable of sequential cleavage of bovine beta-Casomorphin and Substance P. The peptidase cleaved the standard DPIV substrate, Gly-Pro-MCA with a K(M) of 38.4 microM, while Lys-Pro-MCA was hydrolysed with a K(M) of 103 microM. The DPIV-like activity was specifically inhibited by both Diprotin A and B, non-competitively, generating a K(i) of 1.4 x 10(-4) M for both inhibitors. Ile-Thiazolidide and Ile-Pyrrolidide both inhibited competitively with an inhibition constant of 3.7 x 10(-7) and 7.5 x 10(-7) M, respectively. It is concluded that bovine serum DPIV-like activity share many biochemical properties with DPIV and DPIV-like enzymes but not exclusively, suggesting that the purified peptidase may play an important novel role in bioactive oligopeptide degradation.  相似文献   

20.
Nägler DK  Tam W  Storer AC  Krupa JC  Mort JS  Ménard R 《Biochemistry》1999,38(15):4868-4874
The specificity of cysteine proteases is characterized by the nature of the amino acid sequence recognized by the enzymes (sequence specificity) as well as by the position of the scissile peptide bond (positional specificity, i.e., endopeptidase, aminopeptidase, or carboxypeptidase). In this paper, the interdependency of sequence and positional specificities for selected members of this class of enzymes has been investigated using fluorogenic substrates where both the position of the cleavable peptide bond and the nature of the sequence of residues in P2-P1 are varied. The results show that cathepsins K and L and papain, typically considered to act strictly as endopeptidases, can also display dipeptidyl carboxypeptidase activity against the substrate Abz-FRF(4NO2)A and dipeptidyl aminopeptidase activity against FR-MCA. In some cases the activity is even equal to or greater than that observed with cathepsin B and DPP-I (dipeptidyl peptidase I), which have been characterized previously as exopeptidases. In contrast, the exopeptidase activities of cathepsins K and L and papain are extremely low when the P2-P1 residues are A-A, indicating that, as observed for the normal endopeptidase activity, the exopeptidase activities rely heavily on interactions in subsite S2 (and possibly S1). However, cathepsin B and DPP-I are able to hydrolyze substrates through the exopeptidase route even in absence of preferred interactions in subsites S2 and S1. This is attributed to the presence in cathepsin B and DPP-I of specific structural elements which serve as an anchor for the C- or N-terminus of a substrate, thereby allowing favorable enzyme-substrate interaction independently of the P2-P1 sequence. As a consequence, the nature of the residue at position P2 of a substrate, which is usually the main factor determining the specificity for cysteine proteases of the papain family, does not have the same contribution for the exopeptidase activities of cathepsin B and DPP-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号