首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Staphylococcus aureus and Staphylococcus epidermidis cause dangerous and difficult to treat medical device-related infections through their ability to form biofilms. Extracellular poly-N-acetylglucosamine (PNAG) facilitates biofilm formation and is a vaccination target, yet details of its biosynthesis by the icaADBC gene products is limited. IcaC is the proposed transporter for PNAG export, however a comparison of the Ica proteins to homologous exo-polysaccharide synthases suggests that the common IcaAD protein components both synthesise and transport the PNAG. The limited distribution of icaC to the Staphylococcaceae and its membership of a family of membrane-bound acyltransferases, leads us to suggest that IcaC is responsible for the known O-succinylation of PNAG that occurs in staphylococci, identifying a potentially new therapeutic target specific for these bacteria.  相似文献   

2.
3.
Staphylococcus aureus is an important pathogen that forms biofilms on the surfaces of medical implants. Biofilm formation by S. aureus is associated with the production of poly N-acetylglucosamine (PNAG), also referred to as polysaccharide intercellular adhesin (PIA), which mediates bacterial adhesion, leading to the accumulation of bacteria on solid surfaces. This study shows that the ability of S. aureus SA113 to adhere to nasal epithelial cells is reduced after the deletion of the ica operon, which contains genes encoding PIA/PNAG synthesis. However, this ability is restored after a plasmid carrying the entire ica operon is transformed into the mutant strain, S. aureus SA113Δica, showing that the synthesis of PIA/PNAG is important for adhesion to epithelial cells. Additionally, S. carnosus TM300, which does not produce PIA/PNAG, forms a biofilm and adheres to epithelial cells after the bacteria are transformed with a PIA/PNAG-expressing plasmid, pTXicaADBC. The adhesion of S. carnosus TM300 to epithelial cells is also demonstrated by adding purified exopolysaccharide (EPS), which contains PIA/PNAG, to the bacteria. In addition, using a mouse model, we find that the abscess lesions and bacterial burden in lung tissues is higher in mice infected with S. aureus SA113 than in those infected with the mutant strain, S. aureus SA113Δica. The results indicate that PIA/PNAG promotes the adhesion of S. aureus to human nasal epithelial cells and lung infections in a mouse model. This study elucidates a mechanism that is important to the pathogenesis of S. aureus infections.  相似文献   

4.
5.
6.
Recent progress in elucidating the role of the icaADBC-encoded polysaccharide intercellular adhesin (PIA) or polymeric N-acetyl-glucosamine (PNAG) in staphylococcal biofilm development has in turn contributed significantly to our understanding of the pathogenesis of device-related infections. Nevertheless, our understanding of how the ica locus and PIA/PNAG biosynthesis are regulated is far from complete and many questions remain. Moreover, beyond ica, evidence is now emerging for the existence of ica-independent biofilm mechanisms in both Staphylococcus aureus and Staphylococcus epidermidis. Teichoic acids, which are a major carbohydrate component of the S. epidermidis biofilm matrix and the major cell wall autolysin, play an important role in the primary attachment phase of biofilm development, whereas the cell surface biofilm-associated protein and accumulation-associated protein are capable of mediating intercellular accumulation. These findings raise the exciting prospect that other surface proteins, which typically function as antigenic determinants or in binding to extracellular matrix proteins, may also act as biofilm adhesins. Given the impressive array of surface proteins expressed by S. aureus and S. epidermidis, future research into their potential role in biofilm development either independent of PIA/PNAG or in cooperation with PIA/PNAG will be of particular interest.  相似文献   

7.
葡萄球菌生物膜形成机制与ica之间的关系   总被引:1,自引:0,他引:1  
ica位点编码的胞外多糖(PIA/PNAG)对理解葡萄球菌生物膜相关感染病理学方面具有重要的意义.关于ica位点与PIA/PNAG之间如何调节的研究还不全面,另外一种独立于ica的生物膜形成机制存在于表皮葡萄球菌和金黄色葡萄球菌中;细胞表面相关蛋白也能调节生物膜的形成,这些发现为探究它们在生物膜形成机制的潜在作用提供了重要基础.  相似文献   

8.
9.
The skin commensal and opportunistic pathogen Staphylococcus epidermidis is the leading cause of nosocomial and biofilm-associated infections. Little is known about the mechanisms by which S. epidermidis protects itself against the innate human immune system during colonization and infection. We used scanning electron microscopy to demonstrate that the exopolysaccharide intercellular adhesin (PIA) resides in fibrous strands on the bacterial cell surface, and that lack of PIA production results in complete loss of the extracellular matrix material that has been suggested to mediate immune evasion. Phagocytosis and killing by human polymorphonuclear leucocytes was significantly increased in a mutant strain lacking PIA production compared with the wild-type strain. The mutant strain was also significantly more susceptible to killing by major antibacterial peptides of human skin, cationic human beta-defensin 3 and LL-37, and anionic dermcidin. PIA represents the first defined factor of the staphylococcal biofilm matrix that protects against major components of human innate host defence.  相似文献   

10.
11.
The otherwise harmless skin inhabitant Staphylococcus epidermidis is a major cause of healthcare‐associated medical device infections. The species' selective pathogenic potential depends on its production of surface adherent biofilms. The Cell wall‐anchored protein Aap promotes biofilm formation in S. epidermidis, independently from the polysaccharide intercellular adhesin PIA. Aap requires proteolytic cleavage to act as an intercellular adhesin. Whether and which staphylococcal proteases account for Aap processing is yet unknown. Here, evidence is provided that in PIA‐negative S. epidermidis 1457Δica, the metalloprotease SepA is required for Aap‐dependent S. epidermidis biofilm formation in static and dynamic biofilm models. qRT‐PCR and protease activity assays demonstrated that under standard growth conditions, sepA is repressed by the global regulator SarA. Inactivation of sarA increased SepA production, and in turn augmented biofilm formation. Genetic and biochemical analyses demonstrated that SepA‐related induction of biofilm accumulation resulted from enhanced Aap processing. Studies using recombinant proteins demonstrated that SepA is able to cleave the A domain of Aap at residue 335 and between the A and B domains at residue 601. This study identifies the mechanism behind Aap‐mediated biofilm maturation, and also demonstrates a novel role for a secreted staphylococcal protease as a requirement for the development of a biofilm.  相似文献   

12.
13.
14.
The capacity of Staphylococcus aureus to form biofilms on host tissues and implanted medical devices is one of the major virulence traits underlying persistent and chronic infections. The matrix in which S. aureus cells are encased in a biofilm often consists of the polysaccharide intercellular adhesin (PIA) or poly-N-acetyl glucosamine (PNAG). However, surface proteins capable of promoting biofilm development in the absence of PIA/PNAG exopolysaccharide have been described. Here, we used two-dimensional nano-liquid chromatography and mass spectrometry to investigate the composition of a proteinaceous biofilm matrix and identified protein A (spa) as an essential component of the biofilm; protein A induced bacterial aggregation in liquid medium and biofilm formation under standing and flow conditions. Exogenous addition of synthetic protein A or supernatants containing secreted protein A to growth media induced biofilm development, indicating that protein A can promote biofilm development without being covalently anchored to the cell wall. Protein A-mediated biofilm formation was completely inhibited in a dose-dependent manner by addition of serum, purified immunoglobulin G, or anti-protein A-specific antibodies. A murine model of subcutaneous catheter infection unveiled a significant role for protein A in the development of biofilm-associated infections, as the amount of protein A-deficient bacteria recovered from the catheter was significantly lower than that of wild-type bacteria when both strains were used to coinfect the implanted medical device. Our results suggest a novel role for protein A complementary to its known capacity to interact with multiple immunologically important eukaryotic receptors.Staphylococcus aureus is a gram-positive bacterium that lives as part of the normal microflora on the skin and mucous membranes of humans and animals. If S. aureus passes through the epithelial barrier and reaches internal organs, it can cause a variety of diseases, ranging from minor skin infections, such as furuncles or boils, to severe infections, such as bacteremia, pneumonia, osteomyelitis, or endocarditis. Despite the progress with antibiotics in the treatment of bacterial infections over the last 2 decades, the number of infections due to S. aureus has increased (11, 30). The infection rate has been correlated with an increase in the use of prosthetic and indwelling devices in modern medical practices (24, 26). S. aureus, as well as other coagulase-negative staphylococci, displays a strong capacity to irreversibly attach to the surface of implanted medical devices and forms multilayered communities of bacteria, known as biofilms, that grow embedded in a self-produced extracellular matrix (23). The biofilm formation process occurs in two steps: first, bacterial cells irreversibly attach to a surface, and second, they interact with each other and accumulate in multilayered cell clusters embedded in a self-produced extracellular matrix. Primary attachment is mediated by physico-chemical cell surface properties as well as specific factors that mediate the attachment to the host-derived extracellular matrix components that rapidly coat the biomaterial following insertion into the patient. Numerous proteins from the MSCRAMMs family (microbial surface components recognizing adhesive matrix molecules) are involved in the first step of S. aureus biofilm formation, such as clumping factors ClfA (37) and ClfB (41) and fibrinogen and fibronectin binding proteins (FnBPA and FnBPB) (25, 31). Once bacteria accumulate in multilayered cell clusters, most have no direct contact with the surface, and thus cell-to-cell interactions become essential for biofilm development and maintenance. An extracellular polysaccharide intercellular adhesin (PIA, or PNAG), produced by icaADBC operon-encoded enzymes, is currently the best-characterized element mediating intercellular interactions in vitro (8, 23, 34, 35, 38). Alternatively, a number of surface proteins can replace PIA/PNAG exopolysaccharide in promoting intercellular adhesion and biofilm development, including the surface protein Bap (9). All the tested staphylococcal isolates harboring the bap gene were shown to be strong biofilm producers, and inactivation of the icaADBC operon in bap-positive strains had no effect on in vitro biofilm formation (57). Remarkably, proteins homologous to Bap are involved in the biofilm formation process in diverse bacterial species (33). A second surface protein, SasG, as well as its homologous protein in Staphylococcus epidermidis, Aap, also mediates intercellular interactions and biofilm development in the absence of the ica operon (7, 51). More recently, two independent laboratories have shown that fibronectin binding proteins A and B (FnBPA and FnBPB) induce biofilm development of clinical isolates of S. aureus (45, 55). Finally, there is growing evidence that extracellular DNA, despite not being sufficient to replace PIA/PNAG exopolysaccharide, is an important S. aureus biofilm matrix component (50).During the course of a systematic mutagenesis study of the 17 two-component systems of S. aureus that aimed to identify biofilm-negative regulators, we found that S. aureus agr arlRS double mutants developed an alternative, ica-independent biofilm in a chemically defined medium, Hussain-Hastings-White (HHW) medium (56). This study focused on the identification of the proteinaceous compound responsible for the biofilm developed by S. aureus agr arlRS mutants. Here, we show that S. aureus protein A is responsible for the aggregative phenotype and capacity for biofilm formation displayed by this strain. Furthermore, overproduction of protein A in wild-type S. aureus strains or addition of soluble protein A to bacterial growth medium induced aggregation and biofilm development, suggesting that protein A does not need to be covalently linked to the cell wall to promote multicellular behavior. Moreover, deletion of the spa gene significantly decreased the capacity of S. aureus to colonize subcutaneously implanted catheters. Our findings support a novel role for protein A in promoting multicellular behavior and suggest that protein A-mediated biofilm development may have a critical function during the infection process of S. aureus.  相似文献   

15.
Staphylococcus epidermidis is a skin-resident bacterium and a major cause of biomaterial-associated infections. The transition from residing on the skin to residing on an implanted biomaterial is accompanied by regulatory changes that facilitate bacterial survival in the new environment. These regulatory changes are dependent upon the ability of bacteria to “sense” environmental changes. In S. epidermidis, disparate environmental signals can affect synthesis of the biofilm matrix polysaccharide intercellular adhesin (PIA). Previously, we demonstrated that PIA biosynthesis is regulated by tricarboxylic acid (TCA) cycle activity. The observations that very different environmental signals result in a common phenotype (i.e. increased PIA synthesis) and that TCA cycle activity regulates PIA biosynthesis led us to hypothesize that S. epidermidis is “sensing” disparate environmental signals through the modulation of TCA cycle activity. In this study, we used NMR metabolomics to demonstrate that divergent environmental signals are transduced into common metabolomic changes that are “sensed” by metabolite-responsive regulators, such as CcpA, to affect PIA biosynthesis. These data clarify one mechanism by which very different environmental signals cause common phenotypic changes. In addition, due to the frequency of the TCA cycle in diverse genera of bacteria and the intrinsic properties of TCA cycle enzymes, it is likely the TCA cycle acts as a signal transduction pathway in many bacteria.  相似文献   

16.
Aims: Polysaccharide intercellular adhesin (PIA) is the main agglutination agent in the biofilm forming strain Staphylococcus epidermidis. To find an explanation for the observed inhibition of biofilm formation by allicin, we studied the effect of allicin on PIA production in samples treated with sub MIC doses of allicin and compared this with a control culture without allicin. Methods and Results: Bacteria (Staph. epidermidis ATCC 35984) were grown in glass tubes, and PIA was extracted by vortex vibration using microbeads and NN dimethyl acetamide/LiCl as solvent. The extracts were filtered and passed through size exclusion columns. Chromatographic fractions were analysed with an excess of sodium metaperiodate and the excess was determined spectrophotometrically using 2,4,6‐tripyridyl‐s‐triazine. Conclusion: The amount of exopolysaccharides in samples previously treated with allicin is significantly lower than in the control. This finding suggests a specific enzymatic inhibition in PIA synthesis. Significance and Impact of the Study: This study provides an insight into the mechanism of biofilm formation, and is a biochemical model for PIA inhibition by allicin. The analysis proposed may be useful in studies of production of exopolysaccharides responsible for adherence and agglutination of Staph. epidermidis. Prevention of biofilm formation by allicin opens up a new field of in vitro studies and permits us to envisage future clinical applications.  相似文献   

17.
Staphylococcus epidermidis is an opportunistic biofilm-forming pathogen associated with neurosurgical device-related meningitis. Expression of the polysaccharide intercellular adhesin (PIA) on its surface promotes S. epidermidis biofilm formation. Here we investigated the pro-inflammatory properties of PIA against primary and transformed human astrocytes. PIA induced IL-8 expression in a dose- and/or time-dependent manner from U373 MG cells and primary normal human astrocytes. This effect was inhibited by depletion of N -acetyl-β- d -glucosamine polymer from the PIA preparation with Lycopersicon esculentum lectin or sodium meta -periodate. Expression of dominant-negative versions of the TLR2 and TLR4 adaptor proteins MyD88 and Mal in U373 MG cells inhibited PIA-induced IL-8 production. Blocking IL-1 had no effect. PIA failed to induce IL-8 production from HEK293 cells stably expressing TLR4. However, in U373 MG cells which express TLR2, neutralization of TLR2 impaired PIA-induced IL-8 production. In addition to IL-8, PIA also induced expression of other cytokines from U373 MG cells including IL-6 and MCP-1. These data implicate PIA as an important immunogenic component of the S. epidermidis biofilm that can regulate pro-inflammatory cytokine production from human astrocytes, in part, via TLR2.  相似文献   

18.
The Staphylococcus epidermidis genes icaABC are involved in the synthesis of the polysaccharide intercellular adhesin (PIA), which is located mainly on the cell surface, as shown by immunofluorescence studies with PIA-specific antiserum. PIA was shown to be a linear β-1,6-linked glucosaminoglycan composed of at least 130 2-deoxy-2-amino-D-glucopyrano-syl residues of which 80–85% are N-acetylated, the rest being non-N-acetylated and positively charged. A transposon insertion in the icaABC gene cluster (ica, intercellular adhesion) led to the loss of several traits, such as the ability to form a biofilm on a polystyrene surface, cell aggregation, and PIA production. The mutant could be complemented by transformation with the IcaABC-carrying plasmid pCN27. Transfer of pCN27 into the heterologous host Staphylococcus carnosus led to the formation of large cell aggregates, the formation of a biofilm on a glass surface, and PIA expression. The nucleotide sequence of icaABC suggests that the three genes are organized in an operon and that they are co-transcribed from the mapped ica A promoter. Ica A contains four potential transmembrane helices, indicative of a membrane location. The deduced Ica A sequence shows similarity to those of polysaccharide-polymerizing enzymes, the most pronounced being with a Rhizobium meliloti N-acetylglucosaminyltransferase involved in lipo-chitin biosynthesis (22.5% overall identity and 37.4% overall similarity). This similarity suggests that Ica A has N-acetylglucosaminyltransferase activity in the formation  相似文献   

19.
Colonization of implanted medical devices by coagulase-negative staphylococci such as Staphylococcus epidermidis is mediated by the bacterial polysaccharide intercellular adhesin (PIA), a polymer of beta-(1-->6)-linked glucosamine substituted with N-acetyl and O-succinyl constituents. The icaADBC locus containing the biosynthetic genes for production of PIA has been identified in both S. epidermidis and S. aureus. Whereas it is clear that PIA is a constituent that contributes to the virulence of S. epidermidis, it is less clear what role PIA plays in infection with S. aureus. Recently, identification of a novel polysaccharide antigen from S. aureus termed poly N-succinyl beta-(1-->6)-glucosamine (PNSG) has been reported. This polymer was composed of the same glycan backbone as PIA but was reported to contain a high proportion of N-succinylation rather than acetylation. We have isolated a glucosamine-containing exopolysaccharide from the constitutive over-producing MN8m strain of S. aureus in order to prepare polysaccharide-protein conjugate vaccines. In this report we demonstrate that MN8m produced a high-molecular-weight (>300,000 Da) polymer of beta-(1-->6)-linked glucosamine containing 45-60% N-acetyl, and a small amount of O-succinyl (approx 10% mole ratio to monosaccharide units). By detailed NMR analyses of polysaccharide preparations, we show that the previous identification of N-succinyl was an analytical artifact. The exopolysaccharide we have isolated is active in in vitro hemagglutination assays and is immunogenic in mice when coupled to a protein carrier. We therefore conclude that S. aureus strain MN8m produces a polymer that is chemically and biologically closely related to the PIA produced by S. epidermidis.  相似文献   

20.
Staphylococcal polysaccharide intercellular adhesin (PIA) is important for the development of a mature biofilm. PIA production is increased during growth in a nutrient-replete or iron-limited medium and under conditions of low oxygen availability. Additionally, stress-inducing stimuli such as heat, ethanol, and high concentrations of salt increase the production of PIA. These same environmental conditions are known to repress tricarboxylic acid (TCA) cycle activity, leading us to hypothesize that altering TCA cycle activity would affect PIA production. Culturing Staphylococcus epidermidis with a low concentration of the TCA cycle inhibitor fluorocitrate dramatically increased PIA production without impairing glucose catabolism, the growth rate, or the growth yields. These data lead us to speculate that one mechanism by which staphylococci perceive external environmental change is through alterations in TCA cycle activity leading to changes in the intracellular levels of biosynthetic intermediates, ATP, or the redox status of the cell. These changes in the metabolic status of the bacteria result in the attenuation or augmentation of PIA production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号