首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The essential cytoskeletal protein FtsZ assembles into a ring-like structure at the nascent division site and serves as a scaffold for the assembly of the prokaryotic division machinery. We previously characterized EzrA as an inhibitor of FtsZ assembly in Bacillus subtilis. EzrA interacts directly with FtsZ to prevent aberrant FtsZ assembly and cytokinesis at cell poles. EzrA also concentrates at the cytokinetic ring in an FtsZ-dependent manner, although its precise role at this position is not known. Here, we identified a conserved patch of amino acids in the EzrA C terminus that is essential for localization to the FtsZ ring. Mutations in this patch (designated the “QNR patch”) abolish EzrA localization to midcell but do not significantly affect EzrA's ability to inhibit FtsZ assembly at cell poles. ezrA QNR patch mutant cells exhibit stabilized FtsZ assembly at midcell and are significantly longer than wild-type cells, despite lacking extra FtsZ rings. These results indicate that EzrA has two distinct activities in vivo: (i) preventing aberrant FtsZ ring formation at cell poles through inhibition of de novo FtsZ assembly and (ii) maintaining proper FtsZ assembly dynamics within the medial FtsZ ring, thereby rendering it sensitive to the factors responsible for coordinating cell growth and cell division.  相似文献   

2.
In response to a cell cycle signal, the cytoskeletal protein FtsZ assembles into a ring structure that establishes the location of the division site and serves as a framework for assembly of the division machinery. A battery of factors control FtsZ assembly to ensure that the ring forms in the correct position and at the precise time. EzrA, a negative regulator of FtsZ ring formation, is important for ensuring that the ring forms only once per cell cycle and that cytokinesis is restricted to mid-cell. EzrA is distributed throughout the plasma membrane and localizes to the ring in an FtsZ-dependent manner, suggesting that it interacts directly with FtsZ to modulate assembly. We have performed a series of experiments examining the interaction between EzrA and FtsZ. As little as twofold overexpression of EzrA blocks FtsZ ring formation in a sensitized genetic background, consistent with its predicted function. A purified EzrA fusion protein interacts directly with FtsZ to block assembly in vitro. Although EzrA is able to inhibit FtsZ assembly, it is unable to disassemble preformed polymers. These data support a model in which EzrA interacts directly with FtsZ at the plasma membrane to prevent polymerization and aberrant FtsZ ring formation.  相似文献   

3.
How cells co‐ordinate size with growth and development is a major, unresolved question in cell biology. In previous work we identified the glucosyltransferase UgtP as a division inhibitor responsible for increasing the size of Bacillus subtilis cells under nutrient‐rich conditions. In nutrient‐rich medium, UgtP is distributed more or less uniformly throughout the cytoplasm and concentrated at the cell poles and/or the cytokinetic ring. Under these conditions, UgtP interacts directly with FtsZ to inhibit division and increase cell size. Conversely, under nutrient‐poor conditions, UgtP is sequestered away from FtsZ in punctate foci, and division proceeds unimpeded resulting in a reduction in average cell size. Here we report that nutrient‐dependent changes in UgtP's oligomerization potential serve as a molecular rheostat to precisely co‐ordinate B. subtilis cell size with nutrient availability. Our data indicate UgtP interacts with itself and the essential cell division protein FtsZ in a high‐affinity manner influenced in part by UDP glucose, an intracellular proxy for nutrient availability. These findings support a model in which UDP‐glc‐dependent changes in UgtP's oligomerization potential shift the equilibrium between UgtP?UgtP and UgtP?FtsZ, fine‐tuning the amount of FtsZ available for assembly into the cytokinetic ring and with it cell size.  相似文献   

4.
In Bacillus subtilis, EzrA is involved in preventing aberrant formation of FtsZ rings and has also been implicated in the localization cycle of Pbp1. We have identified the orthologue of EzrA in Staphylococcus aureus to be essential for growth and cell division in this organism. Phenotypic analyses following titration of EzrA levels in S. aureus have shown that the protein is required for peptidoglycan synthesis as well as for assembly of the divisome at the midcell and cytokinesis. Protein interaction studies revealed that EzrA forms a complex with both the cytoplasmic components of the division machinery and those with periplasmic domains, suggesting that EzrA may be a scaffold molecule permitting the assembly of the division complex and forming an interface between the cytoplasmic cytoskeletal element FtsZ and the peptidoglycan biosynthetic apparatus active in the periplasm.  相似文献   

5.
Singh JK  Makde RD  Kumar V  Panda D 《Biochemistry》2007,46(38):11013-11022
FtsZ polymerizes to form a dynamic ring structure called the Z-ring at the midcell of bacteria. EzrA, a membrane protein, has been shown to prevent the formation of aberrant Z-rings in the low GC Gram-positive bacteria by inhibiting FtsZ assembly. In this study, we show that Bacillus subtilis (B. subtilis) EzrA inhibited the assembly and bundling of B. subtilis FtsZ. It increased the critical concentration of FtsZ assembly and depolymerized the preformed FtsZ polymers in vitro. We obtained evidence suggesting that B. subtilis EzrA forms complex with B. subtilis FtsZ in vitro. EzrA was found to bind to FtsZ at a single site with a dissociation constant of 4.3 +/- 0.6 microM. EzrA-FtsZ interaction has a significant electrostatic contribution as apparent from the effect of salt on their binding interactions. To elucidate the site of interaction between EzrA and FtsZ, we deleted 16 amino acid residues from the extreme C-terminal tail of B. subtilis FtsZ, which are conserved in FtsZ orthologues. EzrA did not inhibit the assembly of C-terminal truncated B. subtilis FtsZ. It also did not bind to the C-terminal truncated FtsZ detectably, suggesting that EzrA interacts with FtsZ through its conserved C-terminal tail residues. Further, a 17-residue synthetic peptide (365-382) of the C-terminal tail of FtsZ (CTP17) was used to probe the interaction of EzrA with the C-terminal tail of FtsZ. CTP17 bound to EzrA, inhibited the binding of EzrA to FtsZ, and surmounted the inhibitory effects of EzrA on the assembly of FtsZ in vitro. The data together showed that EzrA binds to the C-terminal tail of FtsZ. FtsA, a positive regulator of FtsZ assembly, is also known to interact with the C-terminal tail of FtsZ. The results indicated an interesting possibility that the assembly dynamics of FtsZ in the Z-ring is regulated by the competition between positive and negative regulators sharing the same binding site on FtsZ.  相似文献   

6.
In rod-shaped bacteria, a surprisingly large number of proteins are localized to the cell poles. Polar positioning of proteins is crucial to many fundamental cellular processes. Formation of the pole occurs at the time of a prior cell division event and involves coordination of the cell division machinery with septal placement of newly-synthesized peptidoglycan. Development of polar peptidoglycan and outer membrane depends on the formation of the cytokinetic FtsZ ring at midcell. By contrast, positioning of at least two polar proteins depends on signals independent of both the assembly of the FtsZ ring and the synthesis of septal and polar peptidoglycan. We propose a model for distinct but interrelated developmental pathways for polar cell envelope synthesis and positional information recognized by polar proteins.  相似文献   

7.
During sporulation, Bacillus subtilis redeploys the division protein FtsZ from midcell to the cell poles, ultimately generating an asymmetric septum. Here, we describe a sporulation-induced protein, RefZ, that facilitates the switch from a medial to a polar FtsZ ring placement. The artificial expression of RefZ during vegetative growth converts FtsZ rings into FtsZ spirals, arcs, and foci, leading to filamentation and lysis. Mutations in FtsZ specifically suppress RefZ-dependent division inhibition, suggesting that RefZ may target FtsZ. During sporulation, cells lacking RefZ are delayed in polar FtsZ ring formation, spending more time in the medial and transition stages of FtsZ ring assembly. A RefZ-green fluorescent protein (GFP) fusion localizes in weak polar foci at the onset of sporulation and as a brighter midcell focus at the time of polar division. RefZ has a TetR DNA binding motif, and point mutations in the putative recognition helix disrupt focus formation and abrogate cell division inhibition. Finally, chromatin immunoprecipitation assays identified sites of RefZ enrichment in the origin region and near the terminus. Collectively, these data support a model in which RefZ helps promote the switch from medial to polar division and is guided by the organization of the chromosome. Models in which RefZ acts as an activator of FtsZ ring assembly near the cell poles or as an inhibitor of the transient medial ring at midcell are discussed.  相似文献   

8.
At initiation of cell division, FtsZ, a tubulin-like GTPase, assembles into a so-called Z-ring structure at the site of division. The formation of Z ring is negatively regulated by EzrA, which ensures only one ring at the midcell per cell cycle. The mechanism leading to the negative regulation of Z-ring formation by EzrA has been analyzed. Our data reveal that the interaction between EzrA and FtsZ not only reduces the GTP-binding ability of FtsZ but also accelerates the rate of GTP hydrolysis, both of which are unfavorable for the polymerization of FtsZ. Moreover, the acceleration in rate of GTP hydrolysis by EzrA is attributed to stabilization of the transition state for GTP hydrolysis and reduction in the affinity of GDP for FtsZ. Clearly, EzrA is able to modify the GTP hydrolysis cycle of FtsZ. On the basis of these results, a model for how EzrA acts to negatively regulate Z-ring formation is proposed.  相似文献   

9.
Thanbichler M  Shapiro L 《Cell》2006,126(1):147-162
Correct positioning of the division plane is a prerequisite for the generation of daughter cells with a normal chromosome complement. Here, we present a mechanism that coordinates assembly and placement of the FtsZ cytokinetic ring with bipolar localization of the newly duplicated chromosomal origins in Caulobacter. After replication of the polarly located origin region, one copy moves rapidly to the opposite end of the cell in an MreB-dependent manner. A previously uncharacterized essential protein, MipZ, forms a complex with the partitioning protein ParB near the origin of replication and localizes with the duplicated origin regions to the cell poles. MipZ directly interferes with FtsZ polymerization, thereby restricting FtsZ ring formation to midcell, the region of lowest MipZ concentration. The cellular localization of MipZ thus serves the dual function of positioning the FtsZ ring and delaying formation of the cell division apparatus until chromosome segregation has initiated.  相似文献   

10.
Guanine nucleotide-dependent assembly of FtsZ into filaments.   总被引:41,自引:19,他引:22       下载免费PDF全文
FtsZ is an essential cell division protein that is localized to the leading edge of the bacterial septum in a cytokinetic ring. It contains the tubulin signature motif and is a GTP binding protein with a GTPase activity. Further comparison of FtsZ with eukaryotic tubulins revealed some additional sequence similarities, perhaps indicating a similar GTP binding site. Examination of FtsZ incubated in vitro by electron microscopy revealed a guanine nucleotide-dependent assembly into protein filaments, supporting the hypothesis that the FtsZ ring is formed through self-assembly. FtsZ3, which is unable to bind GTP, does not polymerize, whereas FtsZ2, which binds GTP but is deficient in GTP hydrolysis, is capable of polymerization.  相似文献   

11.
FtsZ is the major cytoskeletal component of the bacterial cell division machinery. It forms a ring-shaped structure (the Z ring) that constricts as the bacterium divides. Previous in vivo experiments with green fluorescent protein-labeled FtsZ and fluorescence recovery after photobleaching have shown that the Escherichia coli Z ring is extremely dynamic, continually remodeling itself with a half time of 30 s, similar to microtubules in the mitotic spindle. In the present work, under different experimental conditions, we have found that the half time for fluorescence recovery of E. coli Z rings is even shorter (approximately 9 s). As before, the turnover appears to be coupled to GTP hydrolysis, since the mutant FtsZ84 protein, with reduced GTPase in vitro, showed an approximately 3-fold longer half time. We have also extended the studies to Bacillus subtilis and found that this species exhibits equally rapid dynamics of the Z ring (half time, approximately 8 s). Interestingly, null mutations of the FtsZ-regulating proteins ZapA, EzrA, and MinCD had only modest effects on the assembly dynamics. This suggests that these proteins do not directly regulate FtsZ subunit exchange in and out of polymers. In B. subtilis, only 30 to 35% of the FtsZ protein was in the Z ring, from which we conclude that a Z ring only 2 or 3 protofilaments thick can function for cell division.  相似文献   

12.
The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ   总被引:4,自引:1,他引:3  
Summary Assembly of the tubulin-like cytoskeletal protein FtsZ into a ring structure establishes the location of the nascent division site in prokaryotes. Factors that modulate FtsZ assembly are essential for ensuring the precise spatial and temporal regulation of cytokinesis. We have identified ClpX, the substrate recognition subunit of the ClpXP protease, as an inhibitor of FtsZ assembly in Bacillus subtilis. Genetic data indicate that ClpX but not ClpP inhibits FtsZ-ring formation in vivo. In vitro, ClpX inhibits FtsZ assembly in a ClpP-independent manner through a mechanism that does not require ATP hydrolysis. Together our data support a model in which ClpX helps maintain the cytoplasmic pool of unassembled FtsZ that is required for the dynamic nature of the cytokinetic ring. ClpX is conserved throughout bacteria and has been shown to interact directly with FtsZ in Escherichia coli. Thus, we speculate that ClpX functions as a general regulator of FtsZ assembly and cell division in a wide variety of bacteria.  相似文献   

13.
The earliest event in bacterial cell division is the formation of a Z ring, composed of the tubulin-like FtsZ protein, at the division site at midcell. This ring then recruits several other division proteins and together they drive the formation of a division septum between two replicated chromosomes. Here we show that, in addition to forming a cytokinetic ring, FtsZ localizes in a helical-like pattern in vegetatively growing cells of Bacillus subtilis. FtsZ moves rapidly within this helix-like structure. Examination of FtsZ localization in individual live cells undergoing a single cell cycle suggests a new assembly mechanism for Z ring formation that involves a cell cycle-mediated multistep remodelling of FtsZ polymers. Our observations suggest that initially FtsZ localizes in a helical pattern, with movement of FtsZ within this structure occurring along the entire length of the cell. Next, movement of FtsZ in a helical-like pattern is restricted to a central region of the cell. Finally the FtsZ ring forms precisely at midcell. We further show that another division protein, FtsA, shown to interact with FtsZ prior to Z ring formation in B. subtilis, also localizes to similar helical patterns in vegetatively growing cells.  相似文献   

14.
Bacterial chemotaxis depends on signalling through large protein complexes. Each cell must inherit a complex on division, suggesting some co‐ordination with cell division. In Escherichia coli the membrane‐spanning chemosensory complexes are polar and new static complexes form at pre‐cytokinetic sites, ensuring positioning at the new pole after division and suggesting a role for the bacterial cytoskeleton. Rhodobacter sphaeroides has both membrane‐associated and cytoplasmic, chromosome‐associated chemosensory complexes. We followed the relative positions of the two chemosensory complexes, FtsZ and MreB in aerobic and in photoheterotrophic R. sphaeroides cells using fluorescence microscopy. FtsZ forms polar spots after cytokinesis, which redistribute to the midcell forming nodes from which FtsZ extends circumferentially to form the Z‐ring. Membrane‐associated chemosensory proteins form a number of dynamic unit‐clusters with mature clusters containing about 1000 CheW3 proteins. Individual clusters diffuse randomly within the membrane, accumulating at new poles after division but not colocalizing with either FtsZ or MreB. The cytoplasmic complex colocalizes with FtsZ at midcells in new‐born cells. Before cytokinesis one complex moves to a daughter cell, followed by the second moving to the other cell. These data indicate that two homologous complexes use different mechanisms to ensure partitioning, and neither complex utilizes FtsZ or MreB for positioning.  相似文献   

15.

Background

Cell division in Bacillus subtilis takes place precisely at midcell, through the action of Noc, which prevents division from occurring over the nucleoids, and the Min system, which prevents cell division from taking place at the poles. Originally it was thought that the Min system acts directly on FtsZ, preventing the formation of a Z-ring and, therefore, the formation of a complete cytokinetic ring at the poles. Recently, a new component of the B. subtilis Min system was identified, MinJ, which acts as a bridge between DivIVA and MinCD.

Methodology/Principal Findings

We used fluorescence microscopy and molecular genetics to examine the molecular role of MinJ. We found that in the absence of a functional Min system, FtsA, FtsL and PBP-2B remain associated with completed division sites. Evidence is provided that MinCDJ are responsible for the failure of these proteins to localize properly, indicating that MinCDJ can act on membrane integral components of the divisome.

Conclusions/Significance

Taken together, we postulate that the main function of the Min system is to prevent minicell formation adjacent to recently completed division sites by promoting the disassembly of the cytokinetic ring, thereby ensuring that cell division occurs only once per cell cycle. Thus, the role of the Min system in rod-shaped bacteria seems not to be restricted to an inhibitory function on FtsZ polymerization, but can act on different levels of the divisome.  相似文献   

16.
The first visible event in prokaryotic cell division is the assembly of the soluble, tubulin-like FtsZ GTPase into a membrane-associated cytokinetic ring that defines the division plane in bacterial and archaeal cells. In the temperature-sensitive ftsZ84 mutant of Escherichia coli, this ring assembly is impaired at the restrictive temperature causing lethal cell filamentation. Here I present genetic and morphological evidence that a 2-fold higher dosage of the division gene zipA suppresses thermosensitivity of the ftsZ84 mutant by stabilizing the labile FtsZ84 ring structure in vivo. I demonstrate that purified ZipA promotes and stabilizes protofilament assembly of both FtsZ and FtsZ84 in vitro and cosediments with the protofilaments. Furthermore, ZipA organizes FtsZ protofilaments into arrays of long bundles or sheets that probably represent the physiological organization of the FtsZ ring in bacterial cells. The N-terminal cytoplasmic domain of membrane-anchored ZipA contains sequence elements that resemble the microtubule-binding signature motifs in eukaryotic Tau, MAP2 and MAP4 proteins. It is postulated that the MAP-Tau-homologous motifs in ZipA mediate its binding to FtsZ, and that FtsZ-ZipA interaction represents an ancient prototype of the protein-protein interaction that enables MAPs to suppress microtubule catastrophe and/or to promote rescue.  相似文献   

17.
Precise temporal and spatial control of cell division is essential for progeny survival. The current general view is that precise positioning of the division site at midcell in rod-shaped bacteria is a result of the combined action of the Min system and nucleoid (chromosome) occlusion. Both systems prevent assembly of the cytokinetic Z ring at inappropriate places in the cell, restricting Z rings to the correct site at midcell. Here we show that in the bacterium Bacillus subtilis Z rings are positioned precisely at midcell in the complete absence of both these systems, revealing the existence of a mechanism independent of Min and nucleoid occlusion that identifies midcell in this organism. We further show that Z ring assembly at midcell is delayed in the absence of Min and Noc proteins, while at the same time FtsZ accumulates at other potential division sites. This suggests that a major role for Min and Noc is to ensure efficient utilization of the midcell division site by preventing Z ring assembly at potential division sites, including the cell poles. Our data lead us to propose a model in which spatial regulation of division in B. subtilis involves identification of the division site at midcell that requires Min and nucleoid occlusion to ensure efficient Z ring assembly there and only there, at the right time in the cell cycle.  相似文献   

18.
Cell division in bacteria is governed by a complex cytokinetic machinery in which the key player is a tubulin homologue, FtsZ. Most rod‐shaped bacteria divide precisely at mid‐cell between segregated sister chromosomes. Selection of the correct site for cell division is thought to be determined by two negative regulatory systems: the nucleoid occlusion system, which prevents division in the vicinity of the chromosomes, and the Min system, which prevents inappropriate division at the cell poles. In Bacillus subtilis recruitment of the division inhibitor MinCD to cell poles depends on DivIVA, and these proteins were thought to be sufficient for Min function. We have now identified a novel component of the division‐site selection system, MinJ, which bridges DivIVA and MinD. minJ mutants are impaired in division because MinCD activity is no longer restricted to cell poles. Although MinCD was thought to act specifically on FtsZ assembly, analysis of minJ and divIVA mutants showed that their block in division occurs downstream of FtsZ. The results support a model in which the main function of the Min system lies in allowing only a single round of division per cell cycle, and that MinCD acts at multiple levels to prevent inappropriate division.  相似文献   

19.
20.
The dynamics and assembly of bacterial cell division protein FtsZ were monitored in individual, growing and dividing Escherichia coli cells in real time by microculture of a merodiploid strain expressing green fluorescent protein (GFP)-tagged FtsZ. Cells expressing FtsZ-GFP at levels less than or equivalent to that of wild-type FtsZ were able to grow and divide over multiple generations, with their FtsZ rings visualized by fluorescence. During the late stages of cytokinesis, which constituted the last one-fourth of the cell cycle, the lumen of the FtsZ ring disappeared as the whole structure condensed. At this time, loops of FtsZ-GFP polymers emanated outward from the condensing ring structure and other unstable fluorescent structures elsewhere in the cell were also observed. Assembly of FtsZ rings at new division sites occurred within 1 min, from what appeared to be single points. Interestingly, this nucleation often took place in the predivisional cell at the same time the central FtsZ ring was in its final contraction phase. This demonstrates directly that, at least when FtsZ-GFP is being expressed, new division sites have the capacity to become fully functional for FtsZ targeting and assembly before cell division of the mother cell is completed. The results suggest that the timing of FtsZ assembly may be normally controlled in part by cellular FtsZ concentration. The use of wide-field optical sectioning microscopy to obtain sharp fluorescence images of FtsZ structures is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号