首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat brain cytosol was applied to a heparin column and eluted with 0.9 M-NaCl. The total binding activity of [3H]inositol 1,4,5-trisphosphate to the eluate was increased about 6-fold compared with the original cytosol. When the eluate was mixed with a flow-through fraction from the heparin column, however, the activity returned to the original level, suggesting that the flow-through fraction contained an inhibitory factor(s) which prevented the binding. The factor(s) was purified by sequential column chromatography using gel permeation, a hydrophobic gel, and finally, a hydroxylapatite gel. Silver staining of sodium dedecyl sulfate gel electrophoresis of the sample thus purified showed a broad band located between the authentic molecular weight markers of 580 and 390 k. A carbohydrate staining method showed that the factor is a glycoprotein.  相似文献   

2.
In previous works, we synthesized a series of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) analogs, with a substituent on the second carbon of the inositol ring. Using these analogs, the Ins(1,4,5)P3 affinity media were also synthesized (Hirata, M., Watanabe, Y., Ishimatsu, T., Yanaga, F., Koga, T., and Ozaki, S. (1990) Biochem. Biophys. Res. Commun. 168, 379-386). When the cytosol fraction from the rat brain was applied to an Ins(1,4,5)P3 affinity column, an eluate with a 2 M NaCl solution was found to have remarkable Ins(1,4,5)P3-binding activity. The active fraction was further fractionated with gel filtration chromatography, and two proteins with an apparent molecular mass of 130 or 85 kDa were found to be Ins(1,4,5)P3-binding proteins but with no Ins(1,4,5)P3 metabolizing activities. Partial amino acid sequences determined after proteolysis and reversed-phase chromatography revealed that the protein with an apparent molecular mass of 85 kDa is the delta-isozyme of phospholipase C and that of 130 kDa has no sequence the same as the Ins(1,4,5)P3-recognizing proteins hitherto examined. Ins(1,4,5)P3 at concentrations greater than 1 microM strongly inhibited 85-kDa phospholipase C delta activity, without changing its dependence on the concentrations of free Ca2+ and H+. Among inositol phosphates examined, Ins(3,4,5,6)P4 inhibited the binding of [3H]Ins(1,4,5)P3 to the 130-kDa protein at much the same concentrations as seen with Ins(1,4,5)P3. This report seems to be the first evidence for the presence of soluble Ins(1,4,5)P3-binding proteins in the rat brain, one of which is the delta isozyme of phospholipase C.  相似文献   

3.
The isolated activation segment of pig procarboxypeptidase A binds two Tb3+ ions in a strong and specific way. In contrast, the binding of Ca2+, Cd2+ and Mg2+ is weak. The binding of Tb3+ increases the resistance of the isolated activation segment against proteolysis and competes for the binding of the carbocyanine dye Stains-All. This dye forms complexes with the activation segment showing spectral properties similar to those observed with EF-hand structures. The presented results support a previous hypothesis on the existence of two regions in the activation segment of pancreatic procarboxypeptidases structurally related to Ca2+-binding domains of the EF-hand protein family.  相似文献   

4.
A consensus RXRXX(S/T) substrate motif for Akt kinase is conserved in the C-terminal tail of all three inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) isoforms. We have shown that IP3R can be phosphorylated by Akt kinase in vitro and in vivo. Endogenous IP3Rs in Chinese hamster ovary T-cells were phosphorylated in response to Akt activation by insulin. LnCAP cells, a prostate cancer cell line with constitutively active Akt kinase, also showed a constitutive phosphorylation of endogenous type I IP3Rs. In all cases, the IP3R phosphorylation was diminished by the addition of LY294002, an inhibitor of phosphatidylinositol 3-kinase. Mutation of IP3R serine 2681 in the Akt substrate motif to alanine (S2681A) or glutamate (S2681E) prevented IP3R phosphorylation in COS cells transfected with constitutively active Akt kinase. Analysis of the Ca2+ flux properties of these IP3R mutants expressed in COS cell microsomes or in DT40 triple knock-out (TKO) cells did not reveal any modification of channel function. However, staurosporine-induced caspase-3 activation in DT40 TKO cells stably expressing the S2681A mutant was markedly enhanced when compared with wild-type or S2681E IP3Rs. We conclude that IP3 receptors are in vivo substrates for Akt kinase and that phosphorylation of the IP3R may provide one mechanism to restrain the apoptotic effects of calcium.  相似文献   

5.
The metabolism of myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] consists of two pathways: dephosphorylation by 5-phosphomonoesterase(s) produces inositol 1,4-bisphosphate, and phosphorylation by Ins(1,4,5)P3 3-kinase yields inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. The requirements for Ins(1,4,5)P3 kinase activity in retina were characterized. Apparent Km values for ATP and Ins(1,4,5)P3 are 1.4 mM and 1.3 microM respectively. A direct demonstration of phosphorylation of Ins(1,4,5)P3 by [gamma-32P]ATP was achieved. Characterization of the 32P-labelled product revealed that it had the expected chromatographic and electrophoretic properties of Ins(1,3,4,5)P4.  相似文献   

6.
IP3 analogs were synthesized by the modification of phosphate at the 1-position, and their affinity for the IP3 receptor was analyzed by means of surface plasmon resonance measurements. Our results suggest that a hydrophobic and charged moiety linked to this position enhances the affinity for the IP3 receptor.  相似文献   

7.
Possible binding sites for inositol 1,4,5-trisphosphate in macrophages   总被引:1,自引:0,他引:1  
We reported that an arylazide derivative of inositol 1,4,5-trisphosphate (InsP3) caused irreversible InsP3-induced Ca2+ release from saponin-permeabilized macrophages after photoirradiation. To determine the specific receptors for InsP3, presumably present on the endoplastic reticulum, we synthesized isotope-labeled arylazide derivatives of InsP3; InsP3 was coupled with p-azidobenzoyl [3H]beta-alanine (InsP3-[3H]AB beta A) or p-[125I]azidosalicyl beta-alanine (InsP3-[125I]AS beta A). We report here that three proteins may be associated with the Ca2+ releasing mechanism, in photoirradiated saponin-permeabilized macrophages and in the microsomal fraction.  相似文献   

8.
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)相似文献   

9.
Inositol 1,3,4,5-tetrakisphosphates (Ins(1,3,4,5)P4), 32P-labelled in positions 4 and 5 were prepared enzymatically, using [4-32P]-phosphatidylinositol 4-phosphate (PtdInsP) and [5-32P]phosphatidylinositol 4,5-bisphosphate (PtdInsP2) as substrates, respectively. Degradation studies of Ins(1,3,4,5)P4, using an enriched phosphatase preparation from porcine brain cytosol, led to the formation of two inositol trisphosphate isomers which were identified as inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). This novel degradation pathway of Ins(1,3,4,5)P4 to Ins(1,4,5)P3 provides an additional source for the generation of Ins(1,4,5)P3, involving a 3-phosphatase.  相似文献   

10.
The possibility that chronic activation of the phosphoinositide-mediated signaling pathway modifies the Ca(2+)-mobilizing action of inositol 1,4,5-trisphosphate (InsP3) was examined. SH-SY5Y human neuroblastoma cells were exposed to carbachol, permeabilized electrically, loaded with 45Ca2+, and 45Ca2+ mobilization in response to exogenous InsP3 was assessed. In control permeabilized cells, InsP3 released 65 +/- 2% of sequestered 45Ca2+ (EC50 = 0.32 +/- 0.05 microM). Pre-treatment with carbachol reduced both maximal InsP3-induced 45Ca2+ release (to 34 +/- 3%, with half-maximal and maximal inhibition at approximately 3 and 6 h, respectively) and the potency of InsP3 (EC50 = 0.92 +/- 0.13 microM). This inhibitory effect of carbachol was half-maximal at approximately 5 microM, was mediated by muscarinic receptors, and was reversible following withdrawal of agonist. Pretreatment with phorbol 12,13-dibutyrate did not alter the maximal effect of InsP3 but doubled its EC50. Evidence suggesting that the inhibitory effects of carbachol pretreatment resulted from altered Ca2+ homeostasis was not forthcoming; both 45Ca2+ uptake and release induced by ionomycin and thapsigargin were identical in control and pretreated permeabilized cells, as were the characteristics of reuptake of released Ca2+. In contrast, carbachol pretreatment, without altering the affinity of InsP3 (Kd = 64 +/- 7 nM), reduced the density of [32P]InsP3-binding sites from 2.0 +/- 0.1 to 1.0 +/- 0.1 pmol/mg protein with a time course essentially identical to that for the reduction in responsiveness to InsP3. This effect was not mimicked by pretreatment of cells with phorbol 12,13-dibutyrate. These data indicate that chronic activation of phosphoinositide hydrolysis can reduce the abundance of InsP3 receptors and that this causes a reduction in size of the InsP3-sensitive Ca2+ store. This modification, possibly in conjunction with a protein kinase C-mediated event, appears to account for the carbachol-induced suppression of InsP3 action. As intracellular InsP3 mass remained elevated above basal for at least 24 h after addition of carbachol, suppression of the Ca(2+)-mobilizing activity of InsP3 represents an important adaptive response to cell stimulation that can limit the extent to which intracellular Ca2+ is mobilized.  相似文献   

11.
12.
Zhang et al. and Maximov et al. [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056; A. Maximov, T. S. Tang, and I. Bezprozvanny, Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1N protein in neurons, Mol. Cell. Neurosci. 22 (2003) 271-283.] reported that 4.1N is a binding partner of inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1), however the binding site of IP(3)R1 differed: the former determined the C-terminal 14 amino acids of the cytoplasmic tail (CTT14aa) as the binding site, while the latter assigned another segment, cytoplasmic tail middle 1 (CTM1). To solve this discrepancy, we performed immunoprecipitation and found that both the segments had binding activity to 4.1N. Both segments also interfered the 4.1N-regulated IP(3)R1 diffusion in neuronal dendrites. However, IP(3)R1 lacking the CTT14aa (IP(3)R1-DeltaCTT14aa) does not bind to 4.1N [S. Zhang, A. Mizutani, C. Hisatsune, T. Higo, H. Bannai, T. Nakayama, M. Hattori, and K. Mikoshiba, Protein 4.1N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells, J. Biol. Chem. 278 (2003) 4048-4056.] and its diffusion constant is larger than that of IP(3)R1 full-length in neuronal dendrites [K. Fukatsu, H. Bannai, S. Zhang, H. Nakamura, T. Inoue, and K. Mikoshiba, Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1N in neuronal dendrites, J. Biol. Chem. 279 (2004) 48976-48982.]. We conclude that both the CTT14aa and CTM1 sequences can bind to 4.1N in peptide fragment forms. However, we propose that the responsible binding site for 4.1N binding in full-length tetramer form of IP(3)R1 is CTT14aa.  相似文献   

13.
A recombinant protein (Lbs-1) containing the N-terminal 581 amino acids of the mouse type 1 inositol 1,4,5-trisphosphate receptor (IP3R-1), including the complete IP3-binding site, was expressed in the soluble fraction of E. coli. The characteristics of IP3 binding to this protein were similar as observed previously for the intact IP3R-1. Ca2+ dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 200 nM. This effect represented a decrease in the affinity of Lbs-1 for IP3, because the Kd increased from 115 +/- 15 nM in the absence to 196 +/- 18 nM in the presence of 5 microM Ca2+. The maximal effect of Ca2+ on Lbs-1 (5 microM Ca2+, 42.0 +/- 6.4% inhibition) was similar to the maximal inhibition observed for microsomes of insect Sf9 cells expressing full-length IP3R-1 (33.8 +/- 10.2%). Conceivably, the two contiguous Ca2+-binding sites (residues 304-450 of mouse IP3R-1) previously found by us (Sienaert, I., Missiaen, L., De Smedt, H., Parys, J.B., Sipma, H., and Casteels, R. (1997) J. Biol. Chem. 272, 25899-25906) mediate the effect of Ca2+ on IP3 binding to IP3R-1. Calmodulin also dose-dependently inhibited IP3 binding to Lbs-1 with an IC50 of about 3 microM. Maximal inhibition (10 microM calmodulin, 43.1 +/- 5.9%) was similar as observed for Sf9-IP3R-1 microsomes (35.8 +/- 8.7%). Inhibition by calmodulin occurred independently of Ca2+ and was additive to the inhibitory effect of 5 microM Ca2+ (together 74.5 +/- 5.1%). These results suggest that the N-terminal ligand-binding region of IP3R-1 contains a calmodulin-binding domain that binds calmodulin independently of Ca2+ and that mediates the inhibition of IP3 binding to IP3R-1.  相似文献   

14.
Ca2+ exerts both a stimulatory and inhibitory effect on type-I IP3R channel activity. However, the structural determinants of Ca2+ sensing in IP3Rs are not fully understood. Previous studies by others have identified eight domains of the type-I IP3R that bind 45Ca2+ when expressed as GST-fusion proteins. We have mutated six highly conserved acidic residues within the second of these domains (aa378-450) in the full-length IP3R and measured the Ca2+ regulation of IP3-mediated Ca2+ release in COS-7 cells. 45Ca2+ flux assays measured with a maximal [IP3] (1 microM) indicate that one of the mutants retained a Ca2+ sensitivity that was not significantly different from control (E411Q), three of the mutants show an enhanced Ca2+ inhibition (D426N, E428Q and E439Q) and two of the mutants were relatively insensitive to Ca2+ inhibition (D442N and D444N). IP3 dose-response relationships indicated that the sensitivity to Ca2+ inhibition and affinity for IP3 were correlated for three of the constructs. Other mutants with enhanced IP3 sensitivity (e.g. R441Q and a type-II/I IP3R chimera) were also less sensitive to Ca2+ inhibition. We conclude that the acidic residues within the aa378-450 segment are unlikely to represent a single functional Ca2+ binding domain and do not contribute to Ca2+ activation of the receptor. The different effects of the mutations may be related to their location within two clusters of acidic residues identified in the crystal structure of the ligand-binding domain [I. Bosanac, J.R. Alattia, T.K. Mal, et al., Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand, Nature 420 (2002) 696-700]. The data support the view that all IP3R isoforms may display a range of Ca2+ sensitivities that are determined by multiple sites within the protein and markedly influenced by the affinity of the receptor for IP3.  相似文献   

15.
Inositol 1,4,5-trisphosphate (IP3) releases internal stores of calcium by binding to a specific membrane receptor which includes both the IP3 recognition site as well as the associated calcium channel. The IP3 receptor is regulated by ATP, calcium, and phosphorylation by protein kinase A, protein kinase C, and calcium/calmodulin-dependent protein kinase II. Its cDNA sequence predicts at least two consensus sequences where nucleotides might bind, and direct binding of ATP to the IP3 receptor has been demonstrated. In the present study, we demonstrate autophosphorylation of the purified and reconstituted IP3 receptor on serine and find serine protein kinase activity of the IP3 receptor toward a specific peptide substrate. Several independent purification procedures do not separate the IP3 receptor protein from the phosphorylating activity, and many different protein kinase activators and inhibitors do not identify protein kinases as contaminants. Also, renaturation experiments reveal autophosphorylation of the monomeric receptor on polyvinylidene difluoride membranes.  相似文献   

16.
Allosteric binding of calcium ion (Ca2+) to inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) controls channel gating within IP3R. Here, we present biochemical and electron microscopic evidence of Ca2+-sensitive structural changes in the three-dimensional structure of type 1 IP3R (IP3R1). Low concentrations of Ca2+ and high concentrations of Sr2+ and Ba2+ were shown to be effective for the limited proteolysis of IP3R1, but Mg2+ had no effect on the proteolysis. The electron microscopy and the limited proteolysis consistently demonstrated that the effective concentration of Ca2+ for conformational changes in IP3R1 was <10(-7) m and that the IP3 scarcely affected the conformational states. The structure of IP3R1 without Ca2+, as reconstructed by three-dimensional electron microscopy, had a "mushroom-like" appearance consisting of a large square-shaped head and a small channel domain linked by four thin bridges. The projection image of the "head-to-head" assembly comprising two particles confirmed the mushroom-like side view. The "windmill-like" form of IP3R1 with Ca2+ also contains the four bridges connecting from the IP3-binding domain toward the channel domain. These data suggest that the Ca2+-specific conformational change structurally regulates the IP3-triggered channel opening within IP3R1.  相似文献   

17.
Formation and biological action of inositol 1,4,5-trisphosphate   总被引:1,自引:0,他引:1  
A wide variety of receptors appear to be coupled to a phospholipase C (EC 3.1.4.3) that hydrolyzes inositol lipids. This reaction is believed to provide a link between receptor activation and cellular Ca2+ mobilization. The mechanisms by which this occurs are believed to involve inositol 1,4,5-trisphosphate (1,4,5-IP3), which signals release of Ca2+ from the endoplasmic reticulum. In rat parotid acinar cells made permeable with saponin, 1,4,5-IP3 induced rapid release of sequestered Ca2+. In intact parotid cells, the concentration-response relationship for methacholine-induced IP3 formation was similar to the relationship for muscarinic receptor occupancy by methacholine. About 10-fold lower concentrations of methacholine were sufficient to increase cytosolic [Ca2+] and to activate secretion, indicating an excess IP3 forming capacity for the muscarinic receptor. The mechanisms for the coupling of receptors to IP3 formation were studied in pancreatic acinar cells made permeable electrically. In this preparation, nonhydrolyzable derivatives of GTP potentiated agonist-induced IP3 production, which suggests the involvement of a guanine nucleotide-dependent regulatory protein. The effects of agonists and guanine nucleotides were not altered by pretreating the acinar cells with cholera or pertussis toxins, which indicated that the regulatory protein linking receptors to IP3 formation is distinct from the ones involved in the regulation of adenylate cyclase.  相似文献   

18.
19.
Calcium release via intracellular Ca2+ release channels is a central event underpinning the generation of numerous, often divergent physiological processes. In electrically non-excitable cells, this Ca2+ release is brought about primarily through activation of inositol 1,4,5-trisphosphate receptors and typically takes the form of calcium oscillations. It is widely believed that information is carried in the temporal and spatial characteristics of these signals. Furthermore, stimulation of individual cells with different agonists can generate Ca2+ oscillations with dramatically different spatial and temporal characteristics. Thus, mechanisms must exist for the acute regulation of Ca2+ release such that agonist-specific Ca2+ signals can be generated. One such mechanism by which Ca2+ signals can be modulated is through simultaneous activation of multiple second messenger pathways. For example, activation of both the InsP3 and cAMP pathways leads to the modulation of Ca2+ release through protein kinase A mediated phosphoregulation of the InsP3R. Indeed, each InsP3R subtype is a potential substrate for PKA, although the functional consequences of this phosphorylation are not clear. This review will focus on recent advances in our understanding of phosphoregulation of InsP3R, as well as the functional consequences of this modulation in terms of eliciting specific cellular events.  相似文献   

20.
The inositol 1,4,5-trisphosphate receptor (InsP(3)R), an intracellular calcium channel, has three isoforms with >65% sequence homology, yet the isoforms differ in their function and regulation by post-translational modifications. We showed previously that InsP(3)R-1 is functionally modified by O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) (Rengifo, J., Gibson, C. J., Winkler, E., Collin, T., and Ehrlich, B. E. (2007) J. Neurosci. 27, 13813-13821). We now report the effect of O-GlcNAcylation on InsP(3)R-2 and InsP(3)R-3. Analysis of AR4-2J cells, a rat pancreatoma cell line expressing predominantly InsP(3)R-2, showed no detectable O-GlcNAcylation of InsP(3)R-2 and no significant functional changes despite the presence of the enzymes for addition (O-β-N-acetylglucosaminyltransferase) and removal (O-β-N-acetylglucosaminidase) of the monosaccharide. In contrast, InsP(3)R-3 in Mz-ChA-1 cells, a human cholangiocarcinoma cell line expressing predominantly InsP(3)R-3, was functionally modified by O-GlcNAcylation. Interestingly, the functional impact of O-GlcNAcylation on the InsP(3)R-3 channel was opposite the effect measured with InsP(3)R-1. Addition of O-GlcNAc by O-β-N-acetylglucosaminyltransferase increased InsP(3)R-3 single channel open probability. Incubation of Mz-ChA-1 cells in hyperglycemic medium caused an increase in the InsP(3)-dependent calcium release from the endoplasmic reticulum. The dynamic and inducible nature of O-GlcNAcylation and the InsP(3)R isoform specificity suggest that this form of modification of InsP(3)R and subsequent changes in intracellular calcium transients are important in physiological and pathophysiological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号