首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 5' end of the cipC gene, coding for the N-terminal part of CipC, the scaffolding protein of Clostridium cellulolyticum ATCC 35319, was cloned and sequenced. It encodes a 586-amino-acid peptide, including several domains: a cellulose-binding domain, a hydrophilic domain, and two hydrophobic domains (cohesin domains). Sequence alignments showed that the N terminus of CipC and CbpA of C. cellulovorans ATCC 35296 have the same organization. The mini-CipC polypeptide, containing a cellulose-binding domain, hydrophilic domain 1, and cohesin domain 1, was overexpressed in Escherichia coli and purified. The interaction between endoglucanase CelA, with (CelA2) and without (CelA3) the characteristic clostridial C-terminal domain called the duplicated-segment or dockerin domain, and the mini-CipC polypeptide was monitored by two different methods: the interaction Western blotting (immunoblotting) method and binding assays with biotin-labeled protein. Among the various forms of CelA (CelA2, CelA3, and an intermediary form containing only part of the duplicated segment), only CelA2 was found to interact with cohesin domain 1 of CipC. The apparent equilibrium dissociation constant of the CelA2-mini-CipC complex was 7 x 10(-9)M, which indicates that there exists a high affinity between these two proteins.  相似文献   

2.
Clostridium cellulolyticum produces cellulolytic complexes (cellulosomes) made of 10-13 cell wall degrading enzymes tightly bound to a scaffolding protein (CipC) by means of their dockerin domain. It has previously been shown that the receptor domains in CipC are the cohesin domains and that the cohesin/dockerin interaction is calcium-dependent. In the present study, surface plasmon resonance was used to demonstrate that the free cohesin1 from CipC and dockerin from CelA have the same K(D) (2.5 x 10(-)(10) M) as that of the entire CelA and a larger fragment of CipC, the latter of which contains, in addition to cohesin1, a cellulose binding domain and a hydrophilic domain of unknown function. This demonstrates that neither the catalytic domain of CelA nor the noncohesin domains of CipC have any influence on the interaction. Dockerin domains are composed of two conserved segments of 22 residues: removal of the second segment abolishes the affinity for cohesin1, whereas modified dockerins having twice the first segment, twice the second, or both segments but in a reverse order have K(D) values for cohesin1 in the same range as that observed for wild-type dockerin. These data indicate that if two segments are required for the complexation with the cohesin, segments 1 and 2 are similar enough to replace each other. Calcium overlay experiments revealed that the dockerin domain has one calcium binding site per conserved segment. Circular dichroism performed on wild-type and mutant dockerins indicates that this domain is well structured and that removal of calcium only weakly affects the secondary structure, which remains 40-45% helical.  相似文献   

3.
The role of a miniscaffolding protein, miniCipC1, forming part of Clostridium cellulolyticum scaffolding protein CipC in insoluble cellulose degradation was investigated. The parameters of the binding of miniCipC1, which contains a family III cellulose-binding domain (CBD), a hydrophilic domain, and a cohesin domain, to four insoluble celluloses were determined. At saturating concentrations, about 8.2 micromol of protein was bound per g of bacterial microcrystalline cellulose, while Avicel, colloidal Avicel, and phosphoric acid-swollen cellulose bound 0.28, 0.38, and 0.55 micromol of miniCipC1 per g, respectively. The dissociation constants measured varied between 1.3 x 10(-7) and 1.5 x 10(-8) M. These results are discussed with regard to the properties of the various substrates. The synergistic action of miniCipC1 and two forms of endoglucanase CelA (with and without the dockerin domain [CelA2 and CelA3, respectively]) in cellulose degradation was also studied. Although only CelA2 interacted with miniCipC1 (K(d), 7 x 10(-9) M), nonhydrolytic miniCipC1 enhanced the activities of endoglucanases CelA2 and CelA3 with all of the insoluble substrates tested. This finding shows that miniCipC1 plays two roles: it increases the enzyme concentration on the cellulose surface and enhances the accessibility of the enzyme to the substrate by modifying the structure of the cellulose, leading to an increased available cellulose surface area. In addition, the data obtained with a hybrid protein, CelA3-CBD(CipC), which was more active towards all of the insoluble substrates tested confirm that the CBD of the scaffolding protein plays an essential role in cellulose degradation.  相似文献   

4.
In this study, a molecular self-assembly strategy to develop a novel protein scaffold for amplifying the extent and variety of proteins displayed on the surface of Saccharomyces cerevisiae is presented. The cellulosomal scaffolding protein cohesin and its upstream hydrophilic domain (HD) were genetically fused with the yeast Ure2p N-terminal fibrillogenic domain consisting of residues 1 to 80 (Ure2p(1-80)). The resulting Ure2p(1-80)-HD-cohesin fusion protein was successfully expressed in Escherichia coli to produce self-assembled supramolecular nanofibrils that serve as a novel protein scaffold displaying multiple copies of functional cohesin domains. The amyloid-like property of the nanofibrils was confirmed via thioflavin T staining and atomic force microscopy. These cohesin nanofibrils attached themselves, via a green fluorescent protein (GFP)-dockerin fusion protein, to the cell surface of S. cerevisiae engineered to display a GFP-nanobody. The excess cohesin units on the nanofibrils provide ample sites for binding to dockerin fusion proteins, as exemplified using an mCherry-dockerin fusion protein as well as the Clostridium cellulolyticum CelA endoglucanase. More than a 24-fold increase in mCherry fluorescence and an 8-fold increase in CelA activity were noted when the cohesin nanofibril scaffold-mediated yeast display was used, compared to using yeast display with GFP-cohesin that contains only a single copy of cohesin. Self-assembled supramolecular cohesin nanofibrils created by fusion with the yeast Ure2p fibrillogenic domain provide a versatile protein scaffold that expands the utility of yeast cell surface display.  相似文献   

5.
In the assembly of the Clostridium cellulolyticum cellulosome, the multiple cohesin modules of the scaffolding protein CipC serve as receptors for cellulolytic enzymes which bear a dockerin module. The X-ray structure of a type I C. cellulolyticum cohesin module (Cc-cohesin) has been solved using molecular replacement, and refined at 2.0 A resolution. Despite a rather low sequence identity of 32 %, this module has a fold close to those of the two Clostridium thermocellum cohesin (Ct-cohesin) modules whose 3D structures have been determined previously. Cc-cohesin forms a dimer in the crystal, as do the two Ct-cohesins. We show here that the dimer exists in solution and that addition of dockerin-containing proteins dissociates the dimer. This suggests that the dimerization interface and the cohesin/dockerin interface may overlap. The nature of the overall surface and of the dimer interface of Cc-cohesin differ notably from those of the Ct-cohesin modules, being much less polar, and this may explain the species specificity observed in the cohesin/dockerin interaction of C. cellulolyticum and C. thermocellum. We have produced a topology model of a C. cellulolyticum dockerin and of a Cc-cohesin/dockerin complex using homology modeling and available biochemical data. Our model suggests that a special residue pair, already identified in dockerin sequences, is located at the center of the cohesin surface putatively interacting with the dockerin.  相似文献   

6.
Progress towards understanding the molecular basis of cellulolysis by Clostridium cellulolyticm was obtained through the study of the first cellulolysis defective mutant strain, namely cipCMut1. In this mutant, a 2 659 bp insertion element, disrupts the cipC gene at the sequence encoding the seventh cohesin of the scaffoldin CipC. cipC is the first gene in a large 'cel' gene cluster, encoding several enzymatic subunits of the cellulosomes, including the processive cellulase Cel48F, which is the major component. Physiological and biochemical studies showed that the mutant strain was affected in cellulosome synthesis and severely impaired in its ability to degrade crystalline cellulose. It produced small amounts of a truncated CipC protein (P120), which had functional cohesin domains and assembled complexes which did not contain any of the enzymes encoded by genes of the 'cel' cluster. The mutant cellulolytic system was mainly composed of three proteins designated P98, P105 and P125. Their N-termini did not match any of the known cellulase sequences from C. cellulolyticum. A large amount of entire CipC produced in the cipCMut1 strain by trans-complementation with plasmid pSOScipC did not restore the cellulolytic phenotype, in spite of the assembly of a larger amount of complexes. The complexes produced in the mutant and complemented strains contained at least 12 different dockerin-containing proteins encoded by genes located outside of the 'cel' cluster. The disturbances observed in the mutant and trans-complemented strains were the result of a strong polar effect resulting from the cipC gene disruption. In conclusion, this study provided genetic evidence that the cellulases encoded by the genes located in the 'cel' cluster are essential for the building of cellulosomes efficient in crystalline cellulose degradation.  相似文献   

7.
The recombinant form of the cellulase CelF of Clostridium cellulolyticum, tagged by a C-terminal histine tail, was overproduced in Escherichia coli. The fusion protein was purified by affinity chromatography on a Ni-nitrilotriacetic acid column. The intact form of CelF (Mr, 79,000) was rapidly degraded at the C terminus, giving a shorter stable form, called truncated CelF (Mr, 71,000). Both the entire and the truncated purified forms degraded amorphous cellulose (kcat = 42 and 30 min(-1), respectively) and microcrystalline cellulose (kcat = 13 and 10 min(-1), respectively). The high ratio of soluble reducing ends to insoluble reducing ends released by truncated CelF from amorphous cellulose showed that CelF is a processive enzyme. Nevertheless, the diversity of the cellodextrins released by truncated CelF from phosphoric acid-swollen cellulose at the beginning of the reaction indicated that the enzyme might randomly hydrolyze beta-1,4 bonds. This hypothesis was supported by viscosimetric measurements and by the finding that CelF and the endoglucanase CelA are able to degrade some of the same cellulose sites. CelF was therefore called a processive endocellulase. The results of immunoblotting analysis showed that CelF was associated with the cellulosome of C. cellulolyticum. It was identified as one of the three major components of cellulosomes. The ability of the entire form of CelF to interact with CipC, the cellulosome integrating protein, or mini-CipC1, a recombinant truncated form of CipC, was monitored by interaction Western blotting (immunoblotting) and by binding assays using a BIAcore biosensor-based analytical system.  相似文献   

8.
Clostridium acetobutylicum ATCC 824 converts sugars and various polysaccharides into acids and solvents. This bacterium, however, is unable to utilize cellulosic substrates, since it is able to secrete very small amounts of cellulosomes. To promote the utilization of crystalline cellulose, the strategy we chose aims at producing heterologous minicellulosomes, containing two different cellulases bound to a miniscaffoldin, in C. acetobutylicum. A first step toward this goal describes the production of miniCipC1, a truncated form of CipC from Clostridium cellulolyticum, and the hybrid scaffoldin Scaf 3, which bears an additional cohesin domain derived from CipA from Clostridium thermocellum. Both proteins were correctly matured and secreted in the medium, and their various domains were found to be functional.  相似文献   

9.
A new cellulosomal protein from Clostridium cellulolyticum Cel9M was characterized. The protein contains a catalytic domain belonging to family 9 and a dockerin domain. Cel9M is active on carboxymethyl cellulose, and the hydrolysis of this substrate is accompanied by a decrease in viscosity. Cel9M has a slight, albeit significant, activity on both Avicel and bacterial microcrystalline cellulose, and the main soluble sugar released is cellotetraose. Saccharification of bacterial microcrystalline cellulose by Cel9M in association with two other family 9 enzymes from C. cellulolyticum, namely, Cel9E and Cel9G, was measured, and it was found that Cel9M acts synergistically with Cel9E. Complexation of Cel9M with the mini-CipC1 containing the cellulose binding domain, the X2 domain, and the first cohesin domain of the scaffoldin CipC of the bacterium did not significantly increase the hydrolysis of Avicel and bacterial microcrystalline cellulose.  相似文献   

10.
Different chimeric proteins combining the non-catalytic C-terminal putative cellulose binding domain of Clostridium cellulovorans endoglucanase-xylanase D (EngD) with its proline-threonine rich region PT-linker, PTCBD(EngD), cellulose binding domain of C. cellulovorans cellulose binding protein A, CBD(CbpA), cohesin domains Cip7, Coh6 and CipC1 from different clostridial species and recombinant antibody binding protein LG were constructed, expressed, purified and analyzed. The solubilities of chimeric proteins containing highly soluble domains Cip7, CipC1 and LG were not affected by fusion with PTCBD(EngD). Insoluble domain Coh6 was solubilized when fused with PTCBD(EngD). In contrast, fusion with CBD(CbpA) resulted in only a slight increase in solubility of Coh6 and even decreased solubility of CipC1 greatly. PTCBD(EngD) and Cip7-PTCBD(EngD) were shown to bind regenerated commercial amorphous cellulose Cuprophan. The purity of Cip7-PTCBD(EngD) eluted from Cuprophan was comparable to that purified by conventional ion exchange chromatography. The results demonstrated that PTCBD(EngD) can serve as a bi-functional fusion tag for solubilization of fusion partners and as a domain for the immobilization, enrichment and purification of molecules or cells on regenerated amorphous cellulose.  相似文献   

11.
The Clostridium josui cipA and celD genes, encoding a scaffolding-like protein (CipA) and a putative cellulase (CelD), respectively, have been cloned and sequenced. CipA, with an estimated molecular weight of 120,227, consists of an N-terminal signal peptide, a cellulose-binding domain of family III, and six successive cohesin domains. The molecular architecture of C. josui CipA is similar to those of the scaffolding proteins reported so far, such as Clostridium thermocellum CipA, Clostridium cellulovorans CbpA, and Clostridium cellulolyticum CipC, but C. josui CipA is considerably smaller than the other scaffolding proteins. CelD consists of an N-terminal signal peptide, a family 48 catalytic domain of glycosyl hydrolase, and a dockerin domain. N-terminal amino acid sequence analysis of the C. josui cellulosomal proteins indicates that both CipA and CelD are major components of the cellulosome.  相似文献   

12.
Abstract

Clostridium thermocellum produces a highly active cellulase system that consists of a high-Mr multienzyme complex termed cellulosome. Hydrolytic components of the cellulosome are organized around a large, noncatalytic glycoprotein termed CipA that acts both as a scaffolding component and a cellulose-binding factor. Catalytic subunits of the cellulosome bear conserved, noncatalytic subdomains, termed dockerin domains, which bind to receptor domains of CipA, termed cohesin domains. CipA includes nine cohesin domains, a cellulose-binding domain, and a specialized dockerin domain. Proteins of the cell envelope carrying cohesin domains that specifically bind the dockerin domain of CipA have been identified. These proteins may mediate anchoring of the cellulosomes to the cell surface. Cellulase complexes similar to the cellulosome of C. thermocellum are produced by several cellulolytic clostridia. High-Mr multienzyme complexes have also been identified in anaerobic rumen fungi. The architecture of the fungal complexes also seems to rely on the interaction of conserved, noncatalytic docking domains with a scaffolding component. However, the sequence of the fungal docking domains bears no resemblance to the clostridial dockerin domains, suggesting that the fungal and clostridial complexes arose independently.  相似文献   

13.
CbpA, the scaffolding protein of Clostridium cellulovorans cellulosomes, possesses one family 3 cellulose binding domain, nine cohesin domains, and four hydrophilic domains (HLDs). Among the three types of domains, the function of the HLDs is still unknown. We proposed previously that the HLDs of CbpA play a role in attaching the cellulosome to the cell surface, since they showed some homology to the surface layer homology domains of EngE. Several recombinant proteins with HLDs (rHLDs) and recombinant EngE (rEngE) were examined to determine their binding to the C. cellulovorans cell wall fraction. Tandemly linked rHLDs showed higher affinity for the cell wall than individual rHLDs showed. EngE was shown to have a higher affinity for cell walls than rHLDs have. C. cellulovorans native cellulosomes were found to have higher affinity for cell walls than rHLDs have. When immunoblot analysis was carried out with the native cellulosome fraction bound to cell wall fragments, the presence of EngE was also confirmed, suggesting that the mechanism anchoring CbpA to the C. cellulovorans cell surface was mediated through EngE and that the HLDs play a secondary role in the attachment of the cellulosome to the cell surface. During a study of the role of HLDs on cellulose degradation, the mini-cellulosome complexes with HLDs degraded cellulose more efficiently than complexes without HLDs degraded cellulose. The rHLDs also showed binding affinity for crystalline cellulose and carboxymethyl cellulose. These results suggest that the CbpA HLDs play a major role and a minor role in C. cellulovorans cellulosomes. The primary role increases cellulose degradation activity by binding the cellulosome complex to the cellulose substrate; secondarily, HLDs aid the binding of the CbpA/cellulosome to the C. cellulovorans cell surface.  相似文献   

14.
In this study, we demonstrate that the cellulosome of Clostridium cellulolyticum grown on xylan is not associated with the bacterial cell. Indeed, the large majority of the activity (about 90%) is localized in the cell-free fraction when the bacterium is grown on xylan. Furthermore, about 70% of the detected xylanase activity is associated with cell-free high-molecular-weight complexes containing avicelase activity and the cellulosomal scaffolding protein CipC. The same repartition is observed with carboxymethyl cellulase activity. The cellulose adhesion of xylan-grown cells is sharply reduced in comparison with cellulose-grown cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that cellulosomes derived from xylan- and cellulose-grown cells have different compositions. In both cases, the scaffolding protein CipC is present, but the relative proportions of the other components is dramatically changed depending on the growth substrate. We propose that, depending on the growth substrate, C. cellulolyticum is able to regulate the cell association and cellulose adhesion of cellulosomes and regulate cellulosomal composition.  相似文献   

15.
A large gene cluster for the Clostridium cellulovorans cellulosome has been cloned and sequenced upstream and downstream of the cbpA and exgS genes (C.-C. Liu and R. H. Doi, Gene 211:39-47, 1998). Gene walking revealed that the engL gene cluster (Y. Tamaru and R. H. Doi, J. Bacteriol. 182:244-247, 2000) was located downstream of the cbpA-exgS genes. Further DNA sequencing revealed that this cluster contains the genes for the scaffolding protein CbpA, the exoglucanase ExgS, several endoglucanases of family 9, the mannanase ManA, and the hydrophobic protein HbpA containing a surface layer homology domain and a hydrophobic (or cohesin) domain. The sequence of the clustered genes is cbpA-exgS-engH-engK-hbpA-engL-man A-engM-engN and is about 22 kb in length. The engN gene did not have a complete catalytic domain, indicating that engN is a truncated gene. This large gene cluster is flanked at the 5' end by a putative noncellulosomal operon consisting of nifV-orf1-sigX-regA and at the 3' end by noncellulosomal genes with homology to transposase (trp) and malate permease (mle). Since gene clusters for the cellulosome are also found in C. cellulolyticum and C. josui, they seem to be typical of mesophilic clostridia, indicating that the large gene clusters may arise from a common ancestor with some evolutionary modifications.  相似文献   

16.
The cross-species specificity of the cohesin–dockerin interaction, which defines the incorporation of the enzymatic subunits into the cellulosome complex, has been investigated. Cohesin-containing segments from the cellulosomes of two different species, Clostridium thermocellum and Clostridium cellulolyticum, were allowed to interact with cellulosomal (dockerin-containing) enzymes from each species. In both cases, the cohesin domain of one bacterium interacted with enzymes from its own cellulosome in a calcium-dependent manner, but the same cohesin failed to recognize enzymes from the other species. Thus, in the case of these two bacteria, the cohesin–dockerin interaction seems to be species-specific. Based on intra- and cross-species sequence comparisons among the different dockerins together with their known specificities, we tender a prediction as to the amino-acid residues critical to recognition of the cohesins. The suspected residues were narrowed down to only four, which comprise a repeated pair located within the calcium-binding motif of two duplicated sequences, characteristic of the dockerin domain. According to the proposed model, these four residues do not participate in the binding of calcium per se; instead, they appear to serve as recognition codes in promoting interaction with the cohesin surface. Proteins 29:517–527, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
The cipA gene encoding the Clostridium acetobutylicum scaffolding protein CipA was cloned and expressed in Escherichia coli. CipA contains an N-terminal signal peptide, a family 3a cellulose-binding domain (CBD), five type I cohesin domains, and six hydrophilic domains. The uniqueness of CipA lies in the enchainment of cohesin domains that are all separated by a hydrophilic domain. Affinity-purified CipA was used in equilibrium-binding experiments to characterize the interaction of CipA with crystalline cellulose. A K(d) of 0.038 micro M and a [C](max) of 0.43 micro mol of CipA bound per g of Avicel were determined. A mini-CipA polypeptide consisting of a CBD3a and two cohesin domains was overexpressed in C. acetobutylicum, yielding the in vivo formation of a minicellulosome. This is to our knowledge the first demonstration of the in vivo assembly of a recombinant minicellulosome.  相似文献   

18.
The plant cell wall degrading apparatus of anaerobic bacteria includes a large multienzyme complex termed the "cellulosome." The complex assembles through the interaction of enzyme-derived dockerin modules with the multiple cohesin modules of the noncatalytic scaffolding protein. Here we report the crystal structure of the Clostridium cellulolyticum cohesin-dockerin complex in two distinct orientations. The data show that the dockerin displays structural symmetry reflected by the presence of two essentially identical cohesin binding surfaces. In one binding mode, visualized through the A16S/L17T dockerin mutant, the C-terminal helix makes extensive interactions with its cohesin partner. In the other binding mode observed through the A47S/F48T dockerin variant, the dockerin is reoriented by 180 degrees and interacts with the cohesin primarily through the N-terminal helix. Apolar interactions dominate cohesin-dockerin recognition that is centered around a hydrophobic pocket on the surface of the cohesin, formed by Leu-87 and Leu-89, which is occupied, in the two binding modes, by the dockerin residues Phe-19 and Leu-50, respectively. Despite the structural similarity between the C. cellulolyticum and Clostridium thermocellum cohesins and dockerins, there is no cross-specificity between the protein partners from the two organisms. The crystal structure of the C. cellulolyticum complex shows that organism-specific recognition between the protomers is dictated by apolar interactions primarily between only two residues, Leu-17 in the dockerin and the cohesin amino acid Ala-129. The biological significance of the plasticity in dockerin-cohesin recognition, observed here in C. cellulolyticum and reported previously in C. thermocellum, is discussed.  相似文献   

19.
The gene coding for CelG, a family 9 cellulase from Clostridium cellulolyticum, was cloned and overexpressed in Escherichia coli. Four different forms of the protein were genetically engineered, purified, and studied: CelGL (the entire form of CelG), CelGcat1 (the catalytic domain of CelG alone), CelGcat2 (CelGcat1 plus 91 amino acids at the beginning of the cellulose binding domain [CBD]), and GST-CBD(CelG) (the CBD of CelG fused to glutathione S-transferase). The biochemical properties of CelG were compared with those of CelA, an endoglucanase from C. cellulolyticum which was previously studied. CelG, like CelA, was found to have an endo cutting mode of activity on carboxymethyl cellulose (CMC) but exhibited greater activity on crystalline substrates (bacterial microcrystalline cellulose and Avicel) than CelA. As observed with CelA, the presence of the nonhydrolytic miniscaffolding protein (miniCipC1) enhanced the activity of CelG on phosphoric acid swollen cellulose (PASC), but to a lesser extent. The absence of the CBD led to the complete inactivation of the enzyme. The abilities of CelG and GST-CBD(CelG) to bind various substrates were also studied. Although the entire enzyme is able to bind to crystalline cellulose at a limited number of sites, the chimeric protein GST-CBD(CelG) does not bind to either of the tested substrates (Avicel and PASC). The lack of independence between the two domains and the weak binding to cellulose suggest that this CBD-like domain may play a special role and be either directly or indirectly involved in the catalytic reaction.  相似文献   

20.
The assembly of enzyme components into the cellulosome complex is dictated by the cohesin-dockerin interaction. In a recent article (Mechaly, A., Yaron, S., Lamed, R., Fierobe, H.-P., Belaich, A., Belaich, J.-P., Shoham, Y., and Bayer, E. A. (2000) Proteins 39, 170-177), we provided experimental evidence that four previously predicted dockerin residues play a decisive role in the specificity of this high affinity interaction, although additional residues were also implicated. In the present communication, we examine further the contributing factors for the recognition of a dockerin by a cohesin domain between the respective cellulosomal systems of Clostridium thermocellum and Clostridium cellulolyticum. In this context, the four confirmed residues were analyzed for their individual effect on selectivity. In addition, other dockerin residues were discerned that could conceivably contribute to the interaction, and the suspected residues were similarly modified by site-directed mutagenesis. The results indicate that mutation of a single residue from threonine to leucine at a given position of the C. thermocellum dockerin differentiates between its nonrecognition and high affinity recognition (K(a) approximately 10(9) m(-1)) by a cohesin from C. cellulolyticum. This suggests that the presence or absence of a single decisive hydroxyl group is critical to the observed biorecognition. This study further implicates additional residues as secondary determinants in the specificity of interaction, because interconversion of selected residues reduced intraspecies self-recognition by at least three orders of magnitude. Nevertheless, as the latter mutageneses served to reduce but not annul the cohesin-dockerin interaction within this species, it follows that other subtle alterations play a comparatively minor role in the recognition between these two modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号