首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The outer segment portion of photoreceptor rod cells is composed of a stacked array of disk membranes. Newly formed disks are found at the base of the rod outer segment (ROS) and are relatively high in membrane cholesterol. Older disks are found at the apical tip of the ROS and are low in membrane cholesterol. Disk membranes were separated based on their membrane cholesterol content and the extent of membrane protein phosphorylation determined. Light induced phosphorylation of ROS disk membrane proteins was investigated using magic angle spinning31P NMR. When intact rod outer segment preparations were stimulated by light, in the presence of endogenously available kinases, membrane proteins located in disks at the base of the ROS were more heavily phosphorylated than those at the tip. SDS-gel electrophoresis of the phosphorylated disk membranes subpopulations identified a phosphoprotein species with a molecular weight of approximately 68–72 kDa that was more heavily phosphorylated in newly formed disks than in old disks. The identity of this phosphoprotein is presently under investigation. When the phosphorylation reaction was carried out in isolated disk membrane preparations with exogenously added co-factors and kinases, there was no preferential protein phosphorylation. Taken collectively, these results suggest that within the ROS there is a protein phosphorylation gradient that maybe indicative of co-factor or kinase heterogeneity.  相似文献   

2.
Inactivation of the visual G protein transducin, during recovery from photoexcitation, is regulated by RGS9-1, a GTPase-accelerating protein of the ubiquitous RGS protein family. Incubation of dark-adapted bovine rod outer segments with [gamma-(32)P]ATP led to RGS9-1 phosphorylation by an endogenous kinase in rod outer segment membranes, with an average stoichiometry of 0.2-0.45 mol of phosphates/mol of RGS9-1. Mass spectrometry revealed a single major site of phosphorylation, Ser(475). The kinase responsible catalyzed robust phosphorylation of recombinant RGS9-1 and not of an S475A mutant. A synthetic peptide corresponding to the region surrounding Ser(475) was also phosphorylated, and a similar peptide with the S475A substitution inhibited RGS9-1 phosphorylation. The RGS9-1 kinase is a peripheral membrane protein that co-purifies with rhodopsin in sucrose gradients and can be extracted in buffers of high ionic strength. It is not inhibited or activated significantly by a panel of inhibitors or activators of protein kinase A, protein kinase G, rhodopsin kinase, CaM kinase II, casein kinase II, or cyclin-dependent kinase 5, at concentrations 50 or more times higher than their reported IC(50) or K(i) values. It was inhibited by the protein kinase C inhibitor bisindolylmaleimide I and by lowering Ca(2+) to nanomolar levels with EGTA; however, it was not stimulated by the addition of phorbol ester, under conditions that significantly enhanced rhodopsin phosphorylation. A monoclonal antibody specific for the Ser(475)-phosphorylated form of RGS9-1 recognized RGS9-1 in immunoblots of dark-adapted mouse retina. Retinas from light-adapted mice had much lower levels of RGS9-1 phosphorylation. Thus, RGS9-1 is phosphorylated on Ser(475) in vivo, and the phosphorylation level is regulated by light and by [Ca(2+)], suggesting the importance of the modification in light adaptation.  相似文献   

3.
A heat-stable, non-dialyzable inhibitory factor of cyclic nucleotide phosphodieterase was detected in and partially purified from bovine retina. The factor appears to be a protein, since the inhibitory activity was abolished by trypsin digestion but not by DNAase or RNAase treatment. The protein inhibitor from bovine retina effectively inhibits the Ca2+-independent phosphodiesterase from several sources, including bovine retina, bovine rod outer segment, and a human lymphoblastic leukemia cell line, indicating lack of tissue and species specificity.  相似文献   

4.
Phosphorylation of proteins in purified rod outer segment from frog retina was investigated. Phosphorylation of 18, 17, 12 and 11.5 kDa proteins was stimulated by cAMP (Ka approximately equal to 10(-7) M) and cGMP (Ka approximately equal to 10(-4) M). 32P-incorporation into 18 and 17 kDa proteins was much lower than into 12 and 11.5 kDa, which are in the group of main phosphoproteins of the rod outer segment: 12 and 11.5 kDA phosphoproteins appear to be present in cytoplasm or are slightly bound to disk's membranes. However, they are not discovered in the cytoplasmic membranes. The dephosphorylation of low-molecular weight proteins, discovered earlier by Polans et al., occurs slowly: the light doesn't change the level of phosphorylation of proteins in living retina within the time of photoresponse. It is suggested that the process of light-dependent phosphorylation-dephosphorylation of 12 and 11.5 kDa proteins controls the light sensitivity of the photoreceptor.  相似文献   

5.
By use of microelectrodes, changes in the receptor current and the Ca2+ concentration were measured in the rod layer of the rat retina after stimulation by flashes or steady light. Thereby light induced Ca2+ sources, and sinks along a rod were determined in dependence of time. Thus, the Ca2+ fluxes across the plasma membrane of a mammalian rod could be studied in detail. By light stimulation, Ca2+ sources are evoked along the outer segment only. Immediately after a saturating flash, a maximum of Ca2+ efflux is observed which decays exponentially with tau = 0.3 s at 37 degrees C (4.2 s at 23 degrees C). During regeneration of the dark current, the outer segment acts as a Ca2+ sink, indicating a restoration of the Ca(2+)-depleted outer segment. These findings agree with earlier reports on amphibian rods. Further experiments showed that the peak Ca2+ efflux and tau are temperature dependent. The peak amplitude also depends on the external Ca2+ concentration. In contrast to the reports on amphibian rods, only a part of the Ca2+ ions extruded from the outer segment is directly restored. Surprisingly, during steady light the Ca2+ efflux approaches a permanent residual value. Therefore, in course of a photoresponse, Ca2+ must be liberated irreversibly from internal Ca2+ stores. There is certain evidence that the inner segment acts as a Ca2+ store. Our results show that the Ca2+ fraction of the ions carrying the dark current is proportional to the extracellular Ca2+ concentration. This indicates that the Ca2+ permeability of the plasma membrane of the rod outer segment is independent of the Ca2+ concentration.  相似文献   

6.
Cholesterol-rich membranes or detergent-resistant membranes (DRMs) have recently been isolated from bovine rod outer segments and were shown to contain several signaling proteins such as, for example, transducin and its effector, cGMP-phosphodiesterase PDE6. Here we report the presence of rhodopsin kinase and recoverin in DRMs that were isolated in either light or dark conditions at high and low Ca2+ concentrations. Inhibition of rhodopsin kinase activity by recoverin was more effective in DRMs than in the initial rod outer segment membranes. Furthermore, the Ca2+ sensitivity of rhodopsin kinase inhibition in DRMs was shifted to lower free Ca2+ concentration in comparison with the initial rod outer segment membranes (IC50=0.76 microm in DRMs and 1.91 microm in rod outer segments). We relate this effect to the high cholesterol content of DRMs because manipulating the cholesterol content of rod outer segment membranes by methyl-beta-cyclodextrin yielded a similar shift of the Ca2+-dependent dose-response curve of rhodopsin kinase inhibition. Furthermore, a high cholesterol content in the membranes also increased the ratio of the membrane-bound form of recoverin to its cytoplasmic free form. These data suggest that the Ca2+-dependent feedback loop that involves recoverin is spatially heterogeneous in the rod cell.  相似文献   

7.
The Ca(2+)-dependent activation of retina-specific guanylyl cyclase (retGC) is mediated by guanylyl cyclase-activating proteins (GCAPs). Here we report for the first time detection of a 19 kDa protein (p19) with GCAP properties in extracts of rat retina and pineal gland. Both extracts stimulate synthesis of cGMP in rod outer segment (ROS) membranes at low (30 nM) but not at high (1 microM) concentrations of Ca(2+). At low Ca(2+), immunoaffinity purified p19 activates guanylyl cyclase(s) in bovine ROS and rat retinal membranes. Moreover, p19 is recognized by antibodies against bovine GCAP1 and, similarly to other GCAPs, exhibits a Ca(2+)-dependent electrophoretic mobility shift.  相似文献   

8.
125I-calmodulin gel overlay techniques have been used to identify calmodulin-binding proteins in teleost retina, in a rod fragment preparation which contains rod inner and outer segments (RIS-ROS), and in RIS-ROS cytoskeletons. We have previously shown that teleost rods change length in response to changes in light conditions, that rod movement is mediated by the actin filaments in the rod inner segment, and that both Ca2+ and cAMP appear to be involved in regulating rod movement. We report here the development of a rod fragment preparation (RIS-ROS), which retains the movable part of the rod, for use in biochemical analysis of rod motility. Gel overlay studies indicate that isolated whole retinas have six prominent calmodulin-binding proteins, migrating at 240 K, 190 K, 150 K, 61 K and a doublet at 18/19 K. In contrast, detached RIS-ROS have three different prominent calmodulin-binding proteins, migrating at 330 K, 33 K, and 31 K. RIS-ROS cytoskeletons have been produced by extraction with Triton X-100; they contain both actin filament bundles and microtubules associated with the connecting cilium. RIS-ROS cytoskeletons have 3 prominent calmodulin-binding proteins migrating at 240 and 18/19 K. These proteins produce faint bands in gel overlays of intact RIS-ROS, but prominent bands in overlays of whole retina. The 240 K protein of RIS-ROS cytoskeletons co-migrates with the 240 K calmodulin-binding subunit of rat brain fodrin. We suggest that the rod 240 K calmodulin-binding protein may be a spectrin-like protein which participates in Ca2+- and calmodulin-regulation of rod motility.  相似文献   

9.
A Ca(2+)-pumping ATPase activity is present in bovine retinal rod outer segment purified disks. The ATPase has a high Ca2+ affinity (KM = 25 microM). Low Ca2+ (n-microM) concentrations stimulate an ATP-dependent Ca2+ uptake and the ATP hydrolysis in the absence of exogenous Mg2+. Electrophoretic analysis of disk proteins after treatment with (gamma-32P)ATP shows the existence of the enzyme-phosphate acid-stable, hydroxylamine-sensitive intermediate complex of molecular mass of about 135 kDa. The results would indicate the presence of an inwardly directed Ca(2+)-ATPase pump acting on the disk membrane, that could be involved in the regulation of cytosolic free Ca2+ levels inside ROS.  相似文献   

10.
A heat-stable, non-dialyzable inhibitory factor of cyclic nucleotide phosphodiesterase was detected in and partially purified from bovine retina. The factor appears to be a protein, since the inhibitory activity was abolished by trypsin digestion but not by DNAase or RNAase treatment. The protein inhibitor from bovine retina effectively inhibits the Ca2+-independent phosphodiesterase from several sources, including bovine retina, bovine rod outer segment, and a human lymphoblastic leukemia cell line, indicating lack of tissue and species specificity.  相似文献   

11.
Magic angle spinning 31P-NMR (MAS 31P-NMR) spectra of bovine rod outer segments, unphosphorylated and phosphorylated, were obtained. In the phosphorylated samples the spectra showed new resonances not assignable to phospholipids. These signals were present only when stimulation of receptor phosphorylation occurred. These resonances were not due to exogenous, soluble phosphorus-containing compounds. Limited proteolysis to remove the carboxyl-terminal region of the photoreceptor that contains the phosphorylation sites removed these resonances. The chemical shifts were in the usual range for serine phosphate and threonine phosphate. The pKa obtained from a pH titration of the 31P chemical shift was typical of serine phosphate. Therefore, these 31P-NMR resonances were assigned to the phosphorylation sites on membrane proteins in the rod outer segment disk membranes. Static 31P-NMR measurements revealed that at least some of these sites gave rise to relatively narrow resonances, indicative of considerable motional freedom of the carboxyl-terminal segment of the photoreceptor when phosphorylated. These data indicate that it is possible to study phosphorylation sites on membrane proteins using MAS 31P-NMR, and that using in vivo 31P 'spin labelling' one can study directly and selectively regions of receptors crucial to receptor function.  相似文献   

12.
Ca2+-dependent GTPase activity is found to be present in the rod outer segments of frog retina. GTPase localization in rod outer segments is shown by fractionating the rod outer segment preparation in the sucrose density gradient. The enzyme is readily washed out of cells with isotonic NaCl solution. The Km is 0.6 mM for GTP. The activity is inhibited by 78 +/- 12% with the increase in Ca2+ concentration from 10(-9) to 10(-7) M. GTP hydrolysis is inhibited by the same concentrations of Ca2+ which block the sodium conductivity of the rod outer segment cytoplasmic membrane.  相似文献   

13.
Cyclic nucleotides (both cAMP and cGMP) stimulate the phosphorylation of several proteins of 65-70, 50-52, 21, 13, and 12 kD in rod outer segments (ROS) of the frog retina. Subcellular fractionation showed that phosphopeptides of 67, 21, 13, and 12 kD were soluble and phosphopeptides of 69, 67, 50-52, and 12 kD were membrane associated at physiological ionic strength. Components I and II, 13 and 12 kD, respectively, are the major cyclic nucleotide-dependent phosphoproteins of ROS and have been reported to be phosphorylated in the dark and dephosphorylated in the light. Under unstimulated conditions, phosphorylated Components I and II were found in the soluble fraction. Cyclic nucleotide stimulation of phosphorylation resulted in increased phospho-Components I and II in the soluble fraction, and phospho-Component II on the membrane. Light had no effect on the phosphorylation level of soluble Components I and II, but it caused a depletion within 1 s of the membrane-bound phospho-Component II. A half-maximal decrease in membrane-bound Component II was seen at 5 x 10(5) rhodopsins bleached per outer segment. The cyclic nucleotide-dependent protein kinase(s) were found primarily in the peripheral membrane fraction of ROS proteins. 8-bromo cyclic AMP was two orders of magnitude more effective than 8-bromo cyclic GMP at stimulating Component I and II phosphorylation. An active peptide of the Walsh inhibitor of cAMP-dependent protein kinase [PKI(5-22)amide] blocked the phosphorylation with an IC50 of 10 nM. Photoaffinity labeling studies with 8-N3-cAMP and 8-N3-cGMP revealed the presence of a 52-kD band specifically labeled with 8-N3-cAMP, but no specific 8-N3-cGMP labeling. These data suggest that cyclic nucleotide-dependent protein phosphorylation in ROS occurs via the activation of a cAMP-dependent protein kinase.  相似文献   

14.
We have previously described a method for the solubilization and reconstitution of the cGMP-gated cation channel from the membranes of bovine rod outer segments (Cook, N. J., Zeilinger, C., Koch, K.-W., and Kaupp, U. B. (1986) J. Biol. Chem. 261, 17033-17039). Here we report that not only cGMP but also sodium is capable of releasing entrapped calcium from liposomes reconstituted with total rod outer segment membrane proteins. Other alkali cations tested were unable to induce calcium efflux; therefore, we concluded that the sodium-induced calcium efflux was due to the sodium-calcium exchanger. Sodium was found to activate calcium efflux from these liposomes with an EC50 of approximately equal to 35 mM, comparable to values reported for the sodium-calcium exchanger in native rod outer segment membranes. We found that reconstitution of the sodium-calcium exchanger is quantitative and used this method to assay the exchange protein during purification using conventional protein chromatographic techniques. In this way, we were able to purify and identify as the rod outer segment sodium-calcium exchanger a glycoprotein of apparent Mr = 220,000 to greater than 90% homogeneity. The specific activity of the purified protein at room temperature was 8.2 mumol of Ca2+ exchanged min-1 mg-1 of protein at 50 mM Na+, corresponding to a turnover number of approximately equal to 30 Ca2+ (or 90 Na+) s-1 exchanger-1. The Mr = 220,000 protein reported here appears to be distinct from another protein ("rim protein") with an identical Mr known to exist in these membranes.  相似文献   

15.
After neuraminidase treatment the Na+/Ca2+ exchanger of bovine rod outer segments was found to specifically bind Ricinus communis agglutinin. SDS gel electrophoresis and Western blotting of ricin-binding proteins purified from rod outer segment membranes by lectin affinity chromatography revealed the existence of two major polypeptides of Mr 215K and 103K, the former of which was found to specifically react with PMe 1B3, a monoclonal antibody specific for the 230-kDa non-neuraminidase-treated Na+/Ca2+ exchanger. Reconstitution of the ricin affinity-purified exchanger into calcium-containing liposomes revealed that neuraminidase treatment had no significant effect on the kinetics of Na+/Ca2+ exchange activation by sodium. We further investigated the density of the Na+/Ca2+ exchanger in disk and plasma membrane preparations using Western blotting, radioimmunoassays, immunoelectron microscopy, and reconstitution procedures. The results indicate that the Na+/Ca2+ exchanger is localized in the rod photoreceptor plasma membrane and is absent or present in extremely low concentrations in disk membranes, as we have previously shown to be the case for the cGMP-gated cation channel. Previous reports describing the existence of Na+/Ca2+ exchange activity in rod outer segment disk membrane preparations may be due to the fusion of plasma membrane components and/or the presence of contaminating plasma membrane vesicles.  相似文献   

16.
Monoclonal antibodies to proteins important in phototransduction in the frog rod outer segment have been obtained. These include 6 different antibodies to rhodopsin, 50 to a guanine nucleotide binding protein (G-protein; 40,000 daltons), and 2 to cytoplasmic proteins. The antigens used were Percoll-purified rod outer segments, a rod outer segment soluble protein fraction, or a soluble plus peripheral membrane protein fraction. Antibodies were assayed by solid phase assay using a fluorogenic detection system. Proteins to which antibodies bound were assayed on Western blots, and the sensitivities of three different detection systems were compared. Most antibodies bound to only one rod outer segment protein band on Western blots. Immunofluorescence microscopy demonstrated binding of both anti-rhodopsin and anti-G-protein to isolated frog rod outer segments. Antibodies were purified from either culture supernatants or ascites fluid on protein A affinity columns. Two purified anti-G-protein antibodies have binding affinities to 125I-labeled G-protein of less than 10(-6) M-1. Of 11 antibodies to frog or bovine G-protein tested in solid phase and Western blot assays, all bind to the alpha rather than the beta or gamma subunits. Procedures developed here are being used in preparing other antibodies that affect reactions in the phototransduction pathway.  相似文献   

17.
18.
The pineal gland contains a soluble phosphoprotein, phosducin, which is homologous to that of retinal photoreceptors. Phosducin has been shown to bind the beta, gamma subunits of the retinal G-protein transducin. Retinal phosducin has been cloned and now we report a rat pineal cDNA encoding phosducin. A 1217-nucleotide cDNA was isolated from a rat pineal library by DNA-DNA hybridization with a polymerase chain reaction-amplified cDNA of bovine retina mRNA for phosducin. Northern blot analysis demonstrates that the mRNA for phosducin is approximately 1.3 kb in both rat pineal and rat retina. The translated mRNA from rat pineal encodes a protein with 246 amino acids, compared to the 245 amino acids of bovine retina phosducin. The predicted molecular weight of rat pineal phosducin is 28,201. Immunoblot analysis with affinity-purified antibodies against bovine retina phosducin identify a single immunoreactive protein of approximately 33 kDa in both rat retina and rat pineal. The amino acid sequence of rat pineal phosducin is homologous to that of bovine retina phosducin, revealing 89% identity and another 5.7% similarity. Both rat pineal and bovine retina phosducins are acidic proteins with pIs of 4.3 and 4.5, respectively. The translated protein lacks hydrophobic domains that would suggest an integral membrane protein. Rat pineal phosducin has a single consensus phosphorylation domain for protein kinase A that is nearly identical to that of retinal phosducin, which is phosphorylated by protein kinase A in situ. Rat phosducin also contains three potential phosphorylation domains for protein kinase C and nine for casein kinase II as well as a predicted site for N-glycosylation. The cDNA encoding phosducin was used to localize the gene within a linkage group to a large segment of mouse chromosome 1 in a conserved region with the long arm of human chromosome 1 with a panel of DNA samples from an interspecific cross. In keeping with a proposed role of retinal phosducin in down-regulation of the photo-transduction cascade, a modulatory role in signal transduction is proposed for pineal phosducin.  相似文献   

19.
Sarcolemmal fractions of vascular smooth muscles were prepared from porcine thoracic aortae by differential and sucrose density gradient centrifugation. In these fractions, there was a high activity of 5'-nucleotidase, a putative marker enzyme of plasma membrane, and a low activity of rotenone insensitive NADH-cytochrome c reductase a marker of sarcoplasmic reticulum. In these fractions, the Ca2+ uptake was ATP-dependent. A low concentration of saponin which inhibited Ca2+ uptake by the plasma membrane but not by the sarcoplasmic reticulum, inhibited 65% of the Ca2+ uptake of this fraction. The Ca2+ uptake of this fraction was enhanced by cAMP- and cGMP-dependent protein kinases, and by calmodulin. The cAMP-dependent protein kinase enhanced the phosphorylation of 28 and 22 kDa proteins, while the cGMP-dependent protein kinase phosphorylated the 35 kDa protein. The phosphorylation of 100, 75, 65, 41 and 22 kDa proteins was enhanced by Ca2+ and calmodulin. These results indicate that cAMP- and cGMP-dependent protein kinases as well as calmodulin play important roles in Ca2+ transport in the sarcolemma, and that the phosphorylated proteins may be associated with an enhancement of Ca2+ transport in the sarcolemma.  相似文献   

20.
Recent evidence indicates that tyrosine phosphorylation may play important roles in retinal photoreceptor rod outer segments (ROS). We investigated the tyrosine phosphorylation of endogenous proteins in isolated bovine ROS. Several proteins with apparent molecular masses of 31, 39, 60, 83, 90, 97, 120, 140, and 180 kDa were tyrosine-phosphorylated in ROS incubated with Mg(2+), ATP, and orthovanadate. Several tyrosine kinase inhibitors significantly inhibited tyrosine phosphorylation of these proteins in ROS. The 39- and 60-kDa tyrosine-phosphorylated proteins were identified as the alpha subunit of the G protein transducin (Talpha) and the tyrosine kinase Src, respectively. The presence of Src and tyrosine kinase activity in bovine ROS was confirmed by their cofractionation with rhodopsin and Talpha on continuous sucrose gradients. Several tyrosine-phosphorylated proteins, including Src, coimmunoprecipitated with Talpha. The association of Src with Talpha was detected in the absence of tyrosine phosphorylation, but was enhanced with increased tyrosine phosphorylation of ROS. Moreover, tyrosine kinase activity also associated with Talpha was sevenfold higher under tyrosine-phosphorylating conditions. The recovery of transducin by hypotonic GTP extraction from tyrosine-phosphorylated ROS was significantly less than that from nonphosphorylated ROS. We localized the site on Talpha phosphorylated by Src to the amino-terminal half by limited tryptic digests, and further mapped it by ion trap mass spectrometry to Tyr(142) in the helical domain of Talpha. Talpha was also tyrosine-phosphorylated in vivo in rat retina, but this phosphorylation was not affected by light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号