首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unique functional properties of the homodimeric hemoglobin (HbI) extracted from the Arcid blood clam Scapharca inaequivalvis are discussed in the light of the unusual assembly of this protein. At variance with vertebrate hemoglobins, in S. inaequivalvis HbI, the heme-carrying E and F helices form the subunit interface and bring the heme groups almost into direct contact. This creates a new pathway for transferring information about the ligation state of the heme from one subunit to the other which allows cooperativity in the binding of heme ligands to be displayed by a homodimer. The tight coupling between the two subunits and the two heme groups also manifests itself in other reactions that are cooperative in S. inaequivalvis HbI, but not in human hemoglobin, namely, the cleavage of the proximal histidine-heme iron bond and the modification of specific residues located at the subunit interface.  相似文献   

2.
K Ishimori  I Morishima 《Biochemistry》1986,25(17):4892-4898
The effect of heme modification on the tertiary and quaternary structures of hemoglobins was examined by utilizing the NMR spectra of the reconstituted [mesohemoglobin (mesoHb), deuterohemoglobin (deuteroHb)] and hybrid heme (meso-proto, deutero-proto) hemoglobins (Hbs). The heme peripheral modification resulted in the preferential downfield shift of the proximal histidine N1H signal for the beta subunit, indicating nonequivalence of the structural change induced by the heme modification in the alpha and beta subunits of Hb. In the reconstituted and hybrid heme Hbs, the exchangeable proton resonances due to the intra- and intersubunit hydrogen bonds, which have been used as the oxy and deoxy quaternary structural probes, were shifted by 0.2-0.3 ppm from that of native Hb upon the beta-heme substitution. This suggests that, in the fully deoxygenated form, the quaternary structure of the reconstituted Hbs is in an "imperfect" T state in which the hydrogen bonds located at the subunit interface are slightly distorted by the conformational change of the beta subunit. Moreover, the two heme orientations are found in the alpha subunit of deuteroHb, but not in the beta subunit of deuteroHb, and in both the alpha and beta subunits of mesoHb. The tertiary and quaternary structural changes in the Hb molecule induced by the heme peripheral modification were also discussed in relation to their functional properties.  相似文献   

3.
Nitric oxide derived from sodium nitroprusside binds to the heme moiety of hemoglobin and also modifies some functional groups in the protein. As hemoglobin concentration is increased, globin modification is decreased presumably due to formation of the NO complex with heme. The SH groups of hemoglobin are probably not involved in the formation of the stable product formed by NO. In the presence of inositol hexaphosphate, which binds preferentially in the cleft between the two beta-chains of hemoglobin, formation of one modified derivative was selectively reduced. With hemoglobin specifically blocked on its N-terminal residues, globin modification was also significantly reduced. Carbonic anhydrase, which is blocked at its N-terminus, was also refractory to modification. The results suggest that the N-terminal groups of some proteins can be modified by nitric oxide, perhaps by deamination.  相似文献   

4.
The previous and following articles in this issue describe the recombinant synthesis of three mutant beta-globins (beta 1 Val----Ala, beta 1 Val----Met, and the addition mutation beta 1 + Met), their assembly with heme and natural alpha chains into alpha 2 beta 2 tetramers, and their X-ray crystallographic structures. Here we have measured the equilibrium and kinetic allosteric properties of these hemoglobins. Our objective has been to evaluate their utility as surrogates of normal hemoglobin from which further mutants can be made for structure-function studies. The thermodynamic linkages between cooperative oxygenation and dimer-tetramer assembly were determined from global regression analysis of multiple oxygenation isotherms measured over a range of hemoglobin concentration. Oxygen binding to the tetramers was found to be highly cooperative (maximum Hill slopes from 3.1 to 3.2), and similar patterns of O2-linked subunit assembly free energies indicated a common mode of cooperative switching at the alpha 1 beta 2 interface. The dimers were found to exhibit the same noncooperative O2 equilibrium binding properties as normal hemoglobin. The most obvious difference in oxygen equilibria between the mutant recombinant and normal hemoglobins was a slightly lowered O2 affinity. The kinetics of CO binding and O2 dissociation were measured by stopped-flow and flash photolysis techniques. Parallel studies were carried out with the mutant and normal hemoglobins in the presence and absence of organic phosphates to assess their allosteric response to phosphates. In the absence of organic phosphates, the CO-binding and O2 dissociation kinetic properties of the mutant dimers and tetramers were found to be nearly identical to those of normal hemoglobin. However, the effects of organic phosphates on CO-binding kinetic properties of the mutants were not uniform: the beta 1 + Met mutant was found to deviate somewhat from normalcy, while the beta 1 Val----Met mutant reproduced the native allosteric response. Further characterization of the allosteric properties of the beta 1 Val----Met mutant was made by measuring the pH dependence of its overall oxygen affinity by tonometry. Regulation of oxygen affinity by protons was found to be nearly identical to normal hemoglobin from pH 5.8 to 9.3 (0.52 +/- 0.07 protons released per oxygen bound at pH 7.4). The present study demonstrates that the equilibrium and kinetic functional properties of the recombinant beta 1 Val----Met mutant mimic reasonably well those of normal hemoglobin. We conclude that this mutant is well-suited to serve as a surrogate system of normal hemoglobin in the production of mutants for structure-function studies.  相似文献   

5.
S Neya  N Funasaki 《Biochemistry》1986,25(6):1221-1226
The hyperfine-shifted proton NMR spectra of human azidomethemoglobin were examined at 300 MHz in the 2-60 degree C range. From analysis of the temperature-dependent heme methyl shifts, the thermal spin-state equilibria of the alpha and beta subunits were independently analyzed in the intact tetramer. The thermodynamic values of the spin equilibrium of the alpha and beta subunits were comparable, suggesting that the spin equilibrium properties of the constituent subunits are similar to each other. Examination of the azidomethemoglobins reconstituted with deutero- or mesohemin further shows that the alpha and beta subunit difference is still small in these hemoglobins probably due to the smallness of the steric and electronic difference of the heme 2,4-substituents of the examined porphyrins. The similarity of the spin equilibrium profiles of the subunits indicates that the strain imposed from the globin to the heme iron is of comparable magnitude for the alpha and beta subunits within the azidomethemoglobins.  相似文献   

6.
J E Knapp  Q H Gibson  L Cushing  W E Royer 《Biochemistry》2001,40(49):14795-14805
Cooperative ligand binding in the dimeric hemoglobin from the blood clam Scapharca inaequivalvis results primarily from tertiary, rather than quaternary, structural changes. Ligand binding is coupled with conformational changes of key residues, including Phe 97, which is extruded from the proximal heme pocket, and the heme group, which moves deeper into the heme pocket. We have tested the role of the heme movement in cooperative function by mutating Ile 114, at the base of the heme pocket. Replacement of this residue with a Met did not disturb the hemoglobin structure or significantly alter equilibrium ligand binding properties. In contrast, substitution with a Phe at position 114 inhibits the ligand-linked movement of the heme group, and substantially reduces oxygen affinity and cooperativity. As the extent of heme movement to the normal position of the ligated state is diminished, Phe 97 is inhibited from its movement into the interface upon ligand binding. These results indicate a tight coupling between these two key cooperative transitions and suggest that the heme movement may be an obligatory trigger for expulsion of Phe 97 from the heme pocket.  相似文献   

7.
In order to study the effects of chemical modifications of the vinyl groups of heme on oxygen and carbon monoxide binding to myoglobin, apomyoglobins from horse heart were reconstituted with six different hemins with various side chains. Laser flash photolysis experiments of these reconstituted myoglobins showed that the combination rate constants for oxygen (k') and carbon monoxide (l') were closely related to the electron-attractive properties of the side chains. The k' values obtained in 0.1 M potassium phosphate buffer, pH 7.0, at 20 degrees were 0.83 (meso-), 2.4 (deutero-), 1.1 (reconstituted proto-), 1.2 (native proto-), 1.5 (2-formyl-4-vinyl-), 1.9 (2-vinyl-4-formyl-), and 2.7 X 10(7) M-1 S-1 (2,4-diformylmyoglobins), and the corresponding l' values were 2.8, 18, 4.8, 5.1, 7.1, 15, and 35 X 10(5) M-1 S-1, respectively. These rate constants tend to increase as the electron-withdrawing power of the side chains increases, indicating that reduced electron density of the iron atom of heme in myoglobin favors the combination reaction for both oxygen and carbon monoxide. Equilibrium constants (L) between carbon monoxide and various myoglobins were also determined by measuring the partition coefficients (M) between oxygen and carbon monoxide for the myoglobins, and were also found to be closely related to the electronic properties (pK3 of porphyrin) of the heme side chains. The equilibrium association constants for carbon monoxide thus obtained increased with a decrease in pK3 value of the porphyrin. This order was completely opposite to the case of the oxygen binding reaction. The dissociation rate constants for oxygen (k) and carbon monoxide (l) were calculated from the equilibrium and the combination rate constants. The dissociation rate constants showed a similar characteristic to the combination rate constants and increased with the increase in electron attractivity of heme side chains. The concomitant increase in both the combination and dissociation rate constants with increase in electronegativity of the iron atom suggests that these reactions have different rate determining steps, although such a reaction process is contradictory to the generally accepted concept that in a reversible reaction, both on and off reactions proceed through the same transition state. In the on reaction sigma bond formation appears to be dominant, while in the off reaction eta bond break-up is more important.  相似文献   

8.
The kinetic aspects of the reduction process in cytochrome c3 from Desulfovibrio gigas have been investigated over a wide range of pH values ranging between pH 5.8 and pH 9.8. The data have been analyzed in the framework of an I2H4 interaction network coupled to a proton-linked equilibrium between two tertiary structures (Cornish-Bowden, A. & Koshland, D.E. Jr (1970) J. Biol. Chem. 245, 6241-6250). The kinetic rate constants for the reduction of the four hemes for the two tertiary conformations have been characterized in the framework of the thermodynamic network obtained from the equilibrium analysis (Coletta, M., Catarino, T., LeGall, J.J. & Xavier, A.V. (1991) Eur. J. Biochem. 202, 1101-1106). The intrinsic reduction rate constants determined by reaction with sodium dithionite for two hemes (namely heme 4 and heme 1) are significantly faster than those for the other two heme residues. In view of the equilibrium redox properties, heme 4 (with the fastest reduction rate) may then work as the kinetic electron-capturing site for the electrons from sodium dithionite. The transfer to hemes 2 and 3 then occurs by virtue of their free-energy levels at equilibrium. At our experimental conditions, there is also transfer of electrons to hemes 2 and 3 from heme 1, which is reduced at a slower rate than heme 4, thus contributing to the biphasic kinetics observed for the overall process. The kinetic parameters obtained are discussed in terms of the mechanism proposed for the coupling between the electron and proton transfer, as induced by the heme/heme cooperativity network.  相似文献   

9.
Hb Calais [β 76 (E20) Ala → Pro] is a new human hemoglobin variant displaying a decreased oxygen affinity. The only electrophoretical difference with Hb A was a slight more acidic isoelectric point. A 2-fold decrease in the oxygen affinity was found by equilibrium measurements performed in a suspension of intact red blood cells and in the lysate. It was confirmed by kinetic studies of the purified abnormal hemoglobin. The rte of methamoglobin formation at 37°C of Hb Calais was also increased realtive to Hb A. The mechanism by which the Pro for Ala substitution of an external residue in the β-chains results in these profound functional abnormalities is nuclear. Subtle changes at the heme pocket, at a distance from teh mutation, may be a plausible explanation for the effects observed.  相似文献   

10.
The genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803 contains a gene (slr2097, glbN) encoding a 123 amino-acid product with sequence similarity to globins. Related proteins from cyanobacteria, ciliates, and green algae bind oxygen and have a pronounced tendency to coordinate the heme iron with two protein ligands. To study the structural and functional properties of Synechocystis sp. PCC 6803 hemoglobin, slr2097 was cloned and overexpressed in Escherichia coli. Purification of the hemoglobin was performed after addition of hemin to the clarified cell lysate. Recombinant, heme-reconstituted ferric Synechocystis sp. PCC 6803 hemoglobin was found to be a stable helical protein, soluble to concentrations higher than 500 microM. At neutral pH, it yielded an electronic absorption spectrum typical of a low-spin ferric species, with maxima at 410 and 546 nm. The proton NMR spectrum revealed sharp lines spread over a chemical shift window narrower than 40 ppm, in support of low-spin hexacoordination of the heme iron. Nuclear Overhauser effects demonstrated that the heme is inserted in the protein matrix to produce one major equilibrium form. Addition of dithionite resulted in an absorption spectrum with maxima at 426, 528, and 560 nm. This reduced form appeared capable of carbon monoxide binding. Optical data also suggested that cyanide ions could bind to the heme in the ferric state. The spectral properties of the putative Synechocystis sp. PCC 6803 hemoglobin confirmed that it can be used for further studies of an ancient hemoprotein structure.  相似文献   

11.
Oxygen binding constants for human hemoglobin tetramers   总被引:2,自引:0,他引:2  
High-precision studies of oxygen binding in hemoglobin (HbA0) solutions at near-physiological concentrations (2-12 mM heme; pHs 7.0-9.1; various buffers) have led to an unanticipated result: an unmeasurably low contribution from the triply ligated species. We have obtained this result from new differential oxygen-binding measurements for human hemoglobin through the use of a thin-layer apparatus, which enables study of solutions at high Hb concentrations. The effect of tetramer dissociation into dimers, which becomes significant at hemoglobin concentrations below 1 mM in heme, is avoided. The analysis of the binding reactions is thus cast in terms of tetramer-binding polynomial written with overall Adair equilibrium constants which directly reflect the contributions of intermediate ligated species. The unmeasurable contribution of the triply ligated species renders the equilibrium constants of the third and fourth stepwise reactions practically undeterminable.  相似文献   

12.
The role of hemoglobin in transporting oxygen is dependent on the reversible binding of oxygen to Fe(II) hemoglobin with molecular oxygen released at reduced oxygen pressures. The partially oxygenated hemoglobin formed with the release of oxygen from hemoglobin is susceptible to redox reactions where the functional Fe(II) heme is oxidized to Fe(III) and the substrate is reduced. In this article, we review two important redox reactions of hemoglobin and discuss the ramifications of these reactions. The reduction of oxygen to superoxide starts a cascade of oxidative reactions, which are a source for red cell-induced oxidative stress. The reduction of nitrite to nitric oxide produces a labile form of nitric oxide that can be a source for oxidative stress, but can also have important physiological functions.  相似文献   

13.
This paper outlines a theoretical formalism for describing the gelling behavior of sickle cell hemoglobin in mixtures with other hemoglobin and non-hemoglobin proteins. Experimental applications are reported for hybridized and unhybridized mixtures of HbS (sickle hemoglobin), HbA (adult hemoglobin), HbF (fetal hemoglobin), and HbC Harlem. The theory is a general one based on a modification of the sol—gel phase equilibrium equation to take into account the varying tendencies of different hemoglobin species to promote gelation, and specific hemoglobin interactions are encoded in gelling coefficients which quantify gelling capability. Gelling coefficients for the hemoglobin species dealt with here are evaluated by measuring incorporation into the polymer phase in S-A, S-F, and S-CH mixtures. Given this information, the theory is found to provide accurate prodictions for the equilibrium gelling behavior of the calibrating pairs themselves when they are hybridized or unhybridized, for gelation kinetics in diverse mixtures of these species taken two, three and four at a time, for the anomalous equilibrium and kinetic gelling behavior of A- CH mixtures, and it also accounts for a variety of results previously published by others. Apparently, given the gelling coefficients for any mutant hemoglobin, one can compute gelling behavior (equilibrium, kinetics, incorporation, etc.) in any specified mixture with any other known hemoglobin(s). The gelling coefficients for any mutant hemoglobin depend upon, and therefore provide information about, gel interactions at the mutant site. From the gelling coefficients one can also obtain the change in free energy of interaction in the gel due to the altered residue. Experimental approaches are described which allow an analysis for the gelling coefficients of any mutant hemoglobin to be performed in a few hours.  相似文献   

14.
The time-resolved spectra of photoproducts from ligand photodissociation of oxyhemoglobin are measured in the Soret spectral region for times from 10 ns to 320 microseconds after laser photolysis. Four processes are detected at a heme concentration of 80 microM: a 38-ns geminate recombination, a 137-ns tertiary relaxation, and two bimolecular processes for rebinding of molecular oxygen. The pseudo-first-order rate constants for rebinding to the alpha and beta subunits of hemoglobin are 3.2 x 10(4) s-1 (31 microseconds lifetime) and 9.4 x 10(4) s-1 (11 microseconds lifetime), respectively. The significance of kinetic measurements made at different heme concentrations is discussed in terms of the equilibrium compositions of hemoglobin tetramer and dimer mixtures. The rebinding rate constants for alpha and beta chains are observed to be about two times slower in the dimer than in the tetramer, a finding that appears to support the observation of quaternary enhancement in equilibrium ligand binding by hemoglobin tetramers.  相似文献   

15.
A native globin from the dimeric hemoglobin, hemoglobin I, of the mollusc Scapharca inaequivalvis has been obtained with the acid-acetone method. The globin has a lower sedimentation coefficient than the native protein at neutral pH; its reconstitution product with natural heme has the same physicochemical and functional properties as the native protein. proto- and meso-cobalt hemoglobin I have been prepared and characterized. proto-Cobalt hemoglobin I binds oxygen reversibly with a lower affinity and a lower cooperativity than native hemoglobin I; thus, the changes in the functional properties brought about by substitution of iron with cobalt are similar to those observed in human hemoglobin A. The EPR spectra of deoxy-proto-cobalt hemoglobin I and of the photolysis product of oxy-meso-cobalt hemoglobin I indicate that two histidine residues are the apical heme ligands. The broad signal at g = 2.38 in deoxy-proto-cobalt hemoglobin I points to a constrained structure of the heme site in this derivative which results from a distorted coordination of the hindered proximal histidine. A similar structure has been proposed previously for the alpha chains in deoxy-cobalt hemoglobin A.  相似文献   

16.
The biological functions of heme proteins are linked to their rate and affinity constants for ligand binding. Kinetic experiments are commonly used to measure equilibrium constants for traditional hemoglobins comprised of pentacoordinate ligand binding sites and simple bimolecular reaction schemes. However, kinetic methods do not always yield reliable equilibrium constants with more complex hemoglobins for which reaction mechanisms are not clearly understood. Furthermore, even where reaction mechanisms are clearly understood, it is very difficult to directly measure equilibrium constants for oxygen and carbon monoxide binding to high-affinity (K(D) < 1 micro M) hemoglobins. This work presents a method for direct measurement of equilibrium constants for high-affinity hemoglobins that utilizes a competition for ligands between the "target" protein and an array of "scavenger" hemoglobins with known affinities. This method is described for oxygen and carbon monoxide binding to two hexacoordinate hemoglobins: rice nonsymbiotic hemoglobin and Synechocystis hemoglobin. Our results demonstrate that although these proteins have different mechanisms for ligand binding, their affinities for oxygen and carbon monoxide are similar. Their large affinity constants for oxygen, 285 and approximately 100 micro M(-1) respectively, indicate that they are not capable of facilitating oxygen transport.  相似文献   

17.
The alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c. These and other results show that the cooperative folding-unfolding behavior of protein foldons can account for a variety of functional activities in addition to determining folding pathways.  相似文献   

18.
E W Findsen  P Simons  M R Ondrias 《Biochemistry》1986,25(24):7912-7917
The effects of protein dehydration upon the equilibrium and dynamic properties of the heme active site in human hemoglobin (HbA) have been probed by resonance Raman scattering. Spectra of equilibrium carbonmonoxy-HbA and the photolytic heme transient species generated within 10 ns of ligand photolysis have been obtained from thin films of protein in various stages of dehydration. These data provide detailed information concerning the response of the heme and its bonding interactions with both the proximal histidine and carbon monoxide as a function of protein hydration. For protein hydration levels of 0.4-1.0 g of H2O/g of protein, our results indicate that the C = O stretching mode of carbonmonoxy-HbA is dramatically affected by protein hydration levels, thus corroborating the infrared results of Brown et al. [Brown, W. E., Sutcliffe, J. W., & Pulsinelli, P. D. (1983) Biochemistry 22, 2914-2923]. However, we find that both heme skeletal modes and the Fe-C bond strength are largely insensitive to dehydration. Moreover, the proximal pocket geometry (as reflected in the behavior of the Fe-proximal histidine stretching mode) immediately following ligand photolysis was found to be very similar to that of R-state solution hemoglobin. At protein hydration levels below the theoretical monolayer limit, small changes in the resonance Raman spectra of both equilibrium HbCO and the transient heme species generated subsequent to ligand photolysis are detected. These include broadening of the Fe-C stretching mode in equilibrium HbCO and a small shift to lower frequency of the Fe-His mode in the photolytic transient species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The relative contributions to changes in visible and near UV circular dichroism spectra of hemoglobin of heme ligation and tertiary and quaternary conformational transitions were separated by exploiting the slowing down of structural relaxations for proteins encapsulated in wet, nanoporous silica gels. Spectral signatures, previously assumed to be characteristic of T and R quaternary states, were demonstrated to be specific to different tertiary conformations. The results support the view that ligation and allosteric effectors can modulate the structural and functional properties of hemoglobin by regulating the equilibrium between the same tertiary species within both quaternary states.  相似文献   

20.
The kinetics of formation of noncovalently bound ferrous complexes derived from fragments of horse heart cytochrome c have been investigated. When the reactions are initiated by combining ferrous heme fragments with an appropriate apofragment, in the presence of 50 mM imidazole, second order rate processes are observed with rate constants essentially the same as those reported with ferric heme fragments (Parr, G. R., and Taniuchi, H. (1979) J. Biol. Chem. 254, 4836-4842). An additional, probably consecutive, kinetic process is also demonstrated. If imidazole is not present in the reaction buffer, the kinetic profiles are dramatically altered. While this is partially due to aggregation (dimerization) of the ferrous heme fragments, it can nevertheless be demonstrated that the complementation reactions with apofragments are much faster than those observed with the corresponding ferric heme fragments (in the absence of imidazole). These results reflect the effect of the oxidation state of the heme iron on the folding mechanism and, thus, the manifold nature of protein folding pathways. The rate of reduction of productive ferric complexes by sodium ascorbate was investigated and biphasic reactions were found in all cases. The data indicate an equilibrium between two forms of the ferric complexes. The results of an experiment in which the complementation of ferric (1-25)H and (23-104) was carried out in the presence of sodium ascorbate indicate that the intermediate complex (Parr, G. R., and Taniuchi, H. (1980) J. Biol. Chem. 255, 8914-8918) is not reducible by ascorbate. Thus, the increase in oxidation-reduction potential occurring on formation of the productive complex from the unbound heme fragment occurs at a late stage of the overall reaction, possibly coinciding with ligation of methionine 80 to the heme iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号