首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many cyanobacteria produce microcystins, hepatotoxic cyclic heptapeptides that can affect animals and humans. The effects of photosynthetically active radiation (PAR) on microcystin production by Microcystis strain PCC 7806 were studied in continuous cultures. Microcystis strain PCC 7806 was grown under PAR intensities between 10 and 403 μmol of photons m−2 s−1 on a light-dark rhythm of 12 h -12 h. The microcystin concentration per cell, per unit biovolume and protein, was estimated under steady-state and transient-state conditions and on a diurnal timescale. The cellular microcystin content varied between 34.5 and 81.4 fg cell−1 and was significantly positively correlated with growth rate under PAR-limited growth but not under PAR-saturated growth. Microcystin production and PAR showed a significant positive correlation under PAR-limited growth and a significant negative correlation under PAR-saturated growth. The microcystin concentration, as a ratio with respect to biovolume and protein, correlated neither with growth rate nor with PAR. Adaptation of microcystin production to a higher irradiance during transient states lasted for 5 days. During the period of illumination at a PAR of 10 and 40 μmol of photons m−2 s−1, the intracellular microcystin content increased to values 10 to 20% higher than those at the end of the dark period. Extracellular (dissolved) microcystin concentrations were 20 times higher at 40 μmol of photons m−2 s−1 than at 10 μmol of photons m−2 s−1 and did not change significantly during the light-dark cycles at both irradiances. In summary, our results showed a positive effect of PAR on microcystin production and content of Microcystis strain PCC 7806 up to the point where the maximum growth rate is reached, while at higher irradiances the microcystin production is inhibited.  相似文献   

2.
3.
Insights into the origins, function(s), and fates of cyanobacterial toxins may be obtained by an understanding of their location within cyanobacterial cells. Here, we have localised microcystins in laboratory cultures of Microcystis PCC 7806 and PCC 7820 by immunogold labelling. Cryosectioning was used for immunoelectron microscopy since microcystins were extracted during the ethanol-based dehydration steps routinely used for sample preparation. Microcystins were specifically localised in the nucleoplasm and were associated with all major inclusions of the microcystin-producing strains Microcystis PCC 7806 (MC(+)) and Microcystis PCC 7820, and labelling was preferentially associated with the thylakoids and around polyphosphate bodies. A mutant strain of Microcystis PCC 7806 (MC(-)) which does not produce microcystins was used as a control. Distribution of total gold label within each cell region or associated with inclusions indicated that most of the cells' microcystin pool was associated with the thylakoids (69%, PCC 7806 (MC(+)); 78%, PCC 7820), followed by the nucleoplasmic region (19%, PCC 7806 (MC(+)); 12%, PCC 7820). Cryosectioning is a useful technique since it reduces the extraction of microcystins during sample preparation for electron microscopy.  相似文献   

4.
Microcystins are the most common cyanobacterial toxins found in freshwater lakes and reservoirs throughout the world. They are frequently produced by the unicellular, colonial cyanobacterium Microcystis aeruginosa; however, the role of the peptide for the producing organism is poorly understood. Differences in the cellular aggregation of M. aeruginosa PCC 7806 and a microcystin-deficient Delta mcyB mutant guided the discovery of a surface-exposed protein that shows increased abundance in PCC 7806 mutants deficient in microcystin production compared to the abundance of this protein in the wild type. Mass spectrometric and immunoblot analyses revealed that the protein, designated microcystin-related protein C (MrpC), is posttranslationally glycosylated, suggesting that it may be a potential target of a putative O-glycosyltransferase of the SPINDLY family encoded downstream of the mrpC gene. Immunofluorescence microscopy detected MrpC at the cell surface, suggesting an involvement of the protein in cellular interactions in strain PCC 7806. Further analyses of field samples of Microcystis demonstrated a strain-specific occurrence of MrpC possibly associated with distinct Microcystis colony types. Our results support the implication of microcystin in the colony specificity of and colony formation by Microcystis.  相似文献   

5.
Iron uptake by microcystin-producing and non-microcystin-producing strains of Microcystis aeruginosa was investigated through short-term uptake assays. Although strain-specific differences were observed, the siderophore-independent Fe uptake kinetics were essentially similar (e.g., maximum uptake rates of 2.0 to 3.3 amol·cell(-1)·h(-1)) for the wild-type toxic strain PCC7806 and a genetically engineered mutant unable to produce microcystin.  相似文献   

6.
The influence of cell-bound microcystins on the survival time and feeding rates of six Daphnia clones belonging to five common species was studied. To do this, the effects of the microcystin-producing Microcystis strain PCC7806 and its mutant, which has been genetically engineered to knock out microcystin synthesis, were compared. Additionally, the relationship between microcystin ingestion rate by the Daphnia clones and Daphnia survival time was analyzed. Microcystins ingested with Microcystis cells were poisonous to all Daphnia clones tested. The median survival time of the animals was closely correlated to their microcystin ingestion rate. It was therefore suggested that differences in survival among Daphnia clones were due to variations in microcystin intake rather than due to differences in susceptibility to the toxins. The correlation between median survival time and microcystin ingestion rate could be described by a reciprocal power function. Feeding experiments showed that, independent of the occurrence of microcystins, cells of wild-type PCC7806 and its mutant are able to inhibit the feeding activity of Daphnia. Both variants of PCC7806 were thus ingested at low rates. In summary, our findings strongly suggest that (i) sensitivity to the toxic effect of cell-bound microcystins is typical for Daphnia spp., (ii) Daphnia spp. and clones may have a comparable sensitivity to microcystins ingested with food particles, (iii) Daphnia spp. may be unable to distinguish between microcystin-producing and -lacking cells, and (iv) the strength of the toxic effect can be predicted from the microcystin ingestion rate of the animals.  相似文献   

7.
The evolution of the microcystin toxin gene cluster in phylogenetically distant cyanobacteria has been attributed to recombination, inactivation, and deletion events, although gene transfer may also be involved. Since the microcystin-producing Microcystis aeruginosa PCC 7806 is naturally transformable, we have initiated the characterization of its type IV pilus system, involved in DNA uptake in many bacteria, to provide a physiological focus for the influence of gene transfer in microcystin evolution. The type IV pilus genes pilA, pilB, pilC, and pilT were shown to be expressed in M. aeruginosa PCC 7806. The purified PilT protein yielded a maximal ATPase activity of 37.5 +/- 1.8 nmol P(i) min(-1) mg protein(-1), with a requirement for Mg(2+). Heterologous expression indicated that it could complement the pilT mutant of Pseudomonas aeruginosa, but not that of the cyanobacterium Synechocystis sp. strain PCC 6803, which was unexpected. Differences in two critical residues between the M. aeruginosa PCC 7806 PilT (7806 PilT) and the Synechocystis sp. strain PCC 6803 PilT proteins affected their theoretical structural models, which may explain the nonfunctionality of 7806 PilT in its cyanobacterial counterpart. Screening of the pilT gene in toxic and nontoxic strains of Microcystis was also performed.  相似文献   

8.
Pan X  Chang F  Kang L  Liu Y  Li G  Li D 《Journal of plant physiology》2008,165(16):1691-1697
Environmental factors that affect the growth and microcystin production of microcystis have received worldwide attention because of the hazards microcystin poses to environmental safety and public health. Nevertheless, the effects of organic anthropogenic pollution on microcystis are rarely discussed. Gibberellin A(3) (GA(3)) is a vegetable hormone widely used in agriculture and horticulture that can contaminate water as an anthropogenic pollutant. Because of its common occurrence, we studied the effects of GA(3) on growth and microcystin production of Microcystis aeruginosa (M. aeruginosa) PCC7806 with different concentrations (0.001-25mg/L) in batch culture. The control was obtained without gibberellin under the same culture conditions. Growth, estimated by dry weight and cell number, increased after the GA(3) treatment. GA(3) increased the amounts of chlorophyll a, phycocyanin and cellular-soluble protein in the cells of M. aeruginosa PCC7806, but decreased the accumulation of water-soluble carbohydrates. In addition, GA(3) was observed to affect nitrogen absorption of the test algae, but to have no effect on the absorption of phosphorus. The amount of microcystin measured by enzyme-linked immunosorbent assay (ELISA) increased in GA(3) treatment groups, but the stimulatory effects were different in different culture phases. It is suggested that GA(3) increases M. aeruginosa growth by stimulating its absorbance of nitrogen and increasing its ability to use carbohydrates, accordingly increasing cellular pigments and thus finally inducing accumulation of protein and microcystin.  相似文献   

9.
Microcystin, a hepatotoxin that represents a serious health risk for humans and livestock, is produced by the bloom-forming cyanobacterium Microcystis aeruginosa in freshwater bodies worldwide. Here we describe the discovery of a lectin, microvirin (MVN), in M. aeruginosa PCC7806 that shares 33% identity with the potent anti-HIV protein cyanovirin-N from Nostoc ellipsosporum. Carbohydrate microarrays were employed to demonstrate the high specificity of the protein for high-mannose structures containing alpha(1-->2) linked mannose residues. Lectin binding analyses and phenotypic characterizations of MVN-deficient mutants suggest that MVN is involved in cell-cell recognition and cell-cell attachment of Microcystis. A binding partner of MVN was identified in the lipopolysaccharide fraction of M. aeruginosa PCC7806. MVN is differentially expressed in mutants lacking the hepatotoxin microcystin. Additionally, MVN-deficient mutants contain much lower amounts of microcystin than the wild-type cells. We discuss a possible functional correlation between microcystin and the lectin and possible implications on Microcystis morphotype formation. This study provides the first experimental evidence that microcystins may have an impact on Microcystis colony formation that is highly important for the competitive advantage of Microcystis over other phytoplankton species.  相似文献   

10.
Batch cultures of both Microcystis PCC7806 and a mcyA? knockout mutant (MT) of PCC7806 were cultured at three different light intensities and five media treatments, so as to vary cellular N:C ratios and concentrations and sampled daily over 5 d for analysis of microcystin concentration, cell numbers, and residual nitrate in the growth medium. A competitive survival advantage was noted at a high‐light level (37 μmol photons · m?2 · s?1), where the toxic strain survived while the nontoxic strain became chlorotic. A strong correlation (r2 = 0.91, P < 0.001, N = 22) between microcystin concentration and growth rate was observed at high‐light conditions. No advantage was observed at optimal or low‐light conditions, and media composition had no significant effect on the relationship between toxicity and survival at high‐light conditions. These data suggest a possible role for microcystin in protection against photooxidation.  相似文献   

11.
To elucidate the changes in the proportions of microcystin (MC)-producing Microcystis, non-MC-producing Microcystis and Anabaena strains during cyanobacteria blooms, we compared their fitness under different initial biomass ratios. Culture experiments were carried out with three cyanobacterial strains: single-celled toxic Microcystis aeruginosa PCC7806 (Ma7806), single-celled nontoxic Microcystis wesenbergii FACHB-929 (Mw929) and filamentous Anabaena PCC7120 (An7120). Growth curves expressed as biovolume, Ma7806 microcystin-LR (MC-LR) content (detected with HPLC and ELISA), and the culture medium dissolved total nitrogen and dissolved total phosphorous (DTP) were measured to monitor nutrient uptake. Results suggest that the dominant strain in competition experiments between Ma7806 and An7120 was mainly controlled by the initial biomass ratio of the two strains, but there was also evidence for allelopathic interactions, where MC-LR produced by Ma7806 played an important role in the competition process. However, Mw929 was always less competitive when co-cultured with An7120 regardless of initial biomass ratio. Culture medium DTP showed significant differences between competition experiments in all sets, suggesting that Mw929 could be more suited to low phosphorus environments than Ma7806 and An7120. Overall, the competitive ability of Ma7806 was stronger than Mw929 when co-cultured with An7120 in the case of excess nutrients and the results could well unravel the seasonal succession process of cyanobacteria blooms.  相似文献   

12.
The effects of microcystins on Daphnia galeata, a typical filter-feeding grazer in eutrophic lakes, were investigated. To do this, the microcystin-producing wild-type strain Microcystis aeruginosa PCC7806 was compared with a mcy PCC7806 mutant, which could not synthesize any variant of microcystin due to mutation of a microcystin synthetase gene. The wild-type strain was found to be poisonous to D. galeata, whereas the mcy mutant did not have any lethal effect on the animals. Both variants of PCC7806 were able to reduce the Daphnia ingestion rate. Our results suggest that microcystins are the most likely cause of the daphnid poisoning observed when wild-type strain PCC7806 is fed to the animals, but these toxins are not responsible for inhibition of the ingestion process.  相似文献   

13.
利用发酵罐加装外置环形光源构建藻类连续培养系统, 以产毒微囊藻PCC 7806及其无毒突变株PCC 7806 mcyB–为培养材料, 通过对补料时间、接种密度和稀释率参数的优化, 获得最优培养条件, 并应用于产毒与无毒微囊藻的竞争实验中。通过优化得到连续培养的最优培养条件: 补料时间为第4天, 起始接种密度为4×106 cells/mL, 稀释率为0.15/d。在连续培养下, 光照为35 μmol/(m2·s)时, 以1﹕1的起始比例接种产毒与无毒微囊藻, 二者间的竞争会达到平衡, 并以无毒微囊藻占据优势, 且两者以不同的优势度长时间维持不变。在此基础上, 开展了不同光强对产毒与无毒微囊藻竞争影响的实验, 结果表明, 光强为35和80 μmol/(m2·s)时, 无毒株在连续培养中占据优势; 而光强为5和15 μmol/(m2·s)时, 无毒和产毒微囊藻维持起始接种比例不变。研究通过优化连续培养条件为室内藻类竞争实验提供了更为适宜的培养模式。  相似文献   

14.
蓝藻毒素的研究概况   总被引:5,自引:0,他引:5  
综述了近20年来有关藻毒素检测技术、脱毒降毒方法、微囊藻毒素(MC)与环境因子关系、MC对水生生物的影响、合成机理、Microcystis aeruginosa PCC7806专题及其他相关研究的进展。国内在此领域上的研究还比较薄弱,且更多集中在宏观层面上。  相似文献   

15.
16.
This study aims to check if the protein content of a cyanobacterial culture is a reliable biomass parameter for cyanobacteria in laboratory experiments, and therefore can be proposed as a standard biomass parameter in culture work to facilitate comparison of results from different studies. For this purpose, the cyanobacteria Microcystis aeruginosa PCC 7806 and Planktothrix agardhii PT2 were grown in 10-L batch cultures with O2 medium and under iron-, nitrate- or phosphate-limited conditions. A linear correlation was found between protein and biovolume in all cultures during exponential growth. We conclude that protein is a suitable biomass parameter for cyanobacteria in laboratory experiments during balanced growth.  相似文献   

17.
18.
汪燕  李珊珊  李建宏  邓洁  潘澄  李朋富 《生态学报》2011,31(21):6532-6539
采用紫外(UV)滤膜过滤日光UV以及紫外灯添加UV的方法,研究了UV辐射对铜绿微囊藻Microcystis aeruginosa单细胞藻株PCC7806和群体藻XW01生长及生理代谢的影响。结果显示,在室内条件下低剂量UV辐射可促进群体微囊藻XW01生长;室外条件下与滤除了UV的光照相比,含有UV的完全日光更有利于微囊藻生长;而相同的UV辐射强度均导致单细胞株死亡,群体株显示了较强的UV抗性;日光中的UV可促进XW01合成抗氧化相关的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)、促进胞外多糖的产生并形成较大的群体、促进UV屏障物质类菌孢素氨基酸(MAAs)和伪枝藻素(Scy)积累。这些生理代谢的改变,消除了阳光辐射中UV对微囊藻的伤害。研究的结果提示,自然条件下阳光中的UV有助于群体微囊藻生长。  相似文献   

19.
This study investigated the effects of light intensity, temperature, and phosphorus limitation on the peptide production of the cyanobacteria Microcystis PCC 7806 and Anabaena 90. Microcystis PCC 7806 produced two microcystin variants and three cyanopeptolins, whereas Anabaena 90 produced four microcystin variants, three anabaenopeptins, and two anabaenopeptilides. Microcystin and cyanopeptolin contents varied by a factor 2–3, whereas the anabaenopeptins and anabaenopeptilides of Anabaena varied more strongly. Under phosphorus limitation, peptide production rates increased with the specific growth rate. The response of peptide production to light intensity and temperature was more complex: in many cases peptide production decreased with specific growth rate. We observed compensatory changes of different peptide variants: decreased cyanopeptolin A and C contents were accompanied by increased cyanopeptolin 970 contents, and decreased anabaenopeptin A and C contents were accompanied by increased anabaenopeptilide 90B contents. Compensatory dynamics in peptide production may enable cyanobacteria to sustain stable peptide levels in a variable environment.  相似文献   

20.
为研究微囊藻毒素合成酶基因的蛋白表达水平与环境因子间的关系,文章以位于微囊藻毒素合成基因簇两个操纵子中的mcyC和mcyI基因为代表,利用制备的高效McyC和McyI多克隆抗体,采用Western Blot技术检测了铁胁迫对微囊藻毒素合成酶McyC和McyI蛋白表达水平的影响。研究结果表明,在铁胁迫下,铜绿微囊藻PCC 7806藻细胞内McyC和McyI的蛋白水平变化趋势一致,且与相同条件下藻细胞内毒素的合成产量变化一致,暗示铁胁迫直接通过影响微囊藻毒素合成酶的表达水平调控毒素的合成。研究为进一步了解微囊藻毒素的合成机制提供了基础材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号